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Abstract: To improve our capacity to use available wind speed data, it is necessary to develop a new
statistical temporal downscaling method that uses one or a few input variables of any temporal scale
for mean wind speed data to obtain wind statistics at finer temporal resolution. In the present study,
a novel statistical temporal downscaling method for wind speed statistics and probability distribution
is proposed. The proposed method uses the temporal structure to downscale the wind speed statistics
to a fine temporal scale without the use of additional variables. The Weibull distribution of the hourly
and 10-min mean wind speed data is obtained by the downscaled wind speed statistics. The proposed
method provides the downscaled Weibull distribution of fine temporal wind speed data using coarse
temporal wind statistics. Particularly, the use of sub-daily mean wind speed data in the downscaling
of the wind speed Weibull distribution leads to good estimation precision. The Weibull distribution
downscaled by the proposed method successfully reproduces the wind power density based on the
wind potential energy estimation.

Keywords: statistical temporal downscaling; downscaling wind statistics; Weibull distribution; wind
potential energy; Weibull parameter estimation

1. Introduction

When planning wind farms, many regions that are expected to have a large wind power potential
do not have weather stations that can measure wind speed. For example, many offshore regions do
not have weather stations or wind speed measuring instruments. To assess the wind power potential
in a region that does not have wind speed observations, the development of advanced climate models
and remote sensing techniques allow for the use of various wind speed observations or estimates
for investigations of the characteristics of wind speed data and wind power potential assessments in
many regions [1–3]. Gadad and Deka [4] assessed the wind power potential of offshore regions along
the west coast of India using Oceansat-2 scatterometer (OSCAT) wind speed data. The OSCAT wind
speed data can be used for wind power potential assessments in this region, where there is a scarcity
of in situ wind speed data. These data improve our capacity to model wind speed and assess the wind
power potential in these regions. However, the temporal and spatial scales of these wind observations
and estimates are relatively coarse for investigating the detailed characteristics of the wind potential
energy. Wind speed observations and estimates at a finer scale are required for an accurate wind power
potential assessment.

To obtain fine-scale meteorological data from coarse-scale data, downscaling methods have
been widely employed [5–9]. Two categories are used in the downscaling methods: (1) dynamical

Energies 2018, 11, 633; doi:10.3390/en11030633 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-1520-3965
http://dx.doi.org/10.3390/en11030633
http://www.mdpi.com/journal/energies


Energies 2018, 11, 633 2 of 27

downscaling and (2) statistical downscaling [10,11]. The dynamical downscaling method uses regional
climate models (RCMs) to simulate various climatic variables at fine temporal and spatial scales.
Because dynamical downscaling can respond in physically consistent ways to external conditions,
the dynamical downscaling method is theoretically preferable. The statistical downscaling method,
which is considered an empirical downscaling method, uses empirical relationships between a variable
of interest and predictors to obtain the variable at fine temporal or spatial scales. In certain cases,
the statistical downscaling method can reproduce the statistical characteristics of variables improperly
simulated by the dynamical downscaling methods. The statistical downscaling method also needs
a smaller number of predictors than the dynamical downscaling method and is computationally
more efficient.

Both downscaling methods have been widely applied in many studies focused on downscaling
wind speed data to fine spatial or temporal resolution [12–21]. As mentioned above, wind speed data
at a fine spatial resolution are required to design the wind farm. Many spatial wind observations
or estimates have a coarse spatial resolution. Additionally, certain wind speed simulations from
dynamical models improperly reproduce wind speed statistics. To resolve these drawbacks, many
spatial downscaling methods have been developed and studied.

Pryor et al. [22] employed a dynamical downscaling method to examine the impact of climate
change on the near-surface flow and wind energy density across northern Europe. In their study, a RCM
was employed to downscale wind speed as well as other meteorological variables. This study showed
that the simulated wind fields present reasonable and realistic results. Pryor et al. [23] proposed an
empirical spatial downscaling method for wind speed probability distributions and used parameters of
the Weibull distribution as predictands of the downscaling method. Predicting the Weibull parameters
led to a more accurate wind power estimate compared with the results of the dynamical downscaling
method, which produces wind speed series. Horvath et al. [20] applied the dynamical downscaling
method for wind speed in complex terrain, and they compared the performance of three dynamical
downscaling methods for wind speed downscaling based on the spatial distribution, wind statistics
and spectral analysis. These authors found that the dynamical adaptation method provides the best
performance among the investigated methods. Devis et al. [24] proposed a new statistical method for
downscaling wind speed probability distributions. In their study, the parameters of the wind speed
probability distributions for mean wind speed data and climatic variables were used as the predictands
and predictors of the downscaling method, respectively.

Although a number of studies have focused on developing statistical and dynamical spatial
downscaling methods for variables related to wind speed characteristics, a limited number of studies
have attempted to develop a statistical temporal downscaling method for the variables related to wind
speed characteristics. Kumar et al. [25] used a neural network with global climate model outputs
and meteorological observations to obtain the downscaled meteorological variables. In their study,
they used monthly data to calculate 6-hour meteorological variables, and their method successfully
reproduced a number of meteorological variables. The temporal downscaling method proposed by
Kumar et al. [25] requires a considerable number of input variables, such as climatic variables, from
climate models for the downscaling method. However, such a large number of climatic data are often
unavailable in many regions.

Guo et al. [26] proposed a temporal downscaling method using the diurnal pattern of hourly
wind speed data. In their method, daily mean wind speed data were downscaled to hourly wind
speed data. The method proposed by Guo et al. [26] used daily mean wind speed data or daily mean
and max wind speed data in the downscaling method. Because the diurnal pattern of wind speed data
was used to downscale, the wind speed data of different temporal scales, e.g., 7-h, 2-day and 3-day,
cannot be used in this method.

The temporal downscaling methods proposed in the previous studies have certain limitations
for application in the wind power potential assessment. To use a downscaling method for wind
power potential assessment, the method can only use wind speed data that successfully reproduces
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the statistics of wind speed data at a fine resolution. When few data are available, such as for in situ
observations and other meteorological variables, the temporal downscaling method often needs to be
employed. Additionally, estimating precise wind statistics at a fine temporal scale is important in the
wind power potential assessment because the statistics represent the probability distribution of the
data. Thus, a new temporal downscaling method that simultaneously satisfies two conditions must be
developed for temporally downscaling wind speed data in wind power potential assessments.

The aim of the present study is to propose a novel temporal downscaling method for wind speed
statistics and probability distributions. Because the method proposed in the current study uses the
temporal structure to downscale the wind speed statistics to a fine temporal scale, wind statistics can
be downscaled by the proposed method without any other information and variables. Furthermore,
because the proposed method uses wind statistics instead of wind speed data, the downscaled wind
statistics from the proposed method may preserve the original wind statistics well. The wind speed
probability distribution at the fine temporal scale can be obtained by the downscaled wind speed
statistics. To the best of our knowledge, the scaling property has not been employed in downscaling
wind speed distribution yet. This method is also simple and computationally efficient. The results
of current study contribute to improve our understanding of wind power potential assessments in
regions where wind speed data at a fine temporal resolution are scarce. Additionally, the proposed
method promotes the use of wind speed data at a coarse temporal scale for wind power potential
assessment of these regions.

This paper is organized as follows: in Section 2, the proposed temporal downscaling method
is described. In Section 3, detailed information is provided on the methodology for the temporal
downscaling method proposed in the current study. In Section 4, the data description and cases used
in the applications are presented. In Section 5, the evaluation criteria results are provided and the
applicability and performance of the proposed method for Weibull parameter and wind potential
energy estimations are discussed. Finally, in Section 6, the conclusions are presented.

2. A Novel Method to Downscale Wind Speed Probability Distribution

To investigate the statistical characteristics of various hydro-meteorological variables, their scaling
properties have been examined [27–37]. In wind speed analyses, the scaling (fractal) property has
been employed to investigate the temporal structure of wind speed data [38–43]. In these studies,
the relationship between the fluctuation function of wind speed data and their temporal scales have
been employed to examine the temporal structure of the wind speed data. The current study uses
a different and simple method of investigating the statistical behavior of the mean wind speed data
versus temporal scales. Additionally, a temporal downscaling method is developed based on the
temporal structure of the statistical characteristics for mean wind speed data.

In the current study, we use the relationship between sample cumulative raw moments (CRMs)
of wind speed and their temporal scales. The sample CRM is expressed by Equation (1):

hth order sample cumulative raw moments (CRM) = µh
CR = ∑n

i=1 yh
i , (1)

where yi and n are the i-th wind speed data and the number of wind speed data, respectively. Figure 1
presents the CRM log of the wind speed data at 10 m height corresponding to the log of temporal
scales at six stations in South Korea.

Strong linear relationships are observed between the log of the CRMs and the log of the temporal
scales. The linear relationships can be used to obtain the linear models, which represent the temporal
structure of wind speed statistics. The wind speed statistics at a fine temporal scale are obtained
from the linear models. The procedure of the proposed temporal downscaling method is described
as follows:

(1) Calculate the CRMs (1st to 4th orders) of the wind speed data corresponding to coarse temporal
scales. For example, when daily mean wind speed data are available, the mean wind speeds of
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coarser temporal scales, i.e., 2-day, 3-day, and 4-day, are calculated by aggregating the daily mean
wind speed data. The CRMs of the daily, 2-, 3-, and 4-day mean wind speed data are calculated.

(2) Build a linear model between the log of the CRMs and the log of the temporal scales.
(3) Estimate the CRMs corresponding to the fine temporal scale of interest, e.g., 1-h from the linear

model built in step (2). For simplicity, the target temporal scale of wind speed statistics is 1-h in
this study.

(4) Convert the CRM estimates in step (3) to central moments. Because the CRMs cannot be directly
applied to fit the probability distribution, they must be converted to central moments that are
usually used in the method of moments.

(5) Estimate the parameters of the selected probability distribution by the method of moments with
central moment estimates in step (4). The proposed method can be employed for any probability
distribution that can be fitted by the method of moments. For simplicity, the current study focuses
on the Weibull distribution.

(6) Calculate the wind potential energy using the probability distribution with the parameter
estimates in step (5).
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3. Methods

3.1. Fitting Methods of a Linear Regression Model

In the current study, the ordinary least square (OLS) and weight least square (WLS) methods are
employed for the fitting of a linear model for the relation between the log of the CRM and the log of
the temporal scale of the mean wind speed data. The OLS method is frequently employed to fit a linear
model. The linear model is written as follows:

Y = X× b, (2)

where Y is the log of the CRM (m× 1 matrix), with m representing the number of temporal scales
used; X is the log of the temporal scale (m× 2 matrix); and b is the regression coefficient (2× 1 matrix).
To take into account the intercept, X has two columns: one is the log of the temporal scale and the
other is one. For the given linear model, the OLS estimator is expressed as follows:

b =
(

XTX
)−1

XTY, (3)

The moments at fine temporal scales are considered more similar to the moments of hourly mean
wind speed data than to the moments of coarse temporal scales. In the OLS method, all the independent
variables (X) have the same weight in fitting the linear model. To improve the performance of
predicting the moment of hourly mean wind speed, the information on moments at fine temporal scales
(e.g., 2-h or 3-h mean wind speed data) should be considered to fit the linear model better. To take into
consideration the temporal scales of the wind speed data, the WLS method is used in the current study.
In the WLS, because the weight matrix used to assign different weights to each independent variable
is added to fit the linear model, the fitted linear model may lead to a better predictive performance of
the moments of the hourly mean wind speed. The WLS estimator is expressed as follows:

b =
(

XTWX
)−1

XTWY, (4)

where W is weight matrix (m×m diagonal matrix). Setting the weight in the weight matrix plays a key
role in the WLS method. In the current study, the weight matrix is employed in Equation (5): W11 · · · 0

...
. . .

...
0 · · · Wmm

 = Wjj =
(∑m

j=1 tj)− tj

∑m
j=1 tj

, (5)

where tj is log of the j-th temporal scale. The weight matrix used in the current study assigns a larger
weight to the CRM when the temporal scale of the CRM is finer.

3.2. Moment Conversion

Because the CRMs cannot be directly used to fit a Weibull distribution, they have to be converted
to central moments, which are commonly used in the method of moments. For the Weibull distribution,
the raw moments can be used to obtain the moment estimates. However, for convenience and
consistency with other studies, the central moments are used in the current study [44–46]. Thus,
the moment conversion way is presented in this section. First, the CRM should be converted to a raw
moment. The sample raw moment is calculated via Equation (6):

hth order sample raw moment = µh
R =

1
n

µh
CR =

1
n ∑n

i=1 yh
i , (6)
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When the CRM and the number of data corresponding to the temporal scale of interest have
been determined, the raw moment (µh

R) can be obtained by Equation (6). Second, the raw moment is
converted to the central moment. The sample central moment is expressed as follows:

1st order sample central moment = µ1
C = µ1

R, (7)

hth order sample central moment = µh
C =

1
n ∑n

i=1(yi − y)h h > 1, (8)

where y is the mean of yi. The raw moments that have an order higher than one can be converted to
the central moment by Equations (9)–(11):

µ2
C = µ2

R −
(
µ1

C
)2, (9)

µ3
C = µ3

R − 3µ2
Rµ1

C + 2
(
µ1

C
)3, (10)

µ4
C = µ4

R − 4µ3
Rµ1

C + 6µ2
Rµ1

C − 3
(
µ1

C
)4, (11)

3.3. Method of Moment for Weibull Distribution

The method of moments is a traditional method for fitting probability models and was broadly
applied to fit the probability distribution models [44–46]. The idea of the method of moments is to
find the parameters of the probability distribution model such that the sample and theoretical central
moments from the fitted probability distribution are the same. The central moments required in the
method of moments differ depending on the probability distribution model. In the current study,
the Weibull distribution is considered as the probability distribution of the mean wind speed data.
An extensive body of literature reported that the application of the Weibull distribution in modeling
wind speed data well reproduces the wind speed regime [47–55]. The probability density function of
the Weibull distribution is expressed as follows:

f (v) =
k
c

(v
c

)k−1
exp
[
−
(v

c

)k
]

, (12)

where v, c, and k are the mean wind speed, scale parameter, and shape parameter, respectively.
The theoretical 1st- and 2nd-order central moments of the Weibull distribution are expressed as follows:

µ1
C = cΓ(1 + 1/k), (13)

µ2
C = c2[Γ(1 + 2/k)− Γ2(1 + 1/k)

]
(14)

where Γ() is the gamma function. The method of moments for the Weibull distribution identify
the parameters that produce 1st and 2nd theoretical moments equivalent to the 1st and 2nd sample
moments. This problem in the method of moments is solved by a numerical optimization method.

3.4. Evaluation Criteria

In the current study, bias, absolute bias (ABias), relative bias (RBias), and absolute relative bias
(ARBias), root mean square error (RMSE) are employed for evaluating the performance of the proposed
method. The equations of the evaluation criteria are expressed in Equations (15)–(19):

Bias = Ei −Oi, (15)

ABias = |Ei −Oi|, (16)

RBias (%) =
(Ei −Oi)

oi
× 100, (17)



Energies 2018, 11, 633 7 of 27

ARBias (%) = | (Ei −Oi)

oi
| × 100, (18)

RMSE =

√
∑l

i=1(Ei −Oi)
2

l
, (19)

where Ei and Oi are the ith estimate and ith observation, respectively. l is the number of data points.
Bias measures a difference between estimates and observations, i.e., the original parameter estimates.
RBias measures a dimensionless difference between estimates and observations. ABias provides the
distance between estimates and observations, and this criterion provides similar results to the RMSE.
ARBias provides a dimensionless distance and is similar to the relative RMSE. RMSE is broadly used
to evaluate the performance of the model due to the characteristic that the mean square error can
represent the variance of prediction and its bias. The RMSE can provide more robust evaluation
than the bias. The evaluation criteria are calculated based on Weibull parameter estimates and wind
potential energy estimates. The theoretical wind potential energy can be obtained by Equation (20):

WPE =
1
2

ρ
∫

f (v)v3dv, (20)

where f (v) is a probability density function for mean wind speed data. In the current study, the wind
potential energy of the Weibull distribution is used to assess the performance of the proposed model.
For the Weibull distribution, the theoretical wind potential energy is given as follows:

WPEw =
1
2

ρc3Γ(1 +
3
k
), (21)

4. Case Study for Evaluating Performance of the Proposed Method

Evaluations of the performance of the proposed temporal downscaling method for real
observations should be conducted to assess the applicability and suitability of this method. Hence,
we design a case study for evaluating the performance of the proposed method through different
temporal resolutions of in situ wind speed data. In the current study, 10-min and hourly mean wind
speed data sets are used to assess the performance of the proposed method. Although the use of 10-min
mean wind speed data leads to a more realistic case than hourly mean wind speed data, collecting
10-min mean wind speed data for a large number of stations is difficult. To obtain the generality of
evaluation results, the hourly mean wind speed data sets are also used in the performance evaluation
because they are available for a large number of stations. The detailed information of the data and test
cases are described in the following subsections.

4.1. Data

4.1.1. Hourly Mean Wind Speed Data

To assess the applicability and performance of the proposed method for the mean wind speed data,
the hourly mean wind speed data at a 10-m height above the ground are collected from weather stations
operated by the Korean Meteorological Administration (KMA). A total of 53 stations are employed,
and their geographical locations are illustrated in Figure 2. Table 1 presents detailed information
from these stations, such as the station number, name, altitude, and record length. The hourly mean
wind speed data used in the current study can be downloaded from the database website of the KMA
(https://data.kma.go.kr/).

https://data.kma.go.kr/


Energies 2018, 11, 633 8 of 27

Table 1. Information on the weather stations.

Station No. Name Altitude (m) Record Length
(year) Station No. Name Altitude (m) Record Length

(Year)

90 Sockcho 18.1 37 243 Buan 12.0 37
98 Dongducheon 109.1 19 244 Imsil 247.9 37
100 Daegwallyeong 842.5 37 245 Jeongeup 44.6 37
101 Chuncheon 77.71 37 247 Namwon 127.5 37
106 Donghae 39.91 25 248 Jangsu 406.5 29
108 Seoul 85.8 37 251 Gochanggun 54.0 10
112 Incheon 71.4 37 252 Youngwang 37.2 9
114 Wonju 148.6 37 253 Gimhae 59.3 9
115 Ulleungdo 222.8 37 255 Bukchangwon 46.8 8
121 Yeongwol 240.6 23 257 Yangsan 14.9 8
127 Chungju 115.1 37 259 Bosung 2.8 8
131 Cheongju 57.2 37 261 Haenam 13.01 37
135 Chupungnyeong 244.7 37 262 Goheung 53.1 37
136 Andong 140.1 36 271 Bonghwa 322.0 29
137 Sangju 96.2 15 272 Yeongju 210.8 37
146 Jeonju 61.4 37 273 Mungyeong 170.6 37
155 Changwon 37.2 33 277 Yeongduck 42.1 37
172 Gochang 52.0 7 278 Uiseong 81.8 37
175 Jindo 476.5 16 279 Gumi 48.9 37
185 Gosan 74.3 29 281 Yeongchen 93.6 37
188 Seongsan 17.8 37 284 Geochang 226.0 37
189 Seogwipo 50.4 37 285 Hapcheon 33.1 37
192 Jinju 30.2 37 288 Milyang 11.2 37
202 Yangpyeong 48.0 37 289 Sancheong 138.1 37
203 Icheon 78.0 37 294 Geoje 46.3 37
211 Inje 200.2 37 295 Namhae 45.0 37
226 Boeun 175.0 37
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4.1.2. Ten-Minute Mean Wind Speed Data

In the present study, 10-min mean wind speed at a height of 10 m is used. These wind speed
data are recorded at 3 meteorological stations located in the United Arab Emirates. Information such
as the altitude and the recording period are presented in Table 2. The geographical location of the
employed stations is presented in Figure 3. The Al Mirfa and Masdar wind stations are located near
the coastline, and the Al Aradh station is located in the foothills. The recording periods of the stations
are not long compared with the recording lengths of the hourly mean wind speed data sets. Although
the evaluation results for the 10-min mean wind speed data lose generality because of a shortage of
observations, the case study for the 10-min mean wind speed data may illustrate the performance of
the proposed method at a very fine wind speed temporal resolution.

Table 2. Information on the stations used to obtain 10-min mean wind speed data.

Station Altitude (m) Period (year/month)

Al Aradh 178 2007/06–2010/08
Al Mirfa 6 2007/06–2009/07

Masdar Wind Station 0.6 2008/08–2011/02
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4.2. Test Case Descriptions

4.2.1. Test Cases for Hourly Mean Wind Speed Data

The proposed method temporally downscales the statistical characteristics of the mean wind speed
data. Thus, the performance of the proposed method may be different based on the temporal scale
used. The performance of the proposed model must be assessed based on the use of wind speed data
for different temporal scales. In the current study, two references and ten test cases are used. The target
temporal scale of all reference and test cases is hourly. The differences between the test and reference
cases are the temporal scales of the mean wind speed data and linear model fitting methods. All reference
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and test cases are described in Table 3. The goals for all the cases are to obtain the Weibull distribution of
hourly mean wind speed data without the use of hourly mean wind speed data. Cases 0–O and 0–W are
the reference cases. Because the CRM estimates are obtained by the proposed method using the hourly
mean wind speed data, these cases present the best performance of the proposed method. Thus, from
the results of cases 0–O and 0–W, we can investigate the maximum performance of the proposed method.
The temporal scales of many meteorological observations and estimates are daily to weekly [56–59].
To assess the applicability of the proposed method for these coarse temporal scales (longer than and
equal to daily), cases 1 (weekly) and 2 (daily) are tested. Recently, various wind speed data are provided
for sub-daily temporal scales, such as 3-h, 6-h, and 12-h [2,4,60–62]. For the sub-daily temporal scales,
cases 3 (12-h), 4 (6-h), and 5 (3-h) are tested. The OLS and WLS methods are applied for all the cases
to investigate the suitability of the linear model fitting method. The selected cases may well represent
various temporal scales of the mean wind speed data.

In the proposed method, four weeks is used as the maximum temporal scale. For example, in the
weekly case, the CRMs of one-week, two-week, three-week, and four-week mean wind speed data
that are aggregated from the weekly mean wind speed data are used to fit the linear model. In the case
of daily mean wind speed data, the CRMs of 1- to 28-day mean wind speed data are used in the linear
model fitting. The statistical characteristics of the mean wind speed data for too coarse temporal scales,
e.g., one month and two months, may be different from the statistical characteristics of the mean wind
speed for fine temporal scales. The use of coarse temporal scale data may lead to worse results when
modeling the wind statistics at a fine temporal scale data. Hence, we set four weeks as the maximum
temporal scale in the proposed method.

Table 3. Description of the test cases for the hourly mean wind speed data.

No. Case Temporal Scale of the Used
Wind Speed Data (hour)

Fitting Method for
the Linear Model

1 Case 0-O 1 OLS
2 Case 0-W 1 WLS
3 Case 1-O 168 (weakly) OLS
4 Case 1-W 168 (weakly) WLS
5 Case 2-O 24 (daily) OLS
6 Case 2-W 24 (daily) WLS
7 Case 3-O 12 OLS
8 Case 3-W 12 WLS
9 Case 4-O 6 OLS
10 Case 4-W 6 WLS
11 Case 5-O 3 OLS
12 Case 5-W 3 WLS

4.2.2. Test Cases for 10-min Mean Wind Speed Data

The target temporal resolution of the test cases in this subsection is 10-min. Hence, these test cases
should vary from the test cases for the hourly mean wind speed data. The minimum and maximum
temporal resolution of the test cases are hourly and daily (24-h), respectively. Temporal resolutions of
1-, 3-, 6-, 12-, and 24-h are used for the test cases for the 10-min mean wind speed data. Mean wind
speed data for the temporal resolution used in the test cases are obtained by aggregating 10-min mean
wind speed data for three stations. Because 168-h (weekly case) represents a very coarse resolution
compared with 10-min, the 168-h mean wind speed data are not employed as the test case.
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5. Results

5.1. Case Study for Hourly Mean Wind Speed Data

5.1.1. Parameter Estimation of the Downscaled Weibull Distribution

The parameters of the downscaled Weibull distributions are obtained by the proposed method for
all the stations and cases. The biases between the parameter estimates by the proposed method and
original parameter estimates are calculated. The original estimates indicate the parameters obtained
by the method of moments from hourly mean wind speed observations. Figure 4 presents boxplots of
the biases of the proposed method for estimating parameters of the downscaled Weibull distribution
for all the cases. Overall, the proposed method overestimates the scale and shape parameters of
the Weibull distribution. The WLS method leads to a better fit than the OLS method for all the
cases. The biases of the scale and shape parameters are reduced when the wind speed data temporal
scale becomes finer. For the sub-daily cases, i.e., cases 3, 4, and 5, the performance of the proposed
method slightly improves when the temporal scale becomes finer. For the scale parameter estimates,
the proposed method provides good parameter estimation precision. Additionally, the precision of the
shape parameter estimation is good when case 1 is excluded.
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Figure 4. Boxplots of the Bias of scale (c) and shape (k) parameters of the downscaled Weibull
distiribtuion with OLS and WLS methods based on the parameter estimates from the observed Weibull
distribution. Note that (a–d) presents boxplots of scale parameter estimates with OLS, scale parameter
estiamtes with WLS, shape parameter estimates with OLS, and shape parameter with WLS, respectively.

The ABias values of the proposed method for estimating the Weibull parameters for all the cases are
presented in Figure 5. Overall, the ABias results are similar to the Bias results. For the scale parameters,
the proposed method with the WLS method provides good estimation performance. Particularly,
the medians of the absolute biases for the sub-daily cases are smaller than 0.05. The proposed method
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provides good performance when estimating the shape parameter for sub-daily cases. When the number
of the data point is one, the values of ABias and RMSE are the same. Since each station has one
scale parameter and one shape parameter, values of the ABias and RMSEs for each parameter are the
same. Because boxplots of RMSE are equivalent to boxplots of the ABias, the boxplots of the RMSE are
not illustrated.
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Figure 5. Boxplots of ABias of scale (c) and shape (k) of the downscaled Weibull distribtuion with
the OLS and WLS methods based on the parameter estimates from the observed Weibull distribution.
Note that (a), (b), (c) and (d) presents boxplots of scale parameter estimates with OLS, scale parameter
estiamtes with WLS, shape parameter estimates with OLS, and shape parameter with WLS, respectively.

The RBiases of the proposed method based on observed parameters for all the cases are presented
in Figure 6. The proposed method provides good performance in the scale parameter estimation
based on the RBiases. The worst case is case 1, and its RBiases are from −3% to 15% in the scale
parameter estimation. The medians of the RBiases for other cases are smaller than 5%. The proposed
method overestimates the shape parameter for cases 1 and 2 based on the RBias values. The cases of
sub-daily temporal scales (cases 3, 4, and 5) provide relatively good performance for shape parameter
estimations. The medians of the RBiases for these cases are smaller than 20%.

Figure 7 presents the ARBias values of the proposed method when downscaling the Weibull
parameters for all the cases. Overall, the ARBias results are similar to the RBias results. All ARBias
values for the scale parameter estimates are smaller than 15%, and their medians are below 10%.
In the case of shape parameter estimation, the use of sub-daily mean wind speed data in the proposed
method leads to good precision. The ARBiases of the shape parameter for the sub-daily temporal
scales with the WLS method are from 1% to 30%. The weekly and daily cases provide relatively large
ARBiases. The ARBias medians for these two cases with the WLS are 60% and 20%.
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Figure 6. Boxplots of the RBias(%) of scale (c) and shape (k) parameters of the downscaled Weibull
distribution with the OLS and WLS methods based on the parameter estimates from the observed Weibull
distribution. Note that (a–d) presents boxplots of scale parameter estimates with OLS, scale parameter
estiamtes with WLS, shape parameter estimates with OLS, and shape parameter with WLS, respectively.
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Figure 7. Boxplots of the ARBias (%) of scale (c) and shape (k) parameters of the downscaled Weibull
distribution with the OLS and WLS methods based on the parameter estimates from the observed Weibull
distribution. Note that (a–d) presents boxplots of scale parameter estimates with OLS, scale parameter
estiamtes with WLS, shape parameter estimates with OLS, and shape parameter with WLS, respectively.
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The means for the bias, ABias, RBias, and ARBias of the proposed method for all the cases are
presented in Table 4. The WLS method leads to better performance fitting of the linear model than the
OLS method based on all employed criteria. The proposed method successfully estimates the scale
parameters of the downscaled Weibull distribution. The mean ARBias of the case of daily mean wind
speed data for the scale parameter is 5%. The ARBias values of the sub-daily cases with the WLS
method are below 15% for the shape parameters. For the weekly and daily cases, the proposed method
leads to poor precision when estimating the shape parameter. The mean ARBiases of cases 1 and 2
with the WLS method are approximately 60% and 20%, respectively. Results of RMSE are very similar
to the results of ABias.

Table 4. Means of the evaluation criteria for the downscaled Weibull parameter estimates based on
parameter estimates of the observed Weibull distribution of all the stations.

Case
Scale Parameter c Shape Parameter k

Bias ABias RBias (%) ARBias (%) RMSE Bias ABias RBias (%) ARBias (%) RMSE

C0-O 0.047 0.055 3.1 3.3 0.062 0.176 0.188 14.8 15.5 0.223
C0-W 0.026 0.040 1.9 2.2 0.049 0.095 0.121 8.1 9.9 0.149
C1-O 0.107 0.110 6.7 6.8 0.122 0.819 0.819 67.3 67.3 0.986
C1-W 0.104 0.106 6.5 6.5 0.117 0.708 0.709 58.4 58.4 0.818
C2-O 0.073 0.080 4.7 4.9 0.089 0.331 0.342 27.8 28.5 0.392
C2-W 0.056 0.068 3.8 4.1 0.079 0.238 0.256 20.2 21.4 0.304
C3-O 0.060 0.068 3.9 4.1 0.075 0.245 0.256 20.5 21.3 0.300
C3-W 0.039 0.053 2.8 3.1 0.063 0.153 0.177 13.0 14.6 0.215
C4-O 0.052 0.060 3.4 3.6 0.068 0.204 0.216 17.1 17.9 0.255
C4-W 0.030 0.046 2.2 2.6 0.055 0.116 0.143 9.8 11.7 0.175
C5-O 0.049 0.057 3.2 3.4 0.064 0.186 0.198 15.6 16.4 0.235
C5-W 0.027 0.042 2.0 2.4 0.051 0.102 0.129 8.7 10.5 0.159

The probability density functions (PDFs) of the downscaled Weibull distributions for all the
cases using the WLS method are illustrated in Figure 8 to investigate the differences between the
Weibull distribution of the mean wind speed observations and the downscaled Weibull distributions.
The downscaled Weibull PDFs successfully reproduced the Weibull PDFs of the hourly mean wind
speed observations. When finer temporal scales are used, the downscaled Weibull PDF becomes
more similar to the Weibull PDF of the observations. In stations #135, #137, and #252, the downscaled
Weibull PDFs of the daily and sub-daily cases are similar to the Weibull PDF of the observations.

5.1.2. Wind Potential Energy Estimation of the Downscaled Weibull Distribution

The wind speed probability distribution is used to estimate the wind potential energy in regions of
interest in the wind energy field. The precision of the parameter estimation as well as the wind potential
energy estimation from the downscaled Weibull distribution are important. Thus, in this subsection,
the precision of the wind potential energy of the downscaled Weibull distribution is examined.

Figure 9 presents the biases, ABiases, RBiases, and ARBiases of the wind potential energy from
the Weibull distribution downscaled by the proposed method for all stations. The downscaled Weibull
distribution underestimates the wind potential energy for all the cases based on the wind potential
energy from hourly mean wind speed observations. At smaller temporal scales of the wind speed data,
the estimation precision of the wind potential energy increases. The precision of the wind potential
energy estimation by the proposed method for the weekly and daily cases (cases 1 and 2) is poor based
on the RBias and ARBias values. Because boxplots of RMSE are equivalent to boxplots of the ABias,
the boxplots of the RMSE are not illustrated in Figure 9.
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energy. Overall, the proposed method successfully reproduces the wind potential energy for sub-
daily temporal scales such as 3-h, 6-h, and 12-h. The evaluation criteria indicate that 3-h and 6-h mean 
wind speed data (case 3) can provide a good performance that is nearly equivalent to the reference 
cases. Results of RMSE for the WPE are different of the results from ABias for the WPE. The OLS 
method leads to the lower RMSEs than the WLS method. In the case excluding to the station #185, 
the RMSE of the WPE by OLS and WLS are almost same. From the results, it can be inferred that the 
WLS is more sensitive to the data having the large variability, e.g., outlier, than the OLS. 

Figure 8. Probability density functions of the downscaled Weibull distributions with the WLS method
for all the cases of stations (a) #108, (b) #135, (c) #137, (d) #252, (e) #255, and (f) #257. The red line
indicates the Weibull PDF fitted by the method of moments for the hourly mean wind speed data.
The observed distribution (red solid line) indicates the Weibull distribution of hourly wind speed data
fitted using the method of moment.

The means of the Bias, ABias, RBias, and ARBias of the wind potential energy estimates by the
proposed method for all the cases are presented in Table 5. Based on the means of the Bias and RBias,
the Weibull distribution downscaled by the proposed method underestimates the wind potential
energy. Overall, the proposed method successfully reproduces the wind potential energy for sub-daily
temporal scales such as 3-h, 6-h, and 12-h. The evaluation criteria indicate that 3-h and 6-h mean wind
speed data (case 3) can provide a good performance that is nearly equivalent to the reference cases.
Results of RMSE for the WPE are different of the results from ABias for the WPE. The OLS method
leads to the lower RMSEs than the WLS method. In the case excluding to the station #185, the RMSE of
the WPE by OLS and WLS are almost same. From the results, it can be inferred that the WLS is more
sensitive to the data having the large variability, e.g., outlier, than the OLS.
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C3-W 0.532 (−1.612) 5.285 (−3.232) −18.1 21.3 16.4 (5.7) 
C4-O −1.201 (−2.592) 4.796 (−3.520) −23.0 24.5 11.1 (5.3) 
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Figure 9. Boxplots of the bias, ABias, RBias (%), and ARBias (%) of wind potential energy estimates
from the downscaled Weibull distribution with the OLS and WLS methods based on the wind potential
energy from the observed Weibull distributions. Note that the wind potential energy of station #185 is
not presented in bias and ABias. Because the magnitude of the wind potential energy for station #185
is approximately one hundred times the magnitude of the other stations, the boxplot does not properly
represent the overall characteristics when the bias and ABias of station #185 are included.

Table 5. Means of the evaluation criteria for the wind potential energy of the downscaled Weibull
distributions based on the wind potential energy of the observed Weibull distributions of all the stations.
Note that the biases of C3-W, C4-W, and C5-W are positive because the value of the wind potential
energy for station #185 is a large positive number. Because the magnitude of the wind potential energy
for station #185 is approximately one hundred times the magnitude of the other stations, the mean biases
of these cases are shifted. The numbers in brackets indicate the means of the biases without station #185.

Case Bias ABias RBias (%) ARBias (%) RMSE

C0-O −1.038 (−2.339) 4.411 (−3.215) −20.7 22.3 10.4 (4.9)
C0-W 0.812 (−0.992) 4.287 (−2.549) −12.4 15.8 13.8 (4.8)
C1-O −8.423 (−7.337) 8.423 (−7.337) −49.5 49.5 12.8 (9.3)
C1-W −7.506 (−6.790) 7.590 (−6.875) −46.9 47.0 10.6 (8.7)
C2-O −2.571 (−3.824) 5.792 (−4.700) −31.6 33.0 10.6 (6.2)
C2-W −0.462 (−2.558) 5.900 (−3.926) −25.0 27.6 16.1 (6.2)
C3-O −1.624 (−3.017) 5.213 (−3.951) −26.0 27.6 11.2 (5.7)
C3-W 0.532 (−1.612) 5.285 (−3.232) −18.1 21.3 16.4 (5.7)
C4-O −1.201 (−2.592) 4.796 (−3.520) −23.0 24.5 11.1 (5.3)
C4-W 0.889 (−1.156) 4.844 (−2.875) −14.5 18.1 15.7 (5.3)
C5-O −1.058 (−2.421) 4.588 (−3.334) −21.6 23.2 10.8 (5.1)
C5-W 0.921 (−1.019) 4.555 (−2.685) −13.1 16.7 14.9 (5.1)
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5.2. Case Study for 10-min Mean Wind Speed Data

The means of the Bias, ABias, RBias, and ARBias of the proposed method for downscaling the
Weibull parameters for all the cases with the 10-min mean wind speed data are presented in Table 6.

Table 6. Bias, absolute bias, relative bias, and absolute relative bias of the parameter estimates and
wind potential energy for the different cases. The presented Bias, ABias, RBias and ARBias values are
the mean values for three employed stations. The case indicates the temporal scale of the wind speed
data used to obtain the parameters of the Weibull distribution for the 10-min mean wind speed data.

Target Criteria
OLS WLS

1-h 3-h 6-h 12-h 24-h 1-h 3-h 6-h 12-h 24-h

c

Bias −0.0447 −0.0435 −0.0349 −0.0187 −0.0010 −0.0597 −0.0612 −0.0509 −0.0261 0.0008
ABias 0.0447 0.0435 0.0349 0.0464 0.0472 0.0597 0.0612 0.0509 0.0420 0.0437
RBias −1.1% −1.1% −0.8% −0.3% 0.2% −1.6% −1.6% −1.3% −0.5% 0.3%

ARBias 1.1% 1.1% 0.8% 1.1% 1.2% 1.6% 1.6% 1.3% 0.9% 1.2%
RMSE 0.052 0.055 0.055 0.059 0.051 0.061 0.064 0.060 0.060 0.046

k

Bias −0.2170 −0.2082 −0.1651 −0.0175 0.1262 −0.2652 −0.2685 −0.2320 −0.0658 0.1218
ABias 0.2170 0.2082 0.1651 0.2864 0.3861 0.2652 0.2685 0.2320 0.2469 0.3657
RBias −12% −11% −9% 0% 9% −15.2% −15.3% −13.0% −2.8% 8.7%

ARBias 12% 11% 9% 16% 23% 15.2% 15.3% 13.0% 13.5% 21.4%
RMSE 0.259 0.264 0.260 0.328 0.398 0.283 0.293 0.278 0.309 0.381

WPE

Bias −8.421 −8.452 −8.345 −8.099 −3.759 −8.615 −8.708 −8.585 −8.214 −3.509
ABias 8.421 8.452 8.345 8.555 12.330 8.615 8.708 8.585 8.515 12.401
RBias −12.2% −11.9% −11.1% −9.5% 18.5% −13.6% −13.6% −12.6% −10.2% 19.8%

ARBias 12.2% 11.9% 11.1% 12.1% 39.3% 13.6% 13.6% 12.6% 11.6% 40.4%
RMSE 14.1 14.3 14.4 14.4 14.9 14.0 14.2 14.4 14.5 14.8

The proposed method underestimates the scale (c) and shape (k) parameters of the downscaled
Weibull distribution, which is inconsistent with the results of the case study for the hourly mean
wind speed data, where the method leads to overestimations when estimating the parameters of the
downscaled Weibull distribution. The proposed method provides very high precision when estimating
the scale parameters of the downscaled Weibull distribution. The precision of the shape parameter
estimation is worse than the precision of the scale parameter estimation. Overall, the ARBiases
for the scale and shape parameters are 1% and 10%, respectively. The proposed method leads to
an underestimation in the wind potential estimation. For the sub-daily cases (1-, 3-, 6-, and 12-h cases),
the ARBiases of the wind potential energy are smaller than 14%. Very large ARBiases are observed for
the 24-h case. Results of RMSE are very similar to the results of ABias. The use of the OLS method
leads to a better performance than the WLS method for the case study with 10-min mean wind speed
data. The best results are observed in the 12-h case. According to the results of the case study for the
hourly mean wind speed data, the 1-h case may provide the best performance because the mean wind
speed data with finer temporal resolution leads to better performance in parameter and wind potential
energy estimation. However, these results are not observed in the results of the case study with 10-min
mean wind speed data. These discrepancies may be related to the small number of stations used.

Figure 10 presents the observed and downscaled Weibull PDFs with the OLS and WLS methods
for six stations. The proposed method successfully reproduces the Weibull PDF of the 10-min mean
wind speed observations for the Al Aradh and Al Mirfa stations. For the Al Aradh station, the Weibull
PDFs downscaled by 1-, 3-, 6-, and 12-h mean wind speed data successfully reproduce the Weibull
PDF of the 10-min mean wind speed observations.
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Figure 10. Observed and downscaled Weibull PDFs with the OLS and WLS methods for six stations
with Weibull PDF observations. Note that the target temporal resolution of the downscaling method
is 10 min. The red line indicates the Weibull PDF that is fitted by the method of moments for 10-min
mean wind speed data. The observed distribution (red solid line) indicates the Weibull distribution
of 10-min wind speed data fitted using the method of moment. Note that (a), (b), (c), (d), (e), and (f)
present the pdfs of Al Aradh with OLS, Al Aradh with WLS, Al Mirfa with OLS, Al Mirfa with WLS,
Masdar wind station with OLS, and Masdar wind station with WLS, respectively.

The 1-, 3-, and 6-h cases successfully reproduce the observed Weibull PDF of the 10-min mean
wind speed data. For the Masdar wind station, the proposed method does not present a good
performance when downscaling the wind speed distribution. The downscaling results of the OLS and
WLS methods are similar. The performance of the proposed method with the OLS method is better
than that with the WLS method for the 10-min mean wind speed data.

6. Discussion

The Weibull parameter estimation precision of the proposed method in the current study varies
depending on the temporal scale of the mean wind speed data. In the scale parameter estimation of the
downscaled Weibull distribution, the proposed method leads to good precision for most of the cases
except for case 1 (weekly case). Thus, the proposed method can be used to estimate the scale parameter
of the hourly wind speed Weibull distribution when the daily mean wind speed data are available.
However, the estimation precision of the shape parameter for the downscaled Weibull distribution is
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good for the sub-daily cases (3-h, 6-h, and 12-h cases) based on the employed evaluation criteria. These
results indicate that at least daily mean wind speed data are required to obtain reliable parameter
estimates of the downscaled Weibull distribution from the proposed method.

Additionally, the evaluation criteria results show that the performance of the proposed method
worsens when the temporal scales of the mean wind speed data become coarser. These results indicate
that the mean wind speed data with a temporal scale close to fine scale can provide considerable
information for downscaling the Weibull distribution. Additionally, although linear correlations
between the log of the CRM and the log of the temporal scale are very high, the fine temporal
scale data may be more similar to hourly mean wind speed data because their relationships are not
perfectly linear.

A validation of the proposed method is carried out to investigate the performance of the proposed
method in an unused data set. In the validation, the original dataset is divided into two data sets:
training and test datasets. Half of the data points in the original dataset are randomly selected as
the training dataset. The remaining of data points become the test datasets. The proposed method
is applied to the training data set to estimate parameters of the downscaled Weibull distribution for
the hourly wind speed data. The parameter estimates of the downscaled Weibull distribution are
compared to the Weibull parameter estimates of the hourly wind speed observations in the test dataset.
The validation results are presented in Table 7. The results of the validation are very similar to the
results of the evaluation presented in Table 4. This result supports the conclusion that the proposed
method provides consistent performances in evaluation and validation for downscaling wind speed
distribution. It can be inferred that the proposed method will produce consistent results for an unused
dataset such as future wind speed data.

Table 7. Means of the evaluation criteria for the downscaled Weibull parameter estimates based on
parameter estimates of the observed Weibull distribution of all the stations from the test period.

Case
Scale Parameter c Shape Parameter k

Bias ABias RBias (%) ARBias (%) RMSE Bias ABias RBias (%) ARBias (%) RMSE

C0-O 0.045 0.055 3.0 3.3 0.062 0.168 0.180 14.2 15.0 0.215
C0-W 0.024 0.040 1.8 2.2 0.050 0.091 0.117 7.8 9.6 0.146
C1-O 0.088 0.098 5.7 5.9 0.111 0.802 0.812 67.4 68.0 1.093
C1-W 0.049 0.116 4.0 6.4 0.190 0.565 0.568 46.8 47.0 0.789
C2-O 0.072 0.079 4.7 4.8 0.088 0.332 0.340 27.8 28.4 0.392
C2-W 0.054 0.069 3.8 4.1 0.080 0.239 0.263 20.3 21.8 0.317
C3-O 0.058 0.068 3.9 4.1 0.076 0.241 0.253 20.3 21.1 0.294
C3-W 0.038 0.055 2.7 3.1 0.065 0.152 0.177 13.0 14.6 0.215
C4-O 0.051 0.062 3.4 3.6 0.069 0.196 0.209 16.6 17.5 0.245
C4-W 0.029 0.047 2.2 2.6 0.058 0.113 0.140 9.7 11.6 0.174
C5-O 0.047 0.058 3.2 3.4 0.065 0.179 0.192 15.2 16.0 0.227
C5-W 0.026 0.043 1.9 2.4 0.054 0.097 0.124 8.3 10.2 0.155

The parameters of the Weibull distribution using raw wind speed data with different temporal
scales are estimated and compared with the Weibull parameter estimates using the proposed
downscaling method. Table 8 presents the results for the Weibull parameter estimates using the
raw wind speed data with different temporal resolutions based on the parameter estimates of the
Weibull distribution for hourly wind speed data at all the stations. The Weibull parameter estimates
using the proposed downscaling method are closer to the Weibull parameters of hourly wind speed
data than those of raw wind speed data except for 3-h wind speed data. For the case of 3-h wind speed
data, the downscaling method does not include large values in estimating the Weibull parameters
of the hourly wind speed data. This is natural outcome. Because finer temporal wind speed data
is definitely more similar to the hourly wind speed data, the downscaling method may not provide
a large improvement in parameter estimation of the Weibull distribution. Overall, the proposed
method leads to an improvement in parameter estimation. Based on the results presented in Table 7,
wind speed data with coarse temporal resolution, i.e., is longer than 3-h, should be used with the
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proposed downscaling method for parameter estimation of Weibull distribution. Hence, the proposed
method in the current study is a good option for estimating the parameters of the Weibull distribution
and conducting a preliminary wind power potential assessment in areas where the mean wind speed
observations of high temporal resolution are not available.

Table 8. Means of the evaluation criteria for the Weibull parameter estimates by the raw wind speed
data with different temporal scale based on the parameter estimates of the Weibull distribution for
hourly wind speed data at all the stations. Note that the underline indicates that the accuracy of
Weibull parameter estimates from the raw data is superior to the Weibull parameter estimates by the
downscaling method.

Temporal
Scale

Scale Parameter c Shape Parameter k

Bias ABias RBias (%) ARBias (%) RMSE Bias ABias RBias (%) ARBias (%) RMSE

168-h 0.083 0.106 5.8 6.5 0.125 2.300 2.300 188.1 188.1 2.381
24-h 0.113 0.115 6.9 6.9 0.126 0.780 0.780 64.7 64.7 0.810
12-h 0.092 0.092 5.5 5.5 0.099 0.415 0.415 34.1 34.1 0.431
6-h 0.060 0.060 3.5 3.5 0.063 0.207 0.207 16.9 16.9 0.214
3-h 0.035 0.035 2.1 2.1 0.037 0.106 0.106 8.7 8.7 0.111

The Weibull PDFs downscaled by the coarse temporal scales are less skewed than those of the
cases at fine temporal scales. The mean wind speed data at a coarse temporal scale are averaged from
the mean wind speed data at a fine temporal scale. The very large and small mean wind speed data
that introduce skewness in the distribution shape may be removed because of the averaging process.
Thus, mean wind speed data with a coarse temporal resolution shows a less skewed distribution shape
than the data at a fine temporal scale. The temporal downscaling of the mean wind speed data is
a method of reproducing the skewness and variance of fine temporal scale wind speed data. The results
of the Weibull PDF comparisons indicate that the Weibull PDFs downscaled by the proposed method
using the daily wind speed data successfully reproduce the distributional characteristics of the Weibull
distribution from 10-min and hourly mean wind speed observations for the stations presented in
Figures 8 and 10.

The proposed method can provide the downscaled Weibull distribution that is much more similar
to the 10-min or hourly Weibull distribution than the use of raw data when temporal scale of raw wind
speed data is longer than 3-h. The use of the proposed method has to be considered in the wind potential
energy assessment using wind speed data of the coarse temporal scale (longer than 6-h). However,
the estimation precision of the method proposed in the current study for wind potential energy varies
depending on the temporal scale and is worse than the precision of the Weibull parameter estimation
because the errors in the Weibull parameter estimation propagate to the wind potential energy estimation.
Additionally, the errors may be introduced via inaccurate shape parameter estimations because of the
relatively worse performance of the shape parameter estimation. Six hours may represent a threshold in
the proposed model for the temporal scale to obtain relatively accurate wind potential energy because
the performance of the proposed method for cases 4 and 5 is close to the performance for the reference
cases. The proposed method is recommended to improve accurary

The results of the wind potential energy estimation indicate that precise parameter estimations are
required to obtain precise wind potential energy estimations from the Weibull distribution. Although
the parameter estimates are relatively precise, such as for the daily case, the wind potential estimation
precision may be poor. Additionally, the performance of the reference cases represents the maximum
capacity of the proposed method to downscale the Weibull distribution of the mean wind speed
data, and the mean ARBias of the reference case (case 0–W) is 15%, which is not small enough to be
neglected in the wind potential energy estimation. Thus, the proposed method should be used only
for approximate estimations of wind potential energy.

Many regions do not have fine temporal resolution wind speed data, e.g., offshore area, and
developing countries areas. Recent advanced climate models allow the simulation of wind speed
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data for regions where the resolution of observation is poor or there is no observation. Therefore, to
obtain the wind speed data with fine temporal resolution, climate models are often used [2,3,9,20].
However, the climate models require very large computation resources to simulate the wind speed
data at fine temporal and spatial resolutions (for example, minute and 10-min resolutions). Due
to a requirement of large computation resources, hourly or daily resolution is usually used as the
temporal resolution [16,18,24,63]. The statistical downscaling method can be an alternative to the
climate model. The proposed method in the current study is to downscale the wind speed distribution
instead of downscaling the wind speed data. Because the proposed temporal downscaling method
can provide a more accurate estimation of the wind speed distribution using coarse temporal wind
speed data, wind power potential estimation from the proposed method in these regions may be more
accurate than the use of raw wind speed data with coarse temporal resolution. For example, outputs
of the climate model can be downscaled again using the proposed method. Applying the statistical
downscaling method to the outputs of the climate models is a popular approach to obtain data with
fine temporal and spatial resolutions in the climate change field [5,64–67]. Additionally, the proposed
method can be employed to remote wind speed observations such as QuikSCAT and OSCAT. Due
to the orbit of satellites, the observing frequency of remote sensing data is weekly or daily [58,68].
The proposed method allows us to obtain a more accurate estimation of the wind speed distribution
from the remote sensing data. Therefore, the proposed method can enhance our capacity to estimate
the wind speed distribution and increase the availability and usage of wind speed data with a coarse
temporal scale in an assessment of wind power potential.

The scaling property is generally used as an index representing the structure of data for the
different scales. In the current study, the distribution of wind speed data was temporally downscaled
by the scaling property representing the temporal structure of the wind speed data. The characteristics
of the scaling property can be expressed by a scaling exponent. The scaling exponent was not explained
in the current study because this value was not necessary to downscale the distribution of wind speed
data. More detailed information and a definition of the scaling exponent can be found in [69–71].
The spatial distribution of the scaling exponents for the stations used in South Korea is analyzed
to investigate the locality of the scaling property in wind speed data (the spatial distribution of the
scaling exponents is not shown). The spatial distribution of the scaling exponents shows that they vary
depending on the location of the stations. Because the characteristics of wind speed data may vary
based on local atmospheric characteristics, this result is natural. However, the scaling exponents for
certain stations are very different from those of nearby stations. For example, the scaling exponents
of certain stations in urban areas and islands are different from those of nearby stations, which
supports the strong effect of wind shear or roughness on the scaling exponents of the wind speed data.
The drastic difference between two nearby stations may come from the terrain complexity. The terrain
shape and complexity can influence the wind shear [72–74]. The scaling exponent can also be affected
by the terrain complexity. Hence, characteristics of the terrain complexity at an area of the interest
affect the spatial interpolation of the scaling exponent for wind speed data.

In the scaling property, the distribution of the data at different scales may be equivalent based
on a power law relationship with the scaling exponent [75–77]. This concept of the scaling property
is similar to a power law relationship for a wind profile, although it is not exactly the same because
the distributions are the same while the data are not. The power law relationship for the wind profile
has been widely used to estimate the wind speed at different heights [78–83]. When the wind profile
is assumed to follow the power law, the proposed method can be employed for downscaling the
distribution of wind speeds near the ground. In other words, the proposed method may not be
appropriate for wind speeds at different heights when the wind profile follows other laws, such as
log-linear and logarithmic laws. Additionally, because the power law and scaling property laws were
derived based on empirical relationships, the applicability of the proposed method for the wind speed
at different heights should be evaluated.



Energies 2018, 11, 633 22 of 27

7. Conclusions and Recommendations

A novel temporal downscaling method for wind speed Weibull distributions is proposed in the
current study. The performance and applicability of the proposed method are assessed for the mean
wind speed data of several temporal scales in South Korea based on the employed evaluation criteria.
In the current study, the following conclusions are reached.

1. The novel method provides the downscaled Weibull distribution of hourly mean wind speed
data using wind statistics at coarse temporal scales, such as 3-h, 6-h, 12-h, and daily scales.
Particularly, the use of sub-daily mean wind speed data in the downscaling of the wind speed
Weibull distribution leads to good estimation precision. The proposed method provides a good
approximation of the hourly mean wind speed Weibull distribution for wind power potential
estimations in regions where hourly wind speed data are unavailable.

2. The proposed method successfully estimates the scale parameters of the downscaled Weibull
distribution for hourly mean wind speed. The precision of the shape parameter estimation by the
proposed method is relatively worse than that of the scale parameter estimation. The proposed
method presents a good performance when estimating the shape parameter in the cases of
sub-daily temporal scales. The proposed method can be used to obtain the downscaled Weibull
distribution in the case of a daily temporal scale based on the Weibull parameter estimation,
although the performance of the proposed method for this case is poor. However, because the
proposed method leads to a poor performance in the weekly case, at least a daily wind speed
temporal scale should be used to estimate the parameters of the Weibull distribution for hourly
mean wind speed.

3. The Weibull distribution downscaled by the proposed method successfully reproduces the wind
power density based on the wind potential energy estimation. For the cases of sub-daily temporal
scales, the proposed method provides a good approximate wind potential energy of hourly mean
wind speed data without using the hourly mean wind speed data. The proposed method presents
poor precision in the cases of weekly and daily temporal scales, which is similar to the results of
the parameter estimation. Thus, for estimating the downscaled wind potential energy, the mean
wind speed data of sub-daily temporal scales should be used in the proposed method. In addition,
the results of the proposed method may be used to assess the approximate wind potential energy
in regions that do not have mean wind speed observations at a fine temporal scale.

4. The proposed downscaling method gives an improvement in estimating parameters of Weibull
distribution for wind speed data. The precision of Weibull parameter estimation by the proposed
method is superior to the precision of the parameter estimation for raw wind speed data without
use of the downscaling method when the temporal scale of the used wind speed data is longer
than 3-h. For the case of 3-h mean wind speed data, the proposed method shows comparable
performance to parameter estimation for the raw wind speed data.

5. The WLS method leads to a better performance than the OLS method. Based on all employed
evaluation criteria, the WLS method is superior to the OLS method for precisely fitting a linear
model via the proposed method, especially for the CRM of the hourly mean wind speed data.
The WLS method is recommended for fitting a linear model via the proposed method.

The proposed downscaling method in the present study has considerable potential to be extended
and improved. Because the proposed method temporally downscales statistical characteristics
(moments) of the mean wind speed data, it can be employed for any frequency distribution models for
which the method of moments can be used, and these features may represent good topics for further
research on the proposed method. Additionally, because this method can be applied for time series
data for other renewable sources, e.g., solar radiation and wave heights, investigating its applicability
to other renewable sources that use time data would represent a good further research topic [84–89].



Energies 2018, 11, 633 23 of 27

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (Ministry of Science, ICT & Future Planning) (No. 2017R1A2B4009338).

Author Contributions: Ju-Young Shin, Changsam Jeong, and Jun-Haeng Heo conceived and designed the
experiments; Ju-Young Shin and Changsam Jeong performed the experiments; Ju-Young Shin and Changsam Jeong
analyzed the data; Ju-Young Shin contributed reagents/materials/analysis tools; Ju-Young Shin and Jun-Haeng Heo
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
the decision to publish the results.

References

1. Kent, E.C.; Fangohr, S.; Berry, D.I. A comparative assessment of monthly mean wind speed products over
the global ocean. Int. J. Climatol. 2012, 33, 2520–2541. [CrossRef]

2. Chadee, X.T.; Clarke, R.M. Large-scale wind energy potential of the caribbean region using near-surface
reanalysis data. Renew. Sustain. Energy Rev. 2014, 30, 45–58. [CrossRef]

3. Cannon, D.J.; Brayshaw, D.J.; Methven, J.; Coker, P.J.; Lenaghan, D. Using reanalysis data to quantify extreme
wind power generation statistics: A 33 year case study in great britain. Renew. Energy 2015, 75, 767–778.
[CrossRef]

4. Gadad, S.; Deka, P.C. Offshore wind power resource assessment using oceansat-2 scatterometer data at
a regional scale. Appl. Energy 2016, 176, 157–170. [CrossRef]

5. Lee, T.; Park, T. Nonparametric temporal downscaling with event-based population generating algorithm
for rcm daily precipitation to hourly: Model development and performance evaluation. J. Hydrol. 2017, 547,
498–516. [CrossRef]

6. Ben Alaya, M.A.; Chebana, F.; Ouarda, T.B.M.J. Multisite and multivariable statistical downscaling using
a gaussian copula quantile regression model. Clim. Dyn. 2016, 47, 1383–1397. [CrossRef]

7. Olsson, J.; Willén, U.; Kawamura, A. Downscaling extreme short-term regional climate model precipitation
for urban hydrological applications. Hydrol. Res. 2012, 43, 341–351. [CrossRef]

8. Fujihara, Y.; Tanaka, K.; Watanabe, T.; Nagano, T.; Kojiri, T. Assessing the impacts of climate change on the
water resources of the seyhan river basin in turkey: Use of dynamically downscaled data for hydrologic
simulations. J. Hydrol. 2008, 353, 33–48. [CrossRef]

9. Lorenz, T.; Barstad, I. A dynamical downscaling of era-interim in the north sea using wrf with a 3 km grid-for
wind resource applications. Wind Energy 2016, 19, 1945–1959. [CrossRef]

10. Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr.
1999, 23, 329–357. [CrossRef]

11. Hewitson, B.C.; Crane, R.G. Climate downscaling: Techniques and application. Clim. Res. 1996, 7, 85–95.
[CrossRef]

12. Salameh, T.; Drobinski, P.; Vrac, M.; Naveau, P. Statistical downscaling of near-surface wind over complex
terrain in southern france. Meteorol. Atmos. Phys. 2008, 103, 253–265. [CrossRef]

13. Howard, T.; Clark, P. Correction and downscaling of nwp wind speed forecasts. Meteorol. Appl. 2007, 14,
105–116. [CrossRef]

14. Monahan, A.H. Can we see the wind? Statistical downscaling of historical sea surface winds in the subarctic
northeast pacific. J. Clim. 2012, 25, 1511–1528. [CrossRef]

15. Gaitan, C.F.; Cannon, A.J. Validation of historical and future statistically downscaled pseudo-observed
surface wind speeds in terms of annual climate indices and daily variability. Renew. Energy 2013, 51, 489–496.
[CrossRef]

16. Winstral, A.; Jonas, T.; Helbig, N. Statistical downscaling of gridded wind speed data using local topography.
J. Hydrometeorol. 2017, 18, 335–348. [CrossRef]

17. Kirchmeier, M.C.; Lorenz, D.J.; Vimont, D.J. Statistical downscaling of daily wind speed variations. J. Appl.
Meteorol. Climatol. 2014, 53, 660–675. [CrossRef]

18. Manor, A.; Berkovic, S. Bayesian inference aided analog downscaling for near-surface winds in complex
terrain. Atmos. Res. 2015, 164, 27–36. [CrossRef]

19. Huang, H.-Y.; Capps, S.B.; Huang, S.-C.; Hall, A. Downscaling near-surface wind over complex terrain using
a physically-based statistical modeling approach. Clim. Dyn. 2014, 44, 529–542. [CrossRef]

http://dx.doi.org/10.1002/joc.3606
http://dx.doi.org/10.1016/j.rser.2013.09.018
http://dx.doi.org/10.1016/j.renene.2014.10.024
http://dx.doi.org/10.1016/j.apenergy.2016.05.046
http://dx.doi.org/10.1016/j.jhydrol.2017.01.049
http://dx.doi.org/10.1007/s00382-015-2908-3
http://dx.doi.org/10.2166/nh.2012.135
http://dx.doi.org/10.1016/j.jhydrol.2008.01.024
http://dx.doi.org/10.1002/we.1961
http://dx.doi.org/10.1177/030913339902300302
http://dx.doi.org/10.3354/cr007085
http://dx.doi.org/10.1007/s00703-008-0330-7
http://dx.doi.org/10.1002/met.12
http://dx.doi.org/10.1175/2011JCLI4089.1
http://dx.doi.org/10.1016/j.renene.2012.10.001
http://dx.doi.org/10.1175/JHM-D-16-0054.1
http://dx.doi.org/10.1175/JAMC-D-13-0230.1
http://dx.doi.org/10.1016/j.atmosres.2015.04.014
http://dx.doi.org/10.1007/s00382-014-2137-1


Energies 2018, 11, 633 24 of 27
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