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Abstract: Techno-economic assessments (TEA) of biodiesel production may comply with various
economic and technical uncertainties during the lifespan of the project, resulting in the variation
of many parameters associated with biodiesel production, including price of biodiesel, feedstock
price, and rate of interest. Engineers may only collect very limited information on these uncertain
parameters such as their variation intervals with lower and upper bound. This paper proposes
a novel non-probabilistic strategy for uncertainty analysis (UA) in the TEA of biodiesel production
with interval parameters, and non-probabilistic reliability index (NPRI) is employed to measure
the economically feasible extent of biodiesel production. A sensitivity analysis (SA) indicator is
proposed to assess the sensitivity of NPRI with regard to an individual uncertain interval parameter.
The optimization method is utilized to solve NPRI and SA. Results show that NPRI in the focused
biodiesel production of interest is 0.1211, and price of biodiesel, price of feedstock, and cost of
operating can considerably affect TEA of biodiesel production.

Keywords: reliability; non-probabilistic reliability index; sensitivity analysis; techno-economic assessments;
life cycle cost

1. Introduction

The global climate, ecological environment, and air quality have been considerably affected
by various deleterious emissions and harmful substances including NOx, SOx, CO2, hydrocarbons,
carbon monoxide, and particulate matter, resulting in various environmental pollution problems
and danger on human health [1–9]. A great number of scientists are investigating other harmless,
economic, and clean energy sources for the sake of the reduction of these adverse and negative
effects. Being a valuable renewable energy resource, biodiesel is friendly to the natural environment
and human health, compared to the traditional fossil fuels [10–15]. Various feedstocks-derived
biodiesel production have been reported, for example, palm oil [16], waste cooking oil [17–19],
vegetable oils [20,21], soybean oil [22–25], Jatropha curcas L. [26], algae [27,28], microalgae [28–30],
Oleaginous yeast [31,32], lignocellulosic biomass [33], used frying oil [34], waste cottonseed oil
with heterogeneous catalyst [35,36], Annona squamosa L. seed oil with heterogeneous catalyst [36,37],
Butanol and pentanol [38], etc., and recent advances in biofeedstocks and biofuels have also been
reviewed in [39].

Various uncertain factors existing in the biodiesel industry, such as fluctuation in interest
rate, may cause instability in biodiesel production, and then may decrease the economical
feasibility relevant to biodiesel production [40]. Numerous research works have investigated the
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techno-economic assessments (TEA) of biodiesel production to ensure the economical feasibility of
biodiesel production [41–51], such as TEA for vegetable oil biodiesel production [41], TEA for palm
biodiesel production [42], TEA for algal biofuel production [27,43–45], TEA for microalgae biofuel
production [46,47], TEA for waste-to-biofuel production [48], TEA for sugarcane biorefineries [49],
TEA for lignocellulosic biomass production [51], etc., and recent advances in TEA for biofuel production
have also been summarized in [27,39,51]. These works have extensively improved the development
in the TEA of biodiesel production on condition that all of the parameters relevant to the TEA are
regarded as constant during the project’s lifespan. However, real engineering inevitably confronts
various uncertain parameters resulting from numerous economic and technical uncertainties when
performing TEA of biodiesel production [40], such as variation in the feedstock price [52], fluctuation
of biodiesel price [52], and change in the rate of interest [53], and thus it may be more rational to
treat these parameters as uncertain parameters. Recently, several works have studied the TEA of
biodiesel production subject to many economic and technical uncertainties defined by random variables
with probability density functions (PDFs) [54–65], including TEA for algae-derived biodiesel with
uncertainties [55,56], TEA for biodiesel production with uncertainties using structural reliability
principles [57], TEA for palm biodiesel production with uncertainties [58,59], TEA for inedible
Jatropha oil biodiesel production with uncertainties [60], TEA for waste oil biodiesel production
with uncertainties [61], probabilistic TEA for microalgae biofuel production [62], TEA for bioethanol
production with uncertainties [63], stochastic TEA for alcohol-to-jet fuel production [64], TEA for
high-value propylene glycol production with uncertainties [65], etc. These research works have
discovered that the uncertainties related to the random parameters have distinct effects on the TEA.
The authors also studied the TEA for palm biodiesel production with uncertainties, which were
assumed as random variables with uniform distributions, indicating that uncertain parameters are
uniformly distributed within variation intervals [58,59].

The previous studies [54–65] consider the effect of the uncertainties, and they consider the
uncertainties as random variables following PDFs. Treating uncertainties as random variables may not
be reasonable due to the fact that determining the precise PDFs requires a large number of data, but the
data in practical engineering is usually limited due to lack of sufficient samples for TEA. This paper
will propose a more rational solution for the TEA of palm biodiesel production based on the previous
research works of the authors of [58,59]. In previous studies [58,59], the authors only collected very
limited data on these uncertain parameters, and only the variation ranges or the lower bounds and
upper bounds for uncertain parameters were determined. All of these uncertain parameters were
assumed as random variables defined by uniform distributions, distributed uniformly within their
variation ranges, and the TEA was done based on this assumption. The estimated results of the
TEA may depend on the selected distributions for these uncertain parameters within their variation
intervals, and different selection of distributions may lead to completely different estimated results.
In order to overcome this difficulty, we will propose a more rational strategy for the TEA of a palm
biodiesel production with interval parameters, in which only the lower limit and the upper limit of the
parameters are available, being free from the selection of the distributions for uncertain parameters.

The rest of this paper is organized as follows. In Section 2, we propose a novel strategy for the
evaluation of the TEA and sensitivity analysis (SA) for palm biodiesel production subject to interval
uncertainties, specifically, non-probabilistic reliability index (NPRI) that measures the economically
feasible extent of the biodiesel production and the effect of an interval parameter on NPRI. In Section 3,
we evaluate the NPRI and SA associated with the TEA of the palm biodiesel production. In Section 4,
we summarize our results and make some conclusions.

2. Materials and Methods

In this section, we first introduce several important indicators in the TEA of palm biodiesel
production including net present value (NPV), payback period (PP), and total profit for this project,
and then some important interval parameters related to the TEA are provided, which are determined
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by some collected data from some available references. Secondly, we introduce a novel indicator
named as non-probabilistic reliability index to rationally measure the economically feasible degree of
biodiesel production with interval uncertainties. Then, nonlinear optimization algorithm is employed
to solve the NPRI in the TEA of palm biodiesel production. Finally, we develop a new sensitivity
analysis (SA) indicator of NPRI with regard to an uncertain parameter, which can measure the effect of
a parameter on NPRI and identify important parameters on the TEA.

2.1. Several Important Concepts in the TEA for a Biodiesel Production

We focus on the TEA for palm biodiesel production originally proposed in [42], in which
economic and technical uncertainties are not considered. The mathematical formulations of total
profit, payback period, and net present value for this problem are defined as [42,58,59]:

TotalProfit = −LCC + (TBS− TAX)× n = −LCC + (TBS− TAX)× 20
= (TBSi − TAXi)× 20− LCC

(1)

PP =
CC

(TotalProfit/n)
=

n×CC
TotalProfit

(2)

NPV =
n
∑

i=1

(TBSi−TAXi)

(1+r)i − LCC

= −LCC +
n
∑

i=1

(TBS−TAX)
(1+r)i = −LCC +

n
∑

i=1

TotalProfit+LCC
n(1+r)i

= −LCC + TotalProfit+LCC
n

n
∑

i=1

1
(1+r)i .

(3)

with
LCC = CC + MC + FC + OC− BPC− SV

= CC +
n
∑

i=1

FCi+OCi+MCi
(1+r)i − SV

(1+r)n −
n
∑

i=1

BPCi
(1+r)i

(4)

where TotalProfit is total profit of the project, PP is payback period, and NPV represents net present
value; MC, CC, FC, LCC, OC, BPC, and SV represent maintenance cost, capital cost, feedstock cost,
life cycle cost, operating cost, byproduct credit, and salvage value indicating the remaining value of the
components and the assets of the plant at the end of the project’s lifetime, respectively; TBS is annual
total biodiesel sale, TAX is annual total taxation, n = 22 years is project’s lifetime, and r represents rate
of interest which takes values from 4.44% to 13.53% [66], i.e., r ∈ [4.44%, 13.53%]; MCi, FCi, OCi, BPCi,
TAXi and TBSi are maintenance cost, feedstock cost, operating cost, byproduct credit, total taxation,
and total biodiesel sale for the ith year, respectively.

The annual production capacity for this plant is 50 kt, that is, PC = 50 kt, and its capital cost
should take values between $9 million and $15 million, that is, CC ∈ [$9 million, $15 million] [42].
The corresponding FC, OC, MC, SV, BPC, TBS, and TAX are defined by:

FC =
n

∑
i=1

FCi =
n

∑
i=1

FP× FU

(1 + r)i =
n

∑
i=1

FP× PC×1000
CE

(1 + r)i (5)

OC =
n

∑
i=1

OCi =
n

∑
i=1

OR× PC× 1000

(1 + r)i (6)

MC =
n

∑
i=1

MCi =
n

∑
i=1

MR×CC

(1 + r)i (7)

SV = RC× (1− d)n−1 × PWFn =
RC× (1− d)n−1

(1 + r)n (8)
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BPC =
n

∑
i=1

BPCi =
n

∑
i=1

GP×GCF× PC× 106

(1 + r)i (9)

TBS = PC× 106/ρ× BP (10)

TAX = TBS× TR (11)

where FC commonly makes up about 80–90% of life cycle cost [67], and OC generally accounts for
not more than 15% of life cycle cost [68]; FP is feedstock price or crude palm oil price, which takes
values between $200/t and $1200/t in the past years [42], that is, FP ∈ [$200/t, $1200/t]; FU is
annual total feedstock consumption; CE is conversion efficiency from palm oil to biodiesel which
commonly takes values between 96% and 99% [69], that is, CE ∈ [96%, 99%]; OR is the operating
rate, indicating operating cost of per-ton biodiesel production, which varies from $37.5/t to $225/t
evaluated by feedstock price FP ∈ [$200/t, $1200/t] [42] when FC makes up 80% of life cycle cost [67]
and OC accounts for 15% of life cycle cost [68], that is, OR ∈ [$37.5/t, $225/t]; MR is maintenance
rate, varying from 1% to 2%, i.e., MR ∈ [1%, 2%] [41,42]; d and RC represent depreciation rate and
replacement cost respectively, that is, RC = $10 million and d = 5% [42]; GP and GCF represent glycerol
price and glycerol conversion factor, that is, GP ∈ [$0.08/kg, $0.2/kg] [70] and GCF = 0.0985 [42];
BP is biodiesel price, that is, BP ∈ [$0.66/L, $1.58/L] [71]; ρ is biodiesel density, i.e., ρ = 0.95 kg/L;
and TR = 15% is tax rate for biodiesel sale.

The important quantities involved in the TEA, such as life cycle cost, net present value, payback
period, and total profit, unavoidably meet with various economic and technical uncertainties within
the project lifespan. Table 1 gives the variation intervals for these uncertain parameters, which are
obtained by the collected data from many available research works.

Table 1. Variation intervals of uncertain parameters for biodiesel production.

Uncertain Parameters Variation Intervals [xi, xi]

Capital cost (CC: x1) [42] [$9 million, $15 million]
Interest rate (r: x2) [66] [4.44%, 13.53%]

Operating rate (OR: x3) [42,67,68] [$37.5/t, $225/t]
Feedstock price (FP: x4) [42] [$200/t, $1200/t]
Glycerol price (GP: x5) [70] [$0.08/kg, $0.2/kg]

Maintenance rate (MR: x6) [41,42] [1%, 2%]
Biodiesel conversion efficiency (CE: x7) [69] [96%, 99%]

Biodiesel price (BP: x8) [71] [$0.66/L, $1.58/L]

2.2. NPRI for Measuring Economically Feasible Extent of Biodiesel Production

In this section, we will first introduce a NPRI, which is commonly employed to measure the
reliable level of practical engineering problems subject to interval uncertainties. Then, NPRI is further
extended to measure the economically feasible degree in the TEA of biodiesel production.

2.2.1. NPRI for Problems with Interval Parameters

For a system with interval input parameters x = (x1, x2, . . . , xn), the corresponding output y is
defined by:

y = g(x) (12)

where x represents the input parameters with interval uncertainties, and y commonly is the continuous
function of the inputs x = (x1, x2, . . . , xn). Obviously, y varies within an interval with a lower bound
y and an upper bound y. In general, Ωs = {x|y = g(x) ≥ 0; x = (x1, x2, . . . , xn)} indicates the safe
region, and Ω f = {x|y = g(x) < 0; x = (x1, x2, . . . , xn)} represents the failure region. In addition,
y = g(x) = 0 is named as limit state function (LSF) or limit state curve (LSC), separating the whole
space into two regions, that is, the safe region and failure region. Non-probabilistic reliability index
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has been employed for measuring the reliable level related to the system with interval parameters
as [72–75]:

η = yc/yr (13)

with
yc =

(
y + y

)
/2

and
yr =

(
y− y

)
/2

where η is NPRI; y and y are lower limit and upper limit of the output y. When η ≥ 1 holds, one can
have y ≥ 0 holds, indicating that the output is always larger than or equals to zero and thus the system
is absolutely safe. Condition η ≤ −1 will lead to y ≤ 0, implying that the system is completely a failure.
Accordingly, −1 < η < 1 corresponds to y < 0 < y, which indicates that a part of the output will lie
in the failure space and the system is not reliable. Thus, η can be employed to measure the reliable
degree associated with a system with interval uncertainties, and a larger value of η corresponds to
a more reliable system and vice versa [72–75]. In general, engineers focus on the situation with η ≥ 0.
The following will further discuss the physical significance in the NPRI.

For xi, we first do the following standard transformation [72–75]:

xi = xc
i + xr

i qi =
(xi − xi)

2
qi +

(xi + xi)

2
(14)

where qi ∈ [−1, 1] is the normalized interval for xi. Substituting Equation (14) into Equation (12) can
lead to normalized formulation for y as

y = g(q) = g(q1, q2, . . . , qn) (15)

Obviously, the normalized intervals q of Equation (15) vary in the domain
Ωq = {q||qi| ≤ 1; i = 1, 2, . . . , n}, which is a hyperbox. Figure 1 illustrates the representative
figure of Ωq in a two-dimension situation, in which Ωq is a square centered at coordinate origin and
its side-length is 2, representing the set consisting of all the possible values of the two normalized
intervals. When the square box enlarges proportionally in two directions, all the possible values
of the two interval variables will locate in the reliable domain until the square box is tangential to
normalized LSC y = g(q) = 0. The maximum allowable variability can be defined by the shortest
distance between LSC y = g(q) = 0 and the coordinate origin in the normalized space in the
form of infinite norm [72–75], which can be employed to measure the reliable extent of the system,
i.e., non-probabilistic reliability index. More discussions on non-probabilistic reliability can be found
in [76–81].

According to the discussion in Figure 1, another mathematical definition of NPRI η can be
provided by [72–75]:

η = min(‖q‖∞)

S.t. g(q) = g(q1, q2, . . . , qn) = 0
(16)

with
‖q‖∞ = max(|q1|, |q2|, . . . , |qn|)

where min(•) is the operation of taking the minimum of the set, ‖•‖∞ represents the operation of
infinite norm, max(•) is the operation of taking the maximum of the set, and |•| denotes the operation
of taking the absolute value. If a system has m outputs yj = gj(x)(j = 1, 2, . . . , m) which corresponds
to m failure modes, then failure associated with anyone of them will lead to the failure of the whole
system. Thus, NPRI ηs for system is provided as:

ηs = min{η1, η2, . . . , ηm} (17)
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where ηj(j = 1, 2, . . . , m) is NPRI associated with yj = gj(x)(j = 1, 2, . . . , m).
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2.2.2. NPRI for Economically Feasible Degree in the TEA of Biodiesel Production

Total profit defined in Equation (1) is expected to be larger than zero, specifically,

TotalProfit ≥ 0. (18)

Meanwhile, payback period given in Equation (2) is expected to be less than the allowable upper
bound, that is,

PP =
CC

(TotalProfit/n)
=

n×CC
TotalProfit

≤ PPu. (19)

where PPu is the permitted upper limit, and here PPu is one third of project’s lifespan, that is,
PPu = n/3 = 20/3 years. Then, Equation (19) is transformed into Equation (20):

n×CC
TotalProfit

≤ PPu ⇒ TotalProfit ≥ n×CC
PPu . (20)

Finally, NPV given by Equation (3) must be larger than zero, specifically,

NPV = −LCC +
TotalProfit + LCC

n

n

∑
i=1

1

(1 + r)i ≥ 0. (21)

Then, Equation (21) can be transformed into Equation (22):

TotalProfit ≥

 n
n
∑

i=1

1
(1+r)i

− 1

× LCC. (22)
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Thus, Equations (18), (20), and (22) should simultaneously hold to ensure that biodiesel production
is economically feasible. For the sake of convenience, Equations (18), (20) and (22) can be written into
the following forms:

y1 = g1(x) = TotalProfit (23)

y2 = g2(x) = TotalProfit− n×CC
PPu (24)

y3 = g3(x) = TotalProfit−

 n
n
∑

i=1

1
(1+r)i

− 1

× LCC (25)

where y1 = g1(x), y2 = g2(x), and y3 = g3(x) are LSFs, and x represents the vector consisting of
interval parameters, as shown in Table 1.

Uncertainties involved in the interval parameters in Table 1 will lead to the variability of the
TotalProfit, payback period, and NPV defined in Equations (1)–(3), and then one, two, or all of
Equations (23)–(25) may not hold. Any one of the three LSFs in Equations (23)–(25) not being feasible
will lead to the result that biodiesel production will not be economically feasible. In other words,
biodiesel production is economically feasible if and only if the three LSFs in Equations (23)–(25)
simultaneously apply. Thus, according to Equation (17), the following indicator can be employed to
measure the economically feasible degree of biodiesel production with interval parameters:

ηs = min{η1, η2, η3} (26)

where ηs represents NPRI for measuring economical feasibility of biodiesel production; ηj(j = 1, 2, 3)
is NPRI for yj = gj(x) given in Equations (23)–(25). The significance relevant to ηs will be discussed in
the following.

When ηs ≥ 1 holds, the minimum of η1, η2, and η3 will be larger than or equal to one,
then y

1
≥ 0, y

2
≥ 0, and y

3
≥ 0 in Equations (23)–(25) hold, indicating biodiesel production with

interval uncertainties is absolutely feasible in terms of economical feasibility. When 0 < ηs < 1 holds,
the minimum of η1, η2, and η3 will be less than one, then y1 ≥ 0, y2 ≥ 0, and y3 ≥ 0 hold, while at least
one of y

1
< 0, y

2
< 0, and y

3
< 0 holds, implying that biodiesel production with interval uncertainties

is partially feasible. When ηs < 0 holds, the minimum of η1, η2, and η3 will be less than 0, and at least
one of y1 < 0, y2 < 0, and y3 < 0 holds, indicating that biodiesel production with interval uncertainties
is completely infeasible. Thus, ηs can be employed to measure the economical feasibility relevant
to biodiesel production with interval uncertainties, and a larger value of ηs corresponds to a better
economical feasibility of biodiesel production with interval uncertainties and vice versa.

2.3. Evaluation Procedure of the NPRI

According to the definition of NPRI in Equation (13), we need to first evaluate y
j

and yj for the

evaluation of ηj(j = 1, 2, 3) for Equations (23)–(25). The following two equations can be utilized to
calculate y

j
and yj as:

y
j

= min
x

gj(x)

S.t. xi ≤ xi ≤ xi
x = (x1, x2, . . . , x8)

j = 1, 2, 3
i = 1, 2, . . . , 8

(27)
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and
yj = max

x
gj(x)

S.t. xi ≤ xi ≤ xi
x = (x1, x2, . . . , x8)

j = 1, 2, 3
i = 1, 2, . . . , 8

(28)

In this paper, an available optimization function of Matlab, i.e., fmincon, is employed to evaluate
y

j
and yj defined in Equations (27) and (28), then NPRI ηj(j = 1, 2, 3) for Equations (23)–(25) can be

estimated, and NPRI ηs for measuring economical feasibility of biodiesel production with interval
uncertainties can be calculated by Equation (26).

2.4. SA of NPRI for Economical Feasibility of Biodiesel Production with Regards to Uncertain Interval Parameter

When an interval parameter xi(i = 1, 2, . . . , 8) is fixed at xij ∈ [xi, xi](j = 1, 2, . . . , p), i.e., xi = xij,
indicating that xi takes a value within the lower bound xi and the upper bound xi, the uncertainty
associated with xi is eliminated, and original NPRI ηs will become ηs|xi=xij

. The absolute difference
∆ηs|xi=xij

between original NPRI ηs and ηs|xi=xij
can reflect the effect of the elimination of uncertainty

related to xi, which can be defined by:

∆ηs|xi=xij
=
∣∣∣ηs − ηs|xi=xij

∣∣∣(j = 1, 2, . . . , p), (29)

where ηs|xi=xij
can be evaluated by the method given in Section 2.3, similar to the evaluation

procedure for ηs. When xi(i = 1, 2, . . . , 8) takes different values, i.e., xi1, xi2, . . . , xip, the original
NPRI ηs will become ηs|xi=xi1

, ηs|xi=xi2
, . . . , ηs|xi=xip

, and then p absolute differences can be obtained
by Equation (29), i.e., ∆ηs|xi=xi1

, ∆ηs|xi=xi2
, . . . , ∆ηs|xi=xip

. The average of the p absolute differences,
i.e., ∆ηs|xi=xi1

, ∆ηs|xi=xi2
, . . . , ∆ηs|xi=xip

, can be employed to define the sensitivity of NPRI with regards
to xi, which can measure the effect of xi on NPRI:

IMi =
1
p

p

∑
j=1

∆ηs|xi=xij
(j = 1, 2, . . . , p) (30)

where IMi represents the average shift in the NPRI due to the elimination of uncertainty in xi.
Similar to IMi, the average difference rate in the NPRI because of eliminating uncertainty

associated with xi can be defined as:

IMRi =
1
p

p

∑
j=1

∆ηRs|xi=xij
(j = 1, 2, . . . , p) (31)

with

∆ηRs|xi=xij
=

∣∣∣ηs − ηs|xi=xij

∣∣∣
ηs

(j = 1, 2, . . . , p) (32)

where ∆ηRs|xi=xij
measures the absolute difference rate between ηs and ηs|xi=xij

with regard to ηs when
xi = xij (xij ∈ [xi, xi]).

The important interval parameters and non-important ones can be identified by the values of
IMi and IMRi. An interval parameter with large values of IMi and IMRi belongs to the important
interval parameters, while one with small values of IMi and IMRi is considered as the non-important
parameters. If xi has small values for IMi and IMRi, xi can be fixed to any value within its variation
interval, which will not considerably affect NPRI ηs.
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3. Results and Discussion

In this section, we first evaluate NPRI ηs for biodiesel production with the eight interval
parameters shown in Table 1. Then, the corresponding sensitivity analysis of NPRI ηs with regard to
interval parameter xi, i.e., IMi and IMRi, is estimated. Finally, the interval parameters are classified
into the important ones and non-important ones by the size of the values of IMi and IMRi.

3.1. Evaluation of NPRI for Biodiesel Production

Biodiesel production has eight interval parameters because of economic and technical
uncertainties when performing techno-economic assessments, and all interval parameters have
been summarized in Table 1. The uncertainty in these interval parameters will result in the
variation of the total profit, net present value, and payback period of biodiesel production.
Figure 2 has shown the variation intervals for total profit (USD) expressed in Equation (1),
net present value (USD) formulated in Equation (3), and yj = gj(x) given in Equations (23)–(25).
Two important observations have been revealed in Figure 2. The first observation is that total profit,
net present value, and yj = gj(x)(j = 1, 2, 3) have exhibited variability owing to the effect of the
uncertainties related to the interval parameters, i.e., TotalProfit ∈

[
−3.8935× 108, 1.3296× 109],

NPV ∈
[
−9.2579× 108, 1.1808× 109], y1 = g1(x) ∈

[
−3.8935× 108, 1.3296× 109], y2 = g2(x) ∈[

−4.3435× 108, 1.3026× 109], and y3 = g3(x) ∈
[
−9.2579× 108, 1.1808× 109]. Secondly, we can find

that a part of total profit, net present value, and yj = gj(x) have been less than zero because of the
effect of the uncertainty in these interval parameters, implying that biodiesel production is partially
economically feasible, and has the possibility of being infeasible in the presence of the economic and
technical uncertainties.
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Figure 2. Variation ranges of total profit (TotalProfit: USD), net present value (NPV: USD),
and yj = gj(x) due to economic and technical uncertainties.

Figure 2 depicts the variation intervals of yj = gj(x)(j = 1, 2, 3), including lower limit y
j

and

upper limit yj for three LSFs defined in Equations (23)–(25). Substituting y
j

and yj into Equation

(15) leads to NPRI ηj(j = 1, 2, 3) of Equations (23)–(25). Finally, the estimated value of NPRI can be
obtained as 1.2104 × 10−1 by using Equation (26). A value of 1.2104 × 10−1 for ηs implies that the
project will not be profitable to a great extent, in other words, a considerable part of the outcomes may
be economically infeasible under the uncertain interval parameters shown in Table 1.

In our previous work [59], all the uncertain parameters are assumed as random variables following
uniform distributions within their ranges, and we propose economical infeasibility probability (EIP) to
measure economical feasibility for biodiesel production. For the same problem, the estimated value for
EIP is 0.3676, implying that the project is partially economically feasible and the plant may be profitable
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with the probability of 0.6324, and in other words, 63.24 out of 100 outcomes will be economically
feasible under the assumed probabilistic distribution [59]. Here, we perform the TEA in terms of
the non-probabilistic perspective being free from the probabilistic distribution assumption, and the
estimated result for NPRI is 1.2104 × 10−1, also indicating that the project is partially economically
feasible, according to the discussion in Section 2.2. Thus, the two methods have the same decisions.
It is noted that the introduced method in this work is more rational than that in the previous work [59],
which is subjected to the assumption on probabilistic distribution and different assumptions can lead
to different results for EIP.

The previous results reveal that interval parameters resulting from uncertainties can remarkably
affect the TEA of biodiesel production. We will further quantify the effect of an interval uncertain
parameter on the economical feasibility by the sensitivity analysis proposed in Section 2.4.

3.2. Evaluation of Sensitivity Analysis for Biodiesel Production with Respect to Interval Parameter

In Table 2, we have provided the results of IMi and IMRi relevant to xi(i = 1, . . . , 8). The results
show that x3 (operating rate), x4 (price of feedstock), x8 (price of biodiesel), and x7 (biodiesel conversion
efficiency) can produce remarkable influences on the economic feasibility of biodiesel production,
while the rest of the parameters may generate very lower effects. The importance ranking of the interval
parameters can be further gained by the results in Table 2 as: x4 > x8 > x3 > x7 > x2 > x1 > x5 > x6.
Compared with the previous results, in which all of the uncertain parameters have been assumed
as random variables uniformly distributed within their variation ranges [59], the same importance
ranking of sensitivity parameters has been obtained.

Table 2. Results of the proposed sensitivity analysis IMi(i = 1, 2, . . . , 8) and IMRi(i = 1, 2, . . . , 8).

Parameters IMi(i = 1,2,. . . ,8) IMRi(i = 1,2,. . . ,8)

Capital cost (CC: x1) 4.454 × 10−3 3.680 × 10−2

Interest rate (r: x2) 5.231 × 10−3 4.322 × 10−2

Operating rate (OR: x3) 4.961 × 10−2 4.099 × 10−1

Feedstock price (FP: x4) 4.858 × 10−1 4.013 × 100

Glycerol price (GP: x5) 2.865 × 10−3 2.367 × 10−2

Maintenance rate (MR: x6) 6.643 × 10−4 5.488 × 10−3

Biodiesel conversion
efficiency (CE: x7) 9.302 × 10−3 7.685 × 10−2

Biodiesel price (BP: x8) 3.257 × 10−1 2.691 × 100

The important interval parameters and the non-important ones have been identified by the
results in Table 2, specifically: x4, x8, x3, and x7 belong to the important group while x2, x1,
x5 and x6 belong to the non-important group. Figure 3 shows the comparison between original
NPRI ηs and conditional NPRI ηs|xi=xij

with xi = xij, in which xi is fixed to a value xij within its
variation interval [xi, xi]. Figure 4 shows the change rate between ηs|xi=xij

and ηs with respect to ηs,

i.e.,
(

ηs|xi=xij
− ηs

)
/ηs(j = 1, 2, . . . , 10), in which xi is fixed to a value xij ∈ [xi, xi], i.e., xi = xij.

Here, xij takes the following values, i.e., xij = xi + (xi − xi)/(10− 1)× (j− 1)(j = 1, 2, . . . , 10).
Figures 3 and 4 show that removing the uncertainty related to a non-important parameter
xi(i = 1, 2, 5, 6) and fixing it to any value xij(i = 1, 2, 5, 6) within its interval [xi, xi] will not exert distinct
influence on NPRI ηs, while eliminating the uncertainty associated with an important parameter
xi(i = 3, 4, 7, 8) can cause considerable variation of NPRI ηs.
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and ηs with respect to ηs, i.e.,

(
ηs|xi=xij

− ηs

)
/ηs(j = 1, 2, . . . , 10),

in which xi is fixed to a value xij ∈ [xi, xi], i.e., xi = xij.

Figures 5 and 6 have further shown the point figures of ηs|xi=xij
and

(
ηs|xi=xij

− ηs

)
/ηs with

xij = xi + (xi − xi)/(10− 1)× (j− 1)(j = 1, 2, . . . , 10) for all interval parameters xi(i = 1, 2, . . . , 8).
The results shown in Figures 5 and 6 have drawn the same conclusions as Figures 3 and 4.
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with xi = xij(i = 1, 2, . . . , 8; j = 1, 2, . . . , 10).

The previous results show that engineers should focus more concern on these important interval
parameters within the project’s lifespan to ensure that biodiesel production is economically feasible.
For these non-important interval parameters, taking any value within their ranges will not create
remarkable effect on the TEA.

4. Conclusions

This paper employs NPRI to measure the economically feasible extent in the TEA of biodiesel
production with uncertainties. Sensitivity analysis of NPRI with regard to uncertain parameters is
developed. The final results show that NPRI for biodiesel production is 1.2104× 10−1 with the interval
parameters summarized in Table 1. Price of biodiesel, price of feedstock, and operating cost can
cause distinct influence on the economical feasibility of biodiesel production. Compared with our
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previous study [59], this work has the same decision on TEA and the same importance ranking for
uncertain parameters. This method is free of the assumption on distribution, but the previous method
is subjected to this assumption in which different assumptions on distribution can result in different
results for EIP.
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Nomenclature

BP biodiesel price
BPC byproduct credit
BPCi byproduct credit of the ith year
CC capital cost
CE conversion efficiency from feedstock to biodiesel
d depreciation rate
FC feedstock cost
FCi feedstock cost of the ith year
FP feedstock price
FU annual total feedstock consumption
GCF glycerol conversion factor
GP glycerol price
LCC life cycle cost
MC maintenance cost
MCi maintenance cost of the ith year
MR maintenance rate
NPRI non-probabilistic reliability index
OC operating cost
OCi operating cost of the ith year

OR
operating rate or operating cost of per-ton
crude-palm-oil-derived biodiesel production

PC production capacity
PP payback period of the biodiesel production
PPu allowable upper limit of payback period
PWFn worth factor in the year n
RC replacement cost
r interest rate
SA sensitivity analysis
SV salvage value
TAX annual total taxation
TBS annual total biodiesel sales
TEA techno-economic assessments
TotalProfit total profit
TR tax rate
UA uncertainty analysis
ρ density of the biodiesel
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