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Abstract: With the rapid advancement in technology, electrical energy consumption is increasing rapidly.
Especially, in the residential sector, more than 80% of electrical energy is being consumed because
of consumer negligence. This brings the challenging task of maintaining the balance between the
demand and supply of electric power. In this paper, we focus on the problem of load balancing
via load scheduling under utility and rooftop photovoltaic (PV) units to reduce electricity cost and
peak to average ratio (PAR) in demand-side management. For this purpose, we adopted genetic
algorithm (GA), binary particle swarm optimization (BPSO), wind-driven optimization (WDO),
and our proposed genetic WDO (GWDO) algorithm, which is a hybrid of GA and WDO, to schedule
the household load. For energy cost estimation, combined real-time pricing (RTP) and inclined
block rate (IBR) were used. The proposed algorithm shifts load from peak consumption hours to
off-peak hours based on combined pricing scheme and generation from rooftop PV units. Simulation
results validate our proposed GWDO algorithm in terms of electricity cost and PAR reduction while
considering all three scenarios which we have considered in this work: (1) load scheduling without
renewable energy sources (RESs) and energy storage system (ESS), (2) load scheduling with RESs,
and (3) load scheduling with RESs and ESS. Furthermore, our proposed scheme reduced electricity
cost and PAR by 22.5% and 29.1% in scenario 1, 47.7% and 30% in scenario 2, and 49.2% and 35.4% in
scenario 3, respectively, as compared to unscheduled electricity consumption.

Keywords: rooftop photovoltaic units; demand-side management; heuristic techniques; real-time
pricing tariff; inclined block rate; energy storage system; load scheduling

1. Introduction

The global energy demand drastically increases on a daily basis, and fossil fuels are limited and
being exhausted. The smart grid (SG) emerged as a smart solution that accommodates information
communication technology (ICT), fossil fuels generation, renewable energy (RE) generation, and hybrid
generation, as shown in Figure 1. Therefore, it is important to increase the utilization of RE sources
(RESs) because of environmental issues and the need to reduce carbon emission. Federal energy
regulatory commission (FERC) passed renewable portfolio standards to increase production from
RESs. Under renewable portfolio standards, the utility companies and energy providers in the U.S. and
the U.K. serve some of the consumers’ load with RESs [1]. Among the various types of RESs, solar is
the most abundant, free of cost, and available everywhere to everyone. As recently as 2014 the use of
RESs had increased; it was recorded that Denmark generated 60%, Spain generated 29%, and Portugal
generated 30% of electricity from RESs. A system with a high penetration of RESs is cost effective [2,3].
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Demand-side management is a utility program used to balance the users’ stochastic demand with
utility generation in order to avoid capital investment on more energy generation. In demand-side
management, various pricing mechanisms and demand response (DR) programs are employed by
utility companies to optimize consumption behaviour and reshape user demand. The time of use (ToU)
pricing tariff has three pricing tariffs in a day to motivate consumers to shift their load from on-peak
demand hours to off-peak hours. Critical peak pricing (CPP) designate s high prices to critical peak
hours. Real-time pricing (RTP) makes use of an hourly-varying pricing scheme [4]. In order to cope
with the gap between demand and supply, the consumer load must be scheduled by giving incentives
to consumers.

Residential load scheduling has attracted significant attention, but an important challenge for
residential load scheduling is that users are unable to respond to the price incentives. To handle
this problem, an energy management control unit (EMCU) based on heuristic algorithms can be
implemented in order to make users respond efficiently to utility price incentives. The EMCU receives
price incentive signals from the utility company and schedules the operation of interruptible appliances
(IA) and non-interruptible appliances (Non-IA). The work presented in [5–7] schedule residential
load using different optimization techniques in order to reduce the electricity cost. In addition,
the consumers also integrate photovoltaic (PV) units to generate electricity and install energy storage
systems (ESS) to efficiently balance between electricity demand and supply. However, peaks in
demand may emerge while reducing electricity cost. Moreover, different demand-side management
strategies have been proposed to facilitate load scheduling which is beneficial for both consumers
and utilities [8–13]. The consumers installed PV units and ESSs with controllable load in the home
to reduce electricity bills. These strategies help consumers to achieve the best consumption benefits
within the consumption limits. However, electricity cost and peak to average ratio (PAR) have not been
addressed by any literature work simultaneously. Home energy management significantly contributes
to the stability of the electricity grid, and the deployment of demand-side management due to more
energy-efficient utilization by users will provide energy savings [14]. The load scheduling under utility
and PV units can be explored for more intelligent energy use in households.
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Figure 1. Abstract view diagram.

In this paper, we present the demand-side management of a residential household by scheduling
that is based on heuristic techniques, which are implemented on an EMCU. The house is equipped
with PV units, an ESS, and a set of electrical appliances that consume electrical energy from PV units
and utility on the basis of electricity generation from PV units and prices. The household energy
consumption behavior is optimized using heuristic techniques in order to reduce the electricity cost
and PAR. Moreover, we develop the genetic wind-driven optimization (GWDO) algorithm, which is a
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hybrid of genetic algorithm (GA) and wind-driven optimization (WDO) algorithm, for load scheduling
under a combined RTP and inclined block rate (IBR) environment to reduce electricity cost and PAR.
To validate the performance of our proposed GWDO algorithm, simulations are carried out and results
are compared with GA, binary particle swarm optimization (BPSO), WDO, and unscheduled electricity
consumption in terms of electricity cost and PAR. It has been observed on the basis of comparison that
our proposed scheme outperforms its counter parts.

The rest of the paper is organized as shown in Figure 2. Related work is presented in Section 2.
In Section 3, the system model is introduced. The problem formulation is discussed in Section 4.
The proposed scheme is presented in Section 5. Section 6 includes simulation and discussion, and
Section 7 concludes the paper. Finally, nomenclature used in the manuscript is given in Nomenclature.
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Figure 2. Flow schematic overview of the paper.

2. Related Work

In order to optimally cope with the gap between demand and supply, numerous techniques
and RESs integration are addressed in the literature. Authors in [15] presented demand-side energy
consumption scheduling in the presence of PAR constraint and users preference in order to reduce
the cost. Moreover, they introduce multi-objective optimization techniques which minimize the cost
and inconvenience posed to users. They use a distributed algorithm to solve initial and multi-objective
optimization problems. However, RESs integration is not addressed by the authors.

The authors implemented electricity storage and appliance scheduling schemes in [5] for the
residential sector in order to reduce electricity costs. The storage system allows consumers to
purchase electricity at off-peak times and satisfy their demand through storage during on-peak times.
A day-ahead pricing scheme is used for electricity pricing. However, the uncoordinated charging and
discharging of batteries results in discomfort for users. The authors in [6] proposed a smart home
energy management system for the joint scheduling of electrical and thermal appliances. The controller
receives price information and environment data in order to optimally schedule appliances to reduce
cost. However, the authors achieved an economical solution at the cost of users’ comfort. The authors
used intelligent decision support systems under a generic and flexible cost model for load scheduling
in [7] to reduce the peaks and enhance the power system efficiency. The use of a generic and flexible
cost model for hourly pricing reduced electricity cost. However, the authors reduced the peaks
and cost while user comfort was comprised. The authors in [8] proposed joint access and load
scheduling under DR schemes in order to reduce cost. Authors formulated an optimization problem
for the EMC, enabling it to compute the target power level for the home while incorporating the
effects of price variations and local wind power uncertainty. However, PAR was increased while
reducing the cost. Authors in [9] proposed a residential load control algorithm for demand-side
management under a combined RTP and IBR pricing scheme in order to reduce the electricity bill and
PAR. However, the authors reduced peaks in demand while user comfort was minimized. The authors
presented prosumers demand-side management in order to encourage consumers not only to take
part in generation but also in efficient load scheduling [10]. The smart scheduler schedules household
appliances under utility and distributed generation to reduce electricity cost. However, peaks in
consumption emerged while reducing electricity cost, which may damage the entire power system.

The authors proposed an optimal scheduling method in [16] for distributed generations, battery
ESSs, tap transformer, and controllable loads for SG application. They used a BPSO technique to solve
the optimization problem and proved by simulation that total system losses were minimized and
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battery ESS sizes were considerably reduced. However, the system objectives were achieved at cost
system complexity. The authors in [11] proposed two market models in order to cope with the gap
between demand and supply. In [12], authors proposed a novel appliances commitment algorithm
to optimally schedule appliances under operational constraints and economical considerations in
order to maximize comfort and reduce cost. However, peaks may emerge while reducing cost because
most users start operation during off-peak timeslots. Demand curve smoothing by controlling the
charging strategies of electric vehicles was described in [13]. The authors proposed demand-side
management strategies in SG in order to reduce PAR and cost. Moreover, they also proposed two
smart pricing game theoretic approaches in order to provide customer privacy and communication
overhead [14]. In [17], the authors investigated an optimal power scheduling method for DR in home
energy management system.They proposed a solution that optimally schedules a set of appliances to
reduce electricity bill and alleviate PAR. They introduced EMS in a home area network (HAN) based
on SG and combined RTP with IBR model for electricity pricing.They used GA for solving nonlinear
optimization problems. The results show that the scheme efficiently reduced both electricity bill and
PAR. However, the proposed scheme achieved its objectives at the cost of user comfort.

An efficient heuristic-based EMC is utilized with RESs for load scheduling in the SG [18].
For electricity pricing, a combination of ToU tariff and IBR are used. The problem of load scheduling is
formulated using multiple knapsack. The heuristic-based EMC performs optimal load scheduling in
order to reduce electricity cost, PAR, and maximize user comfort. However, the objectives are achieved
at the cost of system complexity.

The authors in [19] proposed an optimized home energy management system in the SG for
demand-side management. The load scheduling problem was formulated as a multiple knapsack
problem. They proposed hybrid genetic particle swarm optimization for load scheduling in the
presence of RESs and ESS in order to reduce electricity cost and PAR. The simulation results evidenced
that the proposed algorithm with RESs and ESS efficiently reduced the electricity cost and PAR.
However, while reducing electricity cost and PAR, the comfort of the users was compromised and
solar irradiance and temperature were assumed day-ahead.

Home load management in the SG is presented in [20]. The authors proposed a decentralized
framework using a DR program to modify residential consumers’ load in order to minimize payments,
and preserve their comfort and privacy. The simulation results indicated that the proposed approach
was beneficial for both energy service provider and consumer. However, peaks may emerge while
reducing cost and preserving comfort and privacy.

The authors in [21] proposed load scheduling of the residential sector in the SG. Day-ahead
pricing is used for electricity cost calculation. They used integer linear programming for the scheduling
of time-flexible and power-flexible appliances in order to reduce the cost and maximize user comfort.
However, the authors achieved these objectives at the cost of PAR. Heuristic-based home EMC for
residential load scheduling is proposed in [22]. Authors formulate load scheduling using multiple
knapsack, and use RTP as a reference signal for cost calculation. In addition, they proposed genetic
BPSO for the optimal scheduling of residential load in order to reduce electricity bill and PAR. However,
the electricity bill and PAR were reduced while user comfort was compromised. The authors proposed
community architecture for the effective management of electricity sources, and proposed a scheduling
algorithm for the optimal scheduling of electrical appliances [23]. They reduced the electricity cost
and PAR by adopting combined true RTP and IBR between community controller and end users.
However, they achieved these objectives at the cost of user comfort. The authors in [24] proposed
smart homes energy management using customer preferences and dynamic pricing. They performed
optimal load scheduling of thermostatically controlled, user-aware, elastic, inelastic, and regular
appliances in order to reduce cost while persevering comfort. However, objectives were achieved at
the cost of system complexity. The authors proposed the long-term load scheduling problem and load
demand as a Markov decision process based on a learning algorithm in order to reduce the cost and
PAR of aggregated load [25]. For collaborative distribution system operator and transmission system
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operator, optimal power flow implementation decentralized decision-making was used. Moreover,
they proposed an algorithm based on analytical target cascading for multilevel hierarical optimization
in complex engineering problems. For coordination, diagonal quadratic approximation and truncated
quadratic approximation are presented in order to solve optimal power flow in parallel. For validation
of the proposed system, a 6-bus and the IEEE 118-bus test systems were used [26]. Authors in [27]
proposed a self-decision-making method for load management using a multi-agent system while
considering distributed generation and demand response resources in order to reduce the peak load of
a distribution network feeder. Authors in [28] focus on a decentralized DR framework for both utility
and consumers to respond varying prices to adjust its demand or supply in order to reduce utility
generation cost and consumers’ discomfort cost. A modified IEEE 14-bus was used for performance
evaluation of the proposed framework.

In [29,30], a day-ahead forecasting method is proposed for PV power output estimation 24 h before.
A day-ahead forecasting of PV generation is performed using two deterministic models and a hybrid
method based on an artificial neural network. The hybrid artificial neural network achieves fast and
accurate forecasting results as compared to the deterministic models [29]. The authors of [30] used a
physical hybrid artificial neural network to perform day-ahead forecasting of PV power using different
training and testing data. The related work is summarised in Table 1.

3. System Model

We consider a smart power system with a single utility company and serval users. Each user is
equipped with RESs, such as rooftop PV units, as shown in Figure 3. The energy demands of users
are fulfilled by their local RE generation and power imported from the utility company, as shown in
Figure 4. Furthermore, the home energy management control system (HEMCS) comprises an EMCU,
appliances, a smart meter (SM), in-home display and monitoring control unit (IHD & MCU), advanced
metering infrastructure (AMI), and an inverter (INV). We assume that each home is equipped with a
smart meter which is connected to the EMCU for load scheduling and adjusting energy consumption.
We divided the scheduling time horizon into Th timeslots, where Th = {1, 2, 3, ........, 120}.

Utility company

Power plant

Transmission system

Substation system

Distribution system

Residential sector

Utility company

EMCU

Appliances

IA Non-IA MR-A

SM +AMI

Neighbor

area network

Home area

network

IHD&MCU

ESS

PV units

Figure 3. Smart power system.

We classified appliances on the basis of their operation and demand requirements as IAs, Non-IAs,
and must run appliances (MR-As). This classification is decided by users and can vary from time to
time. The operation of IAs can be delayed or interrupted by the EMCU if required. In addition, IAs
complete their operation in disjoint time intervals and the interruption of operation does not impact
completion of the task. For example, washing machine, clothes dryer, and water motor are modeled as
IAs.
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Table 1. Summary of related work.

References Techniques Objectives Limitations

Demand-side energy consumption scheduling in presence
of peak to average ratio (PAR) constraint and users’
preference [15]

Distributed algorithm Minimization of cost renewable energy sources (RESs)
integration are not addressed

Electricity storage and appliances scheduling schemes for
residential sector [5]

energy management control (EMC) and
day-ahead pricing

Electricity cost reduction Uncoordinated charging and discharging of
batteries results in discomfort

Smart home energy management system for joint
scheduling of electrical and thermal appliances [6]

Heuristic-based EMC Optimal scheduling of appliances and cost
reduction

Achieved economical solution at cost of
users’ comfort

Intelligent decision support systems under generic and
flexible cost model for load scheduling [7]

Generic and flexible cost model Peaks reduction and enhancement of the
power system efficiency

Reduced the peaks and cost while user
comfort was comprised

Joint access and load scheduling under DR schemes [8] Markov chain and derive the steady-state
distribution

Cost reduction PAR is increased while reducing the cost

Residential load control algorithm for demand-side
management [9]

Energy consumption scheduling algorithm Reduction of electricity bill and PAR Reduced peaks in demand while user
comfort is minimized

Prosumers demand-side management [10] Smart scheduler Reduction of electricity cost Peaks in consumption emerged while
reducing electricity cost, which may
damage the entire power system

Optimal scheduling method for distributed generations,
battery ESS, tap transformer, and controllable loads [16]

Binary particle swarm optimization (BPSO) Minimization of total system losses Objectives are achieved at the cost of
system complexity

Two market models in order to cope with the gap between
demand and supply [11]

Distributed demand response (DR)
algorithms

Minimization of cost Higher communication overhead and
computing complexity

Optimal scheduling of appliances under operational
constraints and economical consideration [12]

Novel appliances commitment algorithm Comfort maximization and cost reduction Peaks may emerge while reducing cost

Demand curve smoothing by controlling the charging
strategies of electric vehicles [13]

Decentralized algorithm Minimization of the peak demand loads User comfort is compromised while
reducing peaks in demand

Optimal power scheduling method for DR in home energy
management system [17]

Genetic algorithm (GA) Electricity cost and PAR reduction The complexity of the system increased due
to the division of scheduling time horizon

An efficient heuristic-based EMC is utilized with RESs for
load scheduling in the SG [18]

GA, BPSO, and ACO algorithms Minimization of electricity cost, PAR, and
maximization of user comfort

Complexity of the system is increased while
achieving the desired objectives

An optimized home energy management system in the
smart grid (SG) for demand-side management [19]

GA, wind-driven optimization (WDO),
BPSO, and hybrid of GA and BPSO
algorithms

Cost and PAR minimization User comfort is compromised

Home load management in the SG [20] Decentralized framework and proposed
scheduling algorithm

Cost reduction, comfort, and privacy
reservation

PAR is compromised while reducing
desired objectives
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Users may only require that washing machines must complete their task before the clothes dryer
deadline or their water tank must be full of water before the deadline. Non-IAs cannot be interrupted,
shifted, or shutdown during operation until completion; it is only possible to delay their operation.
On the other hand, MR-As are refrigerator, air conditioner, and water cooler; these appliances are price
inelastic because the refrigerator and dispenser need to be on at all times during the day. The appliances
can either be in on status or off status.

Various pricing schemes are available for measuring the cost of consumers’ energy consumption,
such as ToU, RTP, CPP, and critical peak rebates (CPRs). We consider the RTP method combined with
IBR for electricity pricing because in the case of only RTP there is a possibility of building peaks during
off-peak timeslots. χ(Ei

c)(t) represents the electricity price at each timeslot t as a function of the user’s
power consumption. The combined pricing function χ(Ei

c(t)) is defined as:

χ(Ei
c(t)) =

{
ϕ(t) if 0 ≤ Ei

c(t) ≤ Ei
th

bt if Ei
c(t) ≥ Ei

th
, (1)

where Ei
c(t) is the energy consumption at timeslot t, ϕ(t) is the real-time electricity price at timeslot

t in a day, and bt is the price greater than ϕ(t) when Ei
c(t) exceeds the threshold of IBR. The unit

for measuring electricity cost is cents/kWh. At the beginning of the scheduling time horizon, each
appliance i sends a request to the EMCU. The request specifies whether the appliance is an IA, a Non-IA,
or an MR-A, as well as its operation start time and end time. The energy consumption of each appliance
can be different at different timeslots due to changes in the amount of current being absorbed.

For each appliance i, we define the position Si
t = (ri

t, wi
t) of the appliance at timeslot t, where ri

t is
the remaining operation timeslots of appliance i, and wi

t is the waiting timeslots for which appliance
i must wait. We define Xt = {0, 1} as an indicator, indicating the status of the appliance—whether
appliance i is in on state (Xt = 1) or in off state (Xt = 0). The position of appliances at the next
timeslot t+1, Si

t+1 can be found from their current position Si
t, their type, and their status Xt.

Figure 4. System model.

For an IA, we can delay and interrupt its operation if required. The initial and next timeslot
positions are demonstrated as

Si
t = (Ti

o, β− α + Ti
o + 1), (2)
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Si
t+1 =

{
ri

t, wi
t − 1 if Xt = 0, wi

t ≥ 1
ri

t − 1, wi
t if Xt = 1, ri

t ≥ 1
. (3)

A Non-IA can only tolerate delay, and it is not possible to interrupt during operation until
completion once it starts operation. The initial and next timeslot positions are demonstrated as:

Si
t = (Ti

o, β− α + Ti
o, + 1), (4)

Si
t+1 =

{
ri

t, wi
t − 1 if Xt = 0, wi

t ≥ 1
ri

t − 1, 0 if Xt = 1, ri
t ≥ 1

. (5)

MR-As need to be on at all times during the day. For MR-As, the initial and next timeslot positions
evolve as:

Si
t = (Ti

o, 0), (6)

Si
t+1 =

{
ri

t, 0 if Xt = 1, ri
t ≥ 1

0, 0 otherwise
. (7)

Various types of RERs are available, such as, solar, wind, tidal, geothermal, biomass, and biogas
energies. However, among the various types of RERs, solar is the most abundant, free of cost, and
available everywhere to every one. According to [2], the Earth receives 174,000 terawatts (TW) of
incoming solar radiation at the upper atmosphere. Approximately 30% is reflected back to space,
while the rest is absorbed by clouds, oceans, and land masses. Most of the world’s population lives
in areas with insolation levels of 150–300 W/m2 or 3.5–7.0 kWh/m2 per day. To take the benefit
from solar energy, we integrate rooftop PV units with households to optimally schedule household
appliances in order to reduce electricity cost, PAR, and carbon emission. The output power of PV units
is calculated as [31]:

EPV(t) = ηPV .APV .Ir(t).(1− 0.005(Ta(t)− 25)) ∀ t , (8)

where ηPV is the percentage energy efficiency of the PV unit, APV is the area of PV units in (m2),
Ir(t) is the solar irradiance (kW/m2) at time t, 0.005 is temperature correction factor [32], the outdoor
temperature (◦C) at time t and 25 is standard room temperature (◦C). The distribution of hourly sun
irradiation usually complies with a bi-modal distribution that can be considered as a linear blend
of two uni-modal distribution functions. The uni-modal distribution functions can be modeled by
Weibull probability density function, as shown in Equation (9) [31]:

f (Ir(t)) = ζ

(
α1

β1

)(
Ir(t)
β1

)(α1−1)e

(
Ir
β1

)α1

+ (1− ζ)

(
α2

β2

)(
Ir(t)
β2

)(α2−1)e

(
Ir
β2

)α2

, 0 < Ir(t) < ∞ (9)

where ζ is weighted factor, α1 and α2 are shape factors, and β1 and β2 are scale factors.
To cope with the gap between demand and supply, we assume that each user is equipped with

PV units and an ESS. If the harvested energy is surplus or off peak hours, the energy is stored in the
ESS. If the harvested energy is deficient, then all harvested energy is used to serve the load. The energy
stored in the ESS is calculated by the following formula [31]:

EESS(t) = EESS(t− 1) + κ . ηESS . EPCh(t)− κ . EPDch(t)
ηESS , (10)
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where EESS(t) is the stored energy at timeslot t while taking into account energy charged, discharged,
and self discharging rate. ηESS is the efficiency of ESS, energy taken from rooftop PV units to charge
ESS is EPCh(t), and EPDch(t) is the energy discharged from ESS to serve the load at timeslot t.

EPCh(t) ≤ EPCh
UB, (11)

EPDch(t) ≤ EPDch
LB , (12)

EESS(t) ≤ EESS_Ch
UB, (13)

where EPCh
UB is the upper limit of charging ESS, EPDch

LB is the lower limit of discharge, and EESS_Ch
UB is

the upper limit of the stored energy.

4. Problem Formulation

In demand-side management, residential load scheduling and the alignment of the stochastic
demand under the utility and rooftop PV units are challenging tasks. Different techniques have been
proposed in the literature addressing load scheduling for household energy management. For example,
a GA-based DR scheme is presented in [17] for appliance scheduling to minimize the electricity bill
and PAR. A smart scheduler algorithm is proposed for autonomous load scheduling under a ToU
pricing tariff in order to increase the household revenue [10]. The load scheduling is performed via
an energy consumption scheduling algorithm while considering load uncertainty in order to reduce
PAR and payoff. However, peaks may emerge and user comfort may be compromised while reducing
electricity cost. We proposed a GWDO algorithm for the load scheduling of a home having three types
of appliances—IA, Non-IA, and MR-A—in order to reduce electricity cost and PAR. The reduction of
PAR is beneficial for both consumers and utility because it reduces the number of peak power plants.
To perform optimal residential load scheduling in the aforementioned technique, the scheduling period
of one hour is divided into five timeslots; in other words, the time resolution is 12 min and one day
has 120 timeslots. The resolution is set to be 12-min because it is short enough as a time unit for
the operation intervals of all the household appliances, and it is much more convenient to solve the
optimization problem. The formulation of energy consumption, electricity cost, PAR, and scheduling
problem are described as follows.

4.1. Energy Consumption

We assume that the set of appliances are denoted by A = {AIA ∪ ANon−IA ∪ AMR−A}, where
AIA denotes a set of interruptible appliances, ANon−IA a set of non interruptible appliances, and
AMR−A a set of must-run appliances. These appliances are scheduled over a time horizon of
Th = {1, 2, 3, ........, 120}. The energy consumption of each appliance is given as:

Ei
c(t) = pi

r × Xt. (14)

The aggregated energy consumption is calculated as:

ET =
120

∑
t=1

(
n

∑
i=1

Ei
c(t)), (15)

where ET denotes aggregated energy consumption.

4.2. Electricity Cost

Various pricing schemes are available for electricity cost calculation, such as, CPP, ToU tariff,
and RTP; however, we adopted RTP. It is a midwest independent system operator (MISO) daily
electricity price tariff taken from the FERC. The combined RTP and IBR scheme is used because in case
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of only RTP there is a possibility of building peaks during Off-peak hours that may damage the entire
power system. The electricity cost is calculated as:

CT =
120

∑
t=1

(
n

∑
i=1

Ei
c(t) × ϕ(t)

)
, (16)

where CT is the total cost and ϕ(t) is the RTP. The electricity cost after taking into account RESs and
ESS is calculated as:

CT =
120

∑
t=1

(
n

∑
i=1

Ei
c(t)− EPV(t)− EESS(t)

)
× ϕ(t). (17)

4.3. PAR

PAR is defined as the ratio of peak load to the average load consumed over the scheduling
time horizon. PAR tells us about the energy consumption behavior and utility peak plants; it is
beneficial for both utility and consumers. The PAR is calculated as follows:

Peak = max
(

Ei
c(t)

)
, (18)

Average =
1

120

120

∑
t=1

(
n

∑
i=1

Ei
c(t)), (19)

PAR =
Peak

Average
. (20)

4.4. Scheduling Problem Formulation

The problem is formulated as a minimization problem because in load scheduling our main
objectives are to reduce the electricity cost and PAR.

min

(
120

∑
t=1

(
n

∑
i=1

Ei
c(t)− EPV(t)− EESS(t)

)
× ϕ(t)

)
+ min (PAR) , (21)

subjected to:
ET ≤ Capacity + EPV(t) + EESS(t), (21a)

∑
i∈A

Eunsch
T = ∑

i∈A
Esch

T , (21b)

∑
i∈A

Ti−unsch
o = ∑

i∈A
Ti−sch

o , (21c)

Xunsch
t 6= Xsch

t . (21d)

The constraint (21a) ensures that energy consumption must be under the capacity of utility and
rooftop PV units. For fair comparison, constraints (21b) and (21c) ensure that the energy consumption
and operation timeslots of unscheduled load must be equal to the scheduled load. Appliances’ proper
scheduling are conformed from constraint (21d).

5. Proposed Scheme

The appliances are scheduled using GA, BPSO, WDO, and our proposed algorithm GWDO.
The detailed description of these algorithms are as follows.
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5.1. GA

GA is an optimization algorithm inspired from the genetic process of living organisms. The genetic
chromosomes of GA represent the on/off status of appliances, and the length of chromosomes shows
the number of appliances to be scheduled. Parameters of GA are initialized as shown in Table 2.
First the population is randomly generated and fitness is evaluated according to our objective function.
Then, after fitness evaluation a new population is generated by applying the crossover and mutation
steps of the GA. A new population is generated at each iteration through crossover and mutation.
In crossover, step two parents are selected to create new offspring. To avoid repetition and create
randomness in the results, we use mutation. After crossover and mutation, again a population is
generated and fitness is evaluated. Current results after fitness evaluation are compared to previous
results in order to achieve the global optimal solution. The flow chart of the GA algorithm is shown in
Figure 5.

Table 2. Parameters of GA.

Parameters Values

Population size 100
n 9

Number of iterations 100
Pc 0.9
Pm 0.1

Figure 5. Flow chart of GA.
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5.2. BPSO

PSO is a nature-inspired optimization technique that uses the swarm intelligence concept to
effectively solve large-scale nonlinear optimization problems while analytical methods suffer from
slow convergence and the curse of dimensionality. We use BPSO in this paper, which is a modified
discrete domain form of PSO [33]. For example, birds flock in search of food. When the birds move
in search of food, they have some specific position and velocity. The EMCU based on BPSO mainly
depends on four factors: initial position, initial velocity, particle best position, and global best position
among all particles. The parameters of BPSO are initialized as shown in Table 3. In the next step an
initial position matrix is generated randomly, and the position of each particle represents a candidate
solution. The velocity is computed using the following formula:

vi = vmax× 2× (rand(swarm, n)− 0.5). (22)

A position matrix is a solution matrix which shows the status of the appliance while velocity
controls the population generation. The initially generated position matrix is evaluated by a fitness
function (objective function). Best values on the basis of fitness function for the current iteration are
defined, called “pbest”. A collection of “pbest” values from all iterations are evaluated by fitness
function to find global best (gbest). These gbest values are the status of appliances on which cost and
PAR are minimum for a particular timeslot. The velocity formula is very important, as it consists of
the control parameters that change the convergence behaviour of a solution. These control parameters
include inertia factor, acceleration coefficients, previous, and best position values. These parameters
are carefully selected as shown in Table 3.

Values of velocity are in real numbers, so they are converted into a binary state to obtain the status
of each appliance. To convert into binary, sigmoid (Sig) function is used, which is defined as:

Sig(j, i) =
1

1 + e−vnew
. (23)

By applying Equation (23), the position matrix is updated as follows:{
xnew = 1 i f rand(1) ≤ Sig(j, i)
xnew = 0 i f rand(1) > Sig(j, i)

. (24)

Fitness is evaluated on a new position; this process continues until the stopping criteria are
fulfilled. At the end of this process, we get “gbest” values which are the optimum solution for the
scheduling of our appliances. Moreover, the working step-by-step procedure of BPSO is described in
Figure 6.

Table 3. Parameters of BPSO.

Parameters Values

Swarm size 9
n 9

Number of iterations 100
c1 2
c2 2
wi 2
w f 0.4

vmax 4
vmin −4

5.3. WDO

WDO is a nature-inspired optimization technique based on the atmospheric motion of wind.
When the wind blows, it equalizes the horizontal imbalances. In this algorithm, we consider small air
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parcels as a candidate solution that are moving in N-dimensional space which experience different
types of force [34]. The parameters of WDO are initialized as shown in Table 4, along with their values.

In the next step, an initial position matrix is generated randomly which shows the status of
appliances. Similarly, the initial velocity is generated which is mathematically defined as

vi = vmax× 2× (rand(populationsize, n)− 0.5). (25)

Table 4. Parameters of WDO.

Parameters Values

Population size 20
n 9

Number of iterations 100
RT 3
g 0.2
α 0.4

dimMin −5
dimMax 5

vmax 0.3
vmin −0.3

Figure 6. Flow chart of BPSO.

This initially generated position matrix is evaluated by fitness function (objective function) and
the states of the appliances for a particular timeslot are achieved; then, the velocity function is updated.
In WDO, the velocity function is different from BPSO. In this function, we consider four different
forces as control parameters. These parameters include gravitational force, pressure gradient force,
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coriolis force, and frictional force. In [34], an equation is derived for updating velocity by using these
control parameters. Here posnew shows the current status of appliances. At each iteration velocity
and position, values must be updated. Using Equation (26), the new position of the air parcel for each
iteration is defined as:

xnew = xcur + unew∆t. (26)

Here ∆t is step time which is equal to 1; velocity at each iteration must be bounded by its
maximum and minimum values, which are defined as:

unew =

{
umax i f unew > umax

−umax i f unew < umax
. (27)

After updating the velocity function again, a new “position” matrix is generated and evaluated.
This process will continue until the stopping criteria are fulfilled. At the end of this process, we get
“gbest” values which are the optimum solution for the scheduling of our appliances. Figure 7 shows
the implementation of WDO.

Figure 7. Flow chart of WDO.
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5.4. GWDO

GWDO is our proposed algorithm which is a hybrid of GA and WDO. We chose these two
algorithms because simulation results of GA and WDO show that GA is effective in PAR reduction
and WDO is effective in cost reduction. So, we combined the features of GA and WDO so that the
resulting algorithm should reduce both cost and PAR. The working procedure of GWDO consists of
two phases, as shown in Figure 8. In the first phase we follow all the steps as in WDO, which are
explained above. In the next phase genetic operations (crossover and mutation) are applied to gbest
values of WDO. It improves results because crossover and mutation are applied on the best values
instead of random values.

Figure 8. Flow chart of GWDO.

6. Simulations and Discussions

In this section, simulation results and discussions are presented in order to evaluate the
performance of demand-side management under utility and RESs such as rooftop PV units. In our
simulation settings, the scheduling time horizon of 24 h is divided into 120 timeslots; in other words,
1 h has five timeslots and one timeslot is 12 min. We compare our proposed algorithm GWDO with
other heuristic algorithms (GA, BPSO, WDO) to validate the effectiveness of our proposed algorithm.
Both our proposed algorithm GWDO and other heuristic algorithms (GA, BPSO, WDO) consider
residential load scheduling under objective function, constraints, and rooftop PV units. We also
compare our proposed algorithm GWDO with unscheduled, where EMCU is not deployed and
residential load is not controlled. We consider a single home in the residential sector under utility and
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rooftop PV units having IA, Non-IA, and MR-A. A user in a single home has an average number of nine
appliances. The description of the appliances are listed in Table 5; columns I and II show the appliance
categories, column III shows the power rating of the appliances, and column IV shows the length of
operation time of the corresponding appliance. The power consumption patterns of the appliances are
known to the ECMU to allow proper scheduling of appliances. The length of operation of unscheduled
appliances are the same as with scheduled appliances in order to have a fair comparison. For electricity
pricing, we adopt the RTP method combined with IBR as described in Equation (1).

We assume that the utility company power is always available to support prosumers’ load.
Moreover, the utility company gets the forecasted data of weather conditions, ambient temperature,
and solar irradiance from the meteorological department, and broadcasts it to the prosumers. The RTP
signal is the MISO daily electricity pricing tariff taken from FERC, as shown in Figure 9, and the
normalized form of solar irradiance and temperature data obtained from METEONORM 6.1 for the
Islamabad region of Pakistan is presented in Figures 10 and 11.

The PV units generate electricity, depending on solar irradiance, ambient temperature, efficiency
of PV units, and effective area of PV units. Ninety percent of the estimated PV generation in any
timeslot of the scheduling time horizon is used to serve the load. The remaining 10% is left for
uncertainty between the estimated and actual generation. Between 30–90% of PV units’ generation is
used for charging the ESS only in the daytime. When the ESS is fully charged, it is utilized later during
on-peak hours in order to reduce the electricity cost and PAR.

Table 5. Description of appliances.

Category SA OTS Power Rating (kW)

Must-run appliances
Air conditioner 75 1.5

Water cooler 70 1
Refrigerator 60 0.5

Interruptible appliances
Washing machine 40 0.7

Clothes dryer 40 2
Water motor 36 0.8

Non-interruptible appliances
Electric kettle 20 1.5
Electric iron 30 1.8

Oven 25 2
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Figure 9. Real-time pricing (RTP) profile.
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6.1. Feasible Region

The feasible region is an area defined by a specific set of points in which the objective function
satisfies the result. In our case, the objective function is to minimize cost and PAR by controlling
energy consumption. So, our objective function is defined by Equation (21). To find the constraints
of this objective function, we consider an RTP signal whose range is (0.081:0.2735) cents/kWh. So,
we calculate four possible cases as:

Min load, Min EP : 1× 0.081 = cents 0.081
Min load, Max EP : 1× 0.273 = cents 0.273
Max load, Min EP : 9.1× 0.081 = cents 0.737
Max load, Max EP : 9.1× 0.2735 = cents 2.488

Additionally, the maximum cost of unscheduled load is 2.1 cents. Based upon these values,
we define our constraints so that the cost of scheduled load should be less then unscheduled cost in
each timeslot. Hence, constraints are defined as

0.081 cents < x < 2.1 cents, (28)
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1 kWh < y < 9.1 kWh, (29)

where x represents cost and y represents energy consumption. Constraint (29) represents that the
maximum unscheduled load in any timeslot can be 9.1 kWh, so scheduled load should be less than this
load. Similarly, constraint (28) is that the maximum cost in each timeslot is 2.1 cents, so we schedule
load such that cost should not be greater than 2.1 cents in any timeslot. In Figure 12, the total cost
range is shown by the trapezium (P1 P3 P6 P2), while the shaded portion which is surrounded by P1,
P2, P3, P4, and P5 is a feasible region.
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Figure 12. Feasible region of electricity cost and energy consumption.

6.2. Energy Consumption Behavior of Appliances

The energy consumption profile of scheduled (GA, BPSO, WDO, GWDO) and unscheduled load
without RESs and ESS, with RESs, and with RESs and ESS is shown in Figure 13.

The load scheduled based on (GA, BPSO, WDO, GWDO) and unscheduled without RESs and ESS
is shown in Figure 13a. The unscheduled load of users without RESs and ESS have consumption peaks
of 9.1 kWh at timeslot 90, 8.90 kWh during timeslots 91 to 93, 8 kWh during timeslots 81 to 83, 7.8 kWh
during timeslots 94 to 106, and 6 kWh during timeslots 107 to 111. The energy consumption of users in
the unscheduled case without RESs and ESS is moderate other than these timeslots. The scheduled
load based on GA of users have peak energy consumption of 6.1 kWh at timeslots 1 to 2, 6 kWh at
timeslots 11 and 25. The GA scheduling of users have moderate energy consumption in the remaining
timeslots. The percent decrement of peak power consumption in the case of GA as compared to
unscheduled is 32.96%. The BPSO-based scheduling of users has peak energy consumption of 6.2 kWh
at timeslot 42 and 59 and 6.1 kWh at timeslot 40 to 41. The load scheduled based on BPSO has moderate
energy consumption in the remaining timeslots. The peak energy consumption of BPSO is 31.86% less
than the unscheduled case. In the case of WDO-based scheduling, the peak energy consumption was
6.05 kWh at timeslot 59 and 5.8 kWh at timeslots 51 and 85. WDO-based scheduling has moderate
energy consumption in the remaining timeslots. The percent decrement in peak power consumption
in the case of WDO is 33.51% as compared to unscheduled.

Our proposed GWDO-based scheduling had a peak energy consumption of 5.9 kWh at timeslots
1, 2, and 106 and moderate energy consumption in the remaining timeslots. The percent decrement of
GWDO is 35.16% as compared to unscheduled.

The GWDO outperforms unscheduled and other heuristic techniques (GA, BPSO, WDO) because
GWDO has the most suitable, stable, and optimal load profile as compared to the other techniques,
as is clear from Figure 13a.
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Figure 13. Energy consumption profile of users: (a) Without RESs and ESS; (b) With RESs; (c) With
RESs and ESS.
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The load scheduled based on (GA, BPSO, WDO) and unscheduled with RESs is shown in
Figure 13b. The peak energy consumption of scheduled load based on GA, BPSO, WDO, GWDO,
and unscheduled are 6.1 kWh at timeslot 1 to 2, 5.6 kWh at timeslots 28 to 29, 5.5 kWh at timeslots
6 to 7, 5.8 kWh at timeslots 1 and 103, and 8.1 kWh at timeslots 91 to 95, respectively. The percent
decrement of heuristic techniques (GA, BPSO, WDO, GWDO) as compared to unscheduled are 24.69%,
30.86%, 32%, 28.39%, respectively. Our proposed scheme GWDO over all profile loads with RESs is
better than the other heuristic techniques (GA, BPSO, WDO).

The unscheduled load and scheduled load based on (GA, BPSO, WDO, GWDO) with RESs and
ESS is shown in Figure 13c. Our proposed scheme GWDO over all load profiles with RESs and ESS is
best among the other heuristic techniques (GA, BPSO, WDO) and unscheduled load, as is clear from
Figure 13c.

6.3. Electricity Cost per Timeslot Analysis

The electricity cost per time slot profile of scheduled load based on (GA, BPSO, WDO, GWDO)
and unscheduled without RESs and ESS, with RESs, and with RESs and ESS are shown in Figure 14.

The electricity cost of scheduled load based on (GA, BPSO, WDO, GWDO) and unscheduled
load without RESs and ESS is shown in Figure 14a. The maximum electricity cost per timeslot of
scheduled load based on GA, BPSO, WDO, GWDO, and unscheduled load are 0.9 cents/kWh at
timeslot 31, 0.6 cents/kWh at timeslots 43 and 58, 0.55 cents/kWh at timeslot 57, 49 cents/kWh at
timeslots 1 and 103, and 2.1 cents/kWh at timeslots 88 and 89. As is clear from Figure 14a, our proposed
scheme GWDO has the most stable and optimal electricity cost profile as compared to other heuristic
algorithms and unscheduled load.

The electricity cost of scheduled load and unscheduled load with RESs is shown in Figure 14b.
The maximum electricity cost of unscheduled load with RESs is 1.8 cents/kWh at timeslots 91 to
93, 1.7 cents/kWh at timeslots 89 to 91, 1.65 cents/kWh at timeslots 97 and 98, and 1.4 cents/kWh
at timeslots 99 to 102 because the users do more activities in these timeslots, and therefore energy
consumption in these timeslots is high, resulting in high electricity cost. GA-based scheduled load
has a maximum electricity cost of 0.8 cents/kWh at timeslot 91, 0.7 cents/kWh at timeslots 16 to
21 and 29 to 31 because the energy consumption at these timeslots is maximum. GA has moderate
energy consumption other than these timeslots, which results in less electricity cost as compared to
the mentioned electricity cost. The BPSO-based scheduled load has a maximum electricity cost of
0.9 cents/kWh at timeslot 43, 0.85 cents/kWh at timeslot 41, and 0.7 cents/kWh at timeslots 35 and
36 due to the high energy consumption at these timeslots. The WDO-based scheduled load has a
maximum electricity cost of 0.9 cents/kWh at timeslot 93 and 0.75 cents/kWh at timeslots 31, 32, 89,
and 90 because in this scenario energy consumption is high in these timeslots. The electricity cost is
moderate during timeslots other than those mentioned. Our proposed scheme GWDO is better than
other heuristic techniques (GA, BPSO, WDO) in terms of electricity cost, as shown in Figure 14c.

The comparative analysis of scheduled load based on (GA, BPSO, WDO, GWDO) and unscheduled
load with RESs and ESS in terms of electricity cost is shown in Figure 14c. The simulation results show
that GWDO has the most suitable, stable, and optimal profile as compared to unscheduled load and
other heuristic techniques (GA, BPSO, WDO) in terms of electricity cost.
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Figure 14. Electricity cost profile: (a) Without RESs and ESS; (b) With RESs; (c) With RESs and ESS.

6.4. Total Cost Analysis

The comparison of the aggregated cost of scheduled load using (GA, BPSO, WDO, GWDO) and
unscheduled load without RESs and ESS, with RESs, and with RESs and ESS is shown in Figure 15.
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Figure 15. Aggregated cost analysis: (a) Without RESs and ESS; (b) With RESs; (c) With RESs and ESS.

The aggregated cost analysis of scheduled load without RESs is shown in Figure 15a. The heuristic
techniques GA, BPSO, WDO, and our proposed GWDO reduce the electricity cost by 4.2%, 15.49%,
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18.3%, and 22.5%, respectively. The percent decrement in the case of our proposed GWDO is greater
compared to unscheduled and scheduled load using heuristic techniques (GA, BPSO, WDO).

The aggregated cost analysis of scheduled load with RESs is shown in Figure 15b. The percent
decrement of our proposed GWDO technique is 47.7% as compared to unscheduled because it employs
the crossover and mutation steps of GA on best values rather than on random values. So, our scheme
outperforms the other heuristic techniques GA, BPSO, and WDO.

The aggregated cost with RESs and ESS of scheduled load and unscheduled load is shown in
Figure 15c. The percent decrement of our proposed scheme with the incorporation of RESs and ESS
are greater than without RESs and with RESs. Therefore, our scheme is beneficial for consumers in
order to reduce their cost.

6.5. PAR Analysis

The PAR of the consumers’ load without RESs and ESS, with RESs, and with RESs and ESS is
shown in Figure 16.

The PAR of scheduled load using (GA, BPSO, WDO, GWDO) and unscheduled without RESs and
ESS is shown in Figure 16a. The EMCUs based on all these algorithms are designed to avoid the peaks,
which results in reduction of the PAR. GA, BPSO, WDO, and GWDO reduce the PAR as compared to
the unscheduled case by 8.3%, 16.5%, 20.8%, and 29.1%, respectively. The percent decrement of GWDO
is greater than the other heuristic techniques, which ensures that our proposed scheme outperforms
the other heuristic techniques. This reduction in PAR provides benefits to utility and consumers in
terms of power system stability and electricity bill savings, respectively.

The PAR of scheduled load using (GA, BPSO, WDO, GWDO) and unscheduled with RESs is
shown in Figure 16b. The simulation results show that with the incorporation of RESs our proposed
algorithm GWDO reduces the PAR by 30% as compared to the unscheduled load case. Moreover,
our proposed algorithm tackles the problem of peak formation and optimally shifts the load from
on-peak timeslots to off-peak timeslots.

The PAR of scheduled load based on (GA, BPSO, WDO, GWDO) and unscheduled with RESs
is shown in Figure 16c. Results show that the integration of RESs reduces the PAR by 30% and
after incorporating the ESS as well, the PAR is reduced by 35.4%. This reduction in PAR not only
enhances the stability and reliability of the power system, but also reduces the electricity bill of the
consumers. The brief description of performance evaluation of existing and proposed algorithm in
terms of electricity cost and PAR is summarized in Table 6.

Table 6. Comparative analysis of existing and proposed techniques.

Techniques Cost
Reduction:
Scenario 1

Cost
Reduction:
Scenario 2

Cost
Reduction:
Scenario 3

PAR
Reduction:
Scenario 1

PAR
Reduction:
Scenario 2

PAR
Reduction:
Scenario 3

GA 4.2% 11.6% 13.46% 8.3% 4.5% 17.39%

BPSO 15.49% 9.3% 21.5% 16.5% 11.36% 13.04%

WDO 18.3% 13.95% 25% 20.8% 13.6% 26.08%

GWDO 22.5% 47.7% 49.2% 29.1% 30.% 35.4%
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Figure 16. PAR analysis: (a) Without RESs and ESS; (b) With RESs; (c) With RESs and ESS.

7. Conclusions and Future Work

In this paper, we first introduce the system model for a residential household under utility
and rooftop PV units, and then proposed the GWDO algorithm, which is a hybrid of GA and
WDO, for electricity cost reduction using a combined RTP and IBR pricing scheme. In this regard,
we considered three scenarios: (1) energy consumption from utility without RESs and ESS integration,
(2) energy consumption from utility and from RESs, and (3) energy consumption from utility with



Energies 2018, 11, 611 25 of 27

RESs and ESS integration. The main idea is to encourage consumers to take part in RE generation
and load scheduling to cope with the gap between demand and supply of electricity. To validate the
performance of our proposed GWDO algorithm, simulations are carried out and results are compared
with GA, BPSO, WDO, and unscheduled electricity consumption in terms of electricity cost and PAR
reduction. Moreover, our proposed GWDO technique outperforms in terms of electricity cost and
PAR reduction as compared to its counterparts. Furthermore, our proposed scheme reduced electricity
cost and PAR by 22.5% and 29.1% in scenario 1, 47.7% and 30% in scenario 2, and 49.2% and 35.4% in
scenario 3, as compared to unscheduled electricity consumption.

In the future, in addition to scheduling, load forecasting and power trading concept between the
prosumers and the utility grid will be considered to cope with the gap between demand and supply to
enhance the reliability of the power system.
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Abbreviations

The following abbreviations are used in this manuscript:

A Set of total appliances
AIA Set of interruptible appliances
SM Smart meter
AMI Advanced metering infrastructure
IHD & MCU In-home display and monitoring control unit
INV Inverter
ANon−IA Set of non-interruptible appliances
AMR−A Set of must-run appliances
pi

r Power rating of an appliance
χ Status of appliance
t Timeslot
Th Scheduling time horizon
Ei

c(t) Energy consumption at timeslot
χ(Ei

c(t)) Combined RTP and IBR pricing scheme
ϕ(t) Real-time electricity price at timeslot
Ei

th Energy consumption threshold
bt Greater price when threshold of energy consumption is exceeded
Si

t Current position of an appliance
ri

t Remaining operation timeslots
wi

t Waiting timeslots
Xt Status indicator of an appliance
Si

t+1 Appliance position at next timeslot
Ti

o Operation timeslots of an appliance
α Operation start time of an appliance
β Operation end time of an appliance
EPV(t) Output power of PV unit
ηPV Percentage efficiency of PV unit
APV Area of PV unit
Ir(t) Solar irradiance
Ta(t) Temperature
f (Ir(t)) Weibull probability density function
ζ Weighted factor
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α1, α2 Shape factors
β1, β2 Scale factors
EESS(t) Stored energy in ESS
ηESS Efficiency of ESS
EPCh(t), EPDch(t) Energy charge and discharge of ESS
EPCh

UB Upper limit of charging
EPDch

LB Lower limit of discharge

EESS_Ch
UB Upper limit of stored energy

ET Aggregated energy consumption
CT Total cost
Capcity Capacity of the grid
Eunsch

T Unscheduled load total energy consumption
Esch

T Scheduled load total energy consumption
Ti−unsch

o Unscheduled load operation timeslots
Ti−sch

o Scheduled load operation timeslots
Xunsch

t Unscheduled load status
Xsch

t Scheduled load status
PC Probability of crossover
Pm Probability of mutation
wi Initial weight
w f Final weight
vmax Maximum velocity
vmin Minimum velocity
vi Initial velocity
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