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Abstract: In this paper, output capacitor-less low-dropout (LDO) regulator using active-feedback
and current-reuse feedforward compensation (AFCFC) is presented. The open-loop transfer function
was obtained using small-signal modeling. The stability of the proposed LDO was analyzed using
pole-zero plots, and it was confirmed by simulations that the stability was ensured under the load
current of 50 mA. The proposed compensation method increases gain-bandwidth product (GBW)
and reduces the on-chip compensation capacitor. The proposed AFCFC technique was applied to
a three-stage output capacitor-less LDO. The LDO has a GBW of 5.6 MHz with a small on-chip
capacitor of 2.6 pF. Fast-transient time of 450 ns with low quiescent current of 65.8 µA was achieved.
The LDO was fabricated in 130 nm CMOS process consuming 180 × 140 µm2 of the silicon area.

Keywords: power management integrated circuit; output capacitor-less LDO; frequency compensation;
fast-transient response

1. Introduction

Development of miniature wireless communication chip has led to great development of mobile
devices and internet of things (IoT) devices. These devices receive power from the limited battery.
Various voltages which are optimized power and performance for each sub-circuit are required from
a battery. Therefore, a power management integrated circuit (PMIC) for efficiently managing battery
power and supplying various voltages has been attracting great interest [1–10]. As shown in Figure 1,
the PMIC which is combined a switching DC-DC converter and low dropout linear regulator (LDO) is
commonly used for converting DC voltage [6–11]. A high efficiency switching converter is used to
convert DC voltage, and LDOs are used to remove the switching ripple and provide stable power to
sub-circuits. Many systems-on-chips (SoC) require various supply voltages to separate power planes
and reduce crosstalk arising from each sub-system, so that the required number of LDO is increasing.
Traditional LDO has employed a large compensation capacitor to guarantee loop stability, but these
bulky compensation capacitors are not feasible to be integrated on the chip. Thus, output capacitor-less
LDO (OCL-LDO) [12–16] that can stabilize the feedback loop without external capacitors has attracted
great attention for on-chip applications. The OCL-LDO can reduce the number of off-chip components
and I/O pads, thus making the system more cost-effective.

The main design issues of the OCL-LDO are to increase power conversion efficiency, minimize
dropout voltage, and reduce quiescent current without decreasing transient performance. For a heavy
load current, a large pass transistor seems to be suitable for power efficiency by reducing dropout
voltage. However, the parasitic capacitor of a large pass transistor can degrade the phase margin
significantly. Low quiescent current increases the output resistance of the LDO under light load
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conditions, and it moves the output pole to be lower than the unity-gain-frequency (UGF), degrading
the phase margin and causing instability as a result. Increasing power conversion efficiency and phase
margin are a difficult design challenge while maintaining the transient performance [12–16].
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Figure 1. Power management integrated circuit (PMIC) with output capacitor-less low dropout
regulator (OCL-LDO) scheme.

The block diagram of the OCL-LDO regulator is shown in Figure 2. The OCL-LDO typically
consists of a feedback resistor ladder (RF1, RF2), an error amplifier, a power transistor (MPT), and
a compensation network. The output voltage of the LDO, VLDO_OUT, is determined by the resistance
ratio of the feedback resistor ladder and the reference voltage (VREF). In order to achieve high loop
gain and excellent voltage regulation performance, usually a two-stage error amplifier is adopted.
This amplifier compares VREF with the feedback voltage (VFB) from the output and amplifies the
difference. The output signal of the error amplifier is the input signal of the power transistor (MPT) to
control the output current. Since the power transistor is a common source amplifier for a small signal,
the LDO loop can be regarded as a multi-stage amplifier.
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Figure 2. Output capacitor-less LDO (OCL-LDO) regulator with the compensation network.

Multi-stage amplifiers which are more than two-stages should be frequency compensated and
various frequency compensation methods for designing multi-stage amplifiers have been studied as
shown in Figure 3 [17–23]. Nested Miller compensation (NMC) [17–19] in Figure 3a is a well-known
technique which circuit parameters such as transconductance (gm) and compensation capacitors
have been well-explained in [18]. Miller capacitors are connected between the output node of the
final stage and the output node of each stage. These capacitors split away poles from each other.
However, this technique requires large on-chip compensation capacitors to obtain sufficient phase
margin. Large compensation capacitors decrease gain-bandwidth product (GBW), resulting in slow
transient response or increasing current consumption. Another popular compensation method is
reverse NMC (RNMC) as shown in Figure 3b. Similar to the NMC technique, a Miller capacitor is
used for pole-splitting. In contrast to NMC method, Miller capacitors are connected between the
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output node of the first stage and the output node of each stage. This method provides higher GBW
than NMC because it has a smaller capacitance to be driven at the output node [20,21]. However,
this method has two right-half-plane (RHP) zeros located near the UGF, same as the NMC method [20].
The low-frequency RHP zero degrades the phase margin significantly [23]. As shown in Figure 3c,
based on RNMC structure, two current buffers with Miller capacitor feedback are used to shift the RHP
zeros to the left-half plane (LHP), thus increasing the phase margin [22]. However, [22] is based on
a large external capacitor in the range of hundreds of nanofarads (nF) to guarantee stability and reduce
output voltage overshoot, thus it requires a large on-chip compensation capacitor. This large on-chip
capacitor degrades the transient performance and consumes a large area. Thus, a new compensation
strategy and analysis that can be employed to the on-chip applications is required.
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Figure 3. Block diagram of conventional frequency compensation methods. (a) NMC [17–19];
(b) reverse NMC [20,21]; and (c) reverse NMC with current buffers [22].

In this work, an active-feedback and current-reuse feedforward compensation (AFCFC) is
proposed to achieve fast transient response with a low quiescent current and small on-chip capacitor.
The proposed AFCFC method enables frequency compensation with small on-chip capacitor by using
active feedback. RHP zero can be moved to the LHP by removing the high-frequency feedforward
path formed by the Miller compensation capacitor. Also, the current reuse feedforward path shifts
LHP zero to a lower frequency, thus one of the non-dominant poles can be canceled. This allows
a smaller compensation capacitor to maintain a sufficient phase margin, and GBW is further improved.
The proposed compensation configuration is investigated with pole-zero analysis and verified with
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a three-stage OCL-LDO in Section 2. The circuit implementation of the three-stage OCL-LDO using
the proposed AFCFC is described in Section 3. In Section 4, measurement results are discussed and the
conclusion is presented in Section 5.

2. Analysis of the Proposed AFCFC LDO

Figure 4 shows the block diagram of a three-stage amplifier employing the proposed AFCFC.
The transconductances, output impedances, and lumped output capacitors of the first, second, and
output stages are represented by gm1,2,L, Ro1,2,L, and C1,2,L, respectively. The active-feedback paths are
depicted with transconductances of gmfb1,2 and compensation capacitors of Cm1,2. The feedforward
paths are denoted by gmff1,2.
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Figure 5 shows the small-signal equivalent circuit of the proposed AFCFC amplifier, and the
transfer function A(s) = Vout(s)/Vin(s) can be derived in (1),

A(s) =

ADC

1 + s

 Cm1

gm f b1
+

Cm2

gm f b2
+

Cm2gm f f 2
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gm1 − gm f f 1
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+ s2
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+
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(
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)
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


1 +
s
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where ADC = gm1·gm2·gmL·Ro1·Ro2·RL is the DC voltage gain and p−3dB = 1/(Cm1·gm2·gm3·Ro1·Ro2·RL)
is the −3 dB dominant pole frequency. To simplify the equations, two assumptions were considered.
First, the gain of each stage is much larger than one. Second, two compensation capacitors and a load
capacitor are much larger than the lumped output capacitors. These assumptions are represented in
the equations:

gm1Ro1, gm2Ro2, gmLRL � 1 (2)

Cm1, Cm2, CL � C1, C2 (3)

The proposed system has one dominant pole, a pair of non-dominant complex poles, and two
left-half-plane (LHP) zeros. Assuming that the dominant pole frequency is much lower than the
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complex pole and LHP zero frequencies, the gain-bandwidth product (GBW) and second non-dominant
complex poles (p2,3) can be derived as:

GBW ≡ ADC · p−3dB = gm1/Cm1 (4)

|p2,3| =
√

gm f b1gmL/Cm2CL (5)
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In conventional frequency compensation methods [17–22], high frequency feedforward path is
generated by Miller capacitor, thus generating RHP zeros. In the proposed AFCFC, active-feedback
paths which are formed by gmfb1 and gmfb2 can effectively block the high frequency feedforward
path generated by Cm1 and Cm2. Thus, the two RHP zeros are moved to LHP and the phase margin
is increased.

In (1), the numerator is represented with second order terms. For a simple analysis, it assumes
that the numerator of (1) has approximately two real zeros. When gm1 is equal to gmff1, two real LHP
zeros can be expressed as:

z1 = 1/[(Cm1/gm f b1) + (Cm2/gm f b2)] (6)

z2 = gm f b1/Cm1 + gm f b2/Cm2 (7)

When the first stage transconductance gm1 and active-feedback transconductance gmfb1,2 are equal,
the two zeros can be simplified as:

z1 = gm1/(Cm1 + Cm2) (8)

z2 = gm1[(1/Cm1) + (1/Cm2)] (9)

It has to be noted that, since the feedforward transconductance gmff1 cancels the output stage
transconductance components, the zero location is not a function of gmL but gmfb1,2, as represented in
(6) and (7).

Figure 6 shows the pole-zero locations of the LDO. Figure 6a shows the pole-zero plot with two
RHP zeros of NMC [17]. The RHP zeros degrade the phase margin of the LDO. The RHP zeros can be
moved to the LHP using active-feedback compensation, as shown in Figure 6b. The zero variation is
due to the pass transistor transconductance gmL that varies from hundreds of µA/V to tens of mA/V
depending on load conditions. Although the LHP zeros do not degrade the loop stability of the LDO,
active-feedback compensation without feedforward paths places the zeros at a high frequency, thus
these zeros cannot remove the negative phase shift due to non-dominant complex pole p2,3. In the
proposed AFCFC, the zeros are located at low frequency by adding feedforward paths, as represented
in (8) and (9), due to the feedforward transconductance gmff1,2.
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Typically, phase margin of 60◦ can be obtained by setting UGF to be half of the second
non-dominant complex pole p2,3 (p2,3 > 2 × UGF). In this work, LHP zero z1 derived from (8) is
located near the second complex pole p2,3, as shown in Figure 6c. Since low frequency zero z1 cancels
out one of the complex pole p2,3, larger UGF can be adopted while maintaining the phase margin of
60◦. In other words, a larger UGF allows a small compensation capacitor Cm1 to be used for the same
gm1, so that the proposed LDO can achieve enhanced bandwidth and fast transient performance with
small quiescent current. The high-frequency LHP zero z2 is located at an at-least five times higher
frequency than z1, thus the z2 has little effect on the open-loop response of the LDO. The complex pole
p4,5 and zero z3 depicted in Figure 6 are non-dominant components generated by inter-stage parasitic
capacitor C1 and C2 in Figure 4.
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The simulated GBW is 5.6 MHz for a light load and 4.2 MHz for a heavy load. The damping 
factor of p2,3 is chosen to be 0.7 or higher value to avoid gain peaking near the UGF and rapid 
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Figure 6. Pole-zero locations of the LDOs. (a) Conventional LDO with NMC [17]; (b) active-feedback
compensation LDO without current-reuse feedforward paths; and (c) with current-reuse feedforward paths.

Figure 7 shows the simulated open-loop response of the proposed LDO at heavy load and light
load conditions. The LDO has a high DC gain of >95 dB due to the three-stage configuration. The LDO
achieves a phase margin of >62◦ even in the worst case, where the phase margin can be represented as:

PM = 90
◦
+ tan−1

(
GBW

z1

)
− tan−1

(
2 · ξ · GBW/|p2|

1− (GBW/|p2|)2

)
(10)
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The simulated GBW is 5.6 MHz for a light load and 4.2 MHz for a heavy load. The damping factor
of p2,3 is chosen to be 0.7 or higher value to avoid gain peaking near the UGF and rapid negative phase
shift that can cause phase margin degradation.Energies 2018, 11, x FOR PEER REVIEW  7 of 11 
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Figure 7. Simulated open-loop response of LDO at different load conditions with CL = 100 pF.

3. OCL-LDO Circuit Implementation

Figure 8 shows a schematic of the three-stage AFCFC OCL-LDO. The LDO has seven
transconductance blocks. The error amplifier consists of two stages. The first stage is a folded-cascode
amplifier composed of transistors M1–M12. The second stage is a cascode amplifier with a positive gain
using transistors M13–M20. Both the first and the second stages have four-stacked cascade structure,
so that the LDO has very large overall loop gain, as shown in Figure 7. This large loop gain increases
the regulation accuracy such as load and line regulation. The output stage is composed of a pass
transistor MPT, a transistor M21 for the feedforward path, and feedback resistors RF1 and RF2.
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Figure 8. Schematic of three-stage OCL-LDO regulator employing the proposed AFCFC.

The active-feedback paths are realized with two compensation capacitor Cm1 and Cm2, and
two transconductance gmfb1 and gmfb2 which are implemented by M8 and M11, respectively. gmfb1 is
positive but gmfb2 is negative. Since the loops formed by the active-feedback have approximately
unity gain, due to the low input impedance 1/gmfb1,2, there is no need to consider loop stability.
Two feedforward transconductances, gmff1 and gmff2, are implemented with M20 and M21 respectively.
Current-reuse structure is utilized with gmff1 to reduce extra quiescent current of error amplifier. Unlike
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gmff1, gmff2 draws extra current to reduce the output resistance and guarantee loop stability at light
or no load conditions, where output resistance Rout = roPT‖ro21‖(RF1 + RF2)‖RL. The feedforward
transconductance gmff2 also increases the transient performance of the LDO.

Figure 9 shows a simulated load transient with output capacitor of 100 pF. When the load current
abruptly changes, the output voltage can be immediately recovered through the first stage of error
amplifier and the feedforward transconductance gmff2. The load transient simulations of two cases have
been performed with the same quiescent current of 60 µA. gm1,2, gmfb1,2, and gmff1 are chosen almost at
the same value about 120 µA/V, and gmff2 is selected to 250 µA/V. The compensation capacitors, Cm1

and Cm2, are chosen to be 1.6 and 1 pF, respectively. The size of pass transistor MPT is 3000/0.385 µm
for the maximum load current of 50 mA.
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4. Implementation and Experimental Results

Figure 10 shows the chip photograph of the proposed AFCFC OCL-LDO, and it was fabricated
using a TSMC 130 nm CMOS technology. The OCL-LDO occupies a small active area of 0.18× 0.14 mm2

due to small compensation capacitors of the proposed AFCFC configuration. The OCL-LDO is able to
supply a load current from 0 to 50 mA with the minimum dropout voltage VDO of 200 mV. The input
voltage range is from 1.4 V to 2.7 V. Due to the high loop gain, the proposed OCL-LDO has good
regulation accuracies such as line regulation and load regulation as shown in Table 1.

Table 1. Performances Comparison with Recently-Reported OCL-LDOs

Parameter This Work 2014 [13] 2013 [14] 2017 [15]

Technology 130 nm 180 nm 65 nm 180 nm
Active Area (mm2) 0.025 0.14 0.017 0.033

Iout (mA) 0–50 0–50 0–100 0–100
VDO (mV) 200 200 200 200

Vout (V) 1.2–2.5 1.6 1 1.6
Con-chip (pF) 2.6 28 4.5 12.7
CL,max (pF) 100 100 100 100

IQ (µA) 65.8 55 0.9–82.4 71–101
∆Vout,max (mV) 87.5 75 68.8 210

Line Reg. (mV/V) 1.23 N/A 4.7 131
Load Reg. (mV/mA) 0.048 0.14 0.3 N/A

PSR (dB) −56@10 kHz 1 −62@10 kHz −58@10 kHz −76@1 MHz
Settling Time (µs) <0.7 <6 6 0.2

F.o.M. 0.00395 0.00456 0.00321 0.00267

1 Simulation results.
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Figure 10. Chip photograph.

Figure 11a shows the measured load transient responses with an input supply voltage of 1.4 V
and load capacitor of 100 pF. When the load current is turned-on and turned-off rapidly between 0 and
50 mA, settling times of 450 and 695 ns were obtained, respectively. The voltage overshoots of 87 mV
and 38 mV were achieved for the turn-on and turn-off cases, respectively. Figure 11b shows the load
transient responses with an input supply voltage of 2.7 V. The settling time is slightly enhanced to 415
and 615 ns for the turn-on and turn-off cases, respectively, due to the increased quiescent current of
the error amplifier. The proposed LDO has a faster settling time compared to other works due to the
proposed AFCFC.
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The measured performances and comparisons of the previous-reported OCL-LDOs are
summarized in Table 1. The figure-of-merit (F.o.M.) for the OCL-LDO in [12] is chosen for transient
performance comparison. The F.o.M. is given as:

F.o.M. =
Con−chip

CL,max
· ∆Vout,max

Vout
·

IQ

Iout,max
· 10(PSR[dB]/20), (11)

where CL,max, ∆Vout,max, IQ, and Iout,max are the maximum load capacitor, maximum voltage overshoot,
quiescent current, and maximum output current of LDO, respectively. The smaller F.o.M. shows the
better performance.

5. Conclusions

An active-feedback and current-reuse feedforward compensation (AFCFC) for output
capacitor-less LDO using 0.13-µm CMOS technology has been presented. The stability of the proposed
LDO was analyzed using pole-zero plots, and it was confirmed by simulation results that the stability
was ensured regardless of the load condition. The proposed frequency compensation allows the use of
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a small on-chip compensation capacitor and extends gain-bandwidth product for LDO. The fabricated
LDO has high loop gain due to the three-stage configuration, thus the LDO has good regulation
accuracies. The proposed LDO also has high gain-bandwidth product with low quiescent current and
fast transient performance. The LDO with proposed AFCFC achieves a settling time of 450 ns with
maximum load capacitor of 100 pF. The proposed LDO consumes a low quiescent current of 65.8 µA.
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