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Abstract: Short-term load forecasting plays an indispensable role in electric power systems, which is
not only an extremely challenging task but also a concerning issue for all society due to complex
nonlinearity characteristics. However, most previous combined forecasting models were based on
optimizing weight coefficients to develop a linear combined forecasting model, while ignoring that
the linear combined model only considers the contribution of the linear terms to improving the
model’s performance, which will lead to poor forecasting results because of the significance of the
neglected and potential nonlinear terms. In this paper, a novel nonlinear combined forecasting
system, which consists of three modules (improved data pre-processing module, forecasting module
and the evaluation module) is developed for short-term load forecasting. Different from the simple
data pre-processing of most previous studies, the improved data pre-processing module based
on longitudinal data selection is successfully developed in this system, which further improves
the effectiveness of data pre-processing and then enhances the final forecasting performance.
Furthermore, the modified support vector machine is developed to integrate all the individual
predictors and obtain the final prediction, which successfully overcomes the upper drawbacks of
the linear combined model. Moreover, the evaluation module is incorporated to perform a scientific
evaluation for the developed system. The half-hourly electrical load data from New South Wales are
employed to verify the effectiveness of the developed forecasting system, and the results reveal that
the developed nonlinear forecasting system can be employed in the dispatching and planning for
smart grids.

Keywords: short-term load forecasting; nonlinear forecasting; forecasting performance; combined
model

1. Introduction

Electrical load forecasting plays a pivotal role in electrical systems [1]. High-precision forecasting
models can significantly improve power system management and provide effective information
for economic operators [2]. If the forecasting error were to decrease by 1%, the operating costs
would decrease by 10 million pounds [3]. However, inaccurate forecasting results can result in
huge losses for electric power companies. Overestimated forecasts lead to extra cost production,
while underestimated forecasts lead to issues in supplying sufficient electricity, which could in turn
result in large power system losses [4]. Many severe blackout events have occurred that have deeply
affected social production and people’s lives. For example, on 14 August 2003, the U.S.–Canada power
grid suffered a serious blackout event. This accident affected approximately 50 million people and
generated huge losses amounting to billions of dollars [5,6]. Furthermore, Hunan Province, China in
2008, Europe in 2006 and India in 2012 were affected by blackout events [7]. Clearly, if an effective
forecasting model were in place to provide an early warning prior to such events, timely measures
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could be taken to prevent their occurrence. However, electrical systems are affected by various factors,
such as country policies, population growth and the social environment [8]. Therefore, the development
of an accurate, simple, and robust forecasting model is meaningful for load forecasting.

In recent years, several methods have been developed to decrease electrical load prediction
error. These methods can be broadly categorized into two groups, namely traditional and intelligent
forecasting methods [9]. Traditional forecasting methods are widely used in load forecasting because
they are simple to apply. These methods include regression models [10,11], the grey forecasting model
(GM) [12], autoregressive moving average (ARMA) model [13], the autoregressive integrated moving
average (ARIMA) model [14], the Kalman filtering (KF) method [15], etc. However, traditional forecasting
methods cannot achieve sufficient accuracy for nonlinear load series [9].

Intelligent forecasting methods have been applied to improve model performance in nonlinear
time series [16–18]. Many intelligent methods have been used to load time series because they can
effectively solve complicated processes [19]. Moreover, intelligent methods are regarded as powerful
tools for load forecasting problems owing to their accurate and robust forecasting levels [20]. With the
improvement in intellectual algorithms, several intelligent prediction methods have been employed in
power load prediction, such as fuzzy logic [21], artificial neural network (ANN) [22,23] and support
vector machines (SVM) [24,25].

All these single forecasting models cannot achieve high precision on all occasions, because each
model exhibits its own advantages and disadvantages [26]. To eliminate the weaknesses that are
inhered in single models, many combined forecasting models have been proposed that are able to
achieve desirable forecasting performance, which are regarded as the research direction for obtaining
effective performance [27,28]. More specifically, the combined forecasting methods, as first noted
by Bates and Granger [29], are developed to improve the forecasting performance by combining
the advantages of each models. In recent years, different types of individual models have been
integrated into load forecasting to decrease forecasting error. For example, Wang et al. [30] applied
adaptive particle swarm optimization (PSO) to obtain the weight coefficients of a combined model
based on the seasonal ARIMA, seasonal exponential smoothing and the weighted SVM in power
load prediction. Similarly, Xiao et al. [31] developed a combined model that integrated several neural
networks, incorporating the back propagation neural network (BPNN), radial basis function (RBF),
generalized regression neural network (GRNN) and genetic-algorithm-optimized back propagation
neural network (GABPNN) into load forecasting. Zhao et al. [32] proposed a novel combined model
based on a high-order Markov chain to predict power consumption. Xiao et al. [33] developed a
combined forecasting model for load forecasting, which employed an optimization method to obtain
the weights of each individual model. Moreover, from the above literatures, it can be concluded that
combined models exhibit preferable predictive performance compared to single models. Generally,
the above-mentioned combined forecasting models have integrated individual models by means
of linear combinations, denoted as linear combined model, which also cannot always achieve the
promising forecasting results.

To the best of our knowledge, most previous studies proposed linear combined model to forecast
electrical power load, which can enhance the forecasting effectiveness to some extent. However,
there are still many defects in linear combined model which can be summarized: (1) The linear
combined model only takes the linear terms into account with a fixed weight, ignoring the significance
of the potential nonlinear term, which may cause decline of forecasting accuracy; (2) The linear
combined model can lead to poor forecasting results when there is a strong nonlinear relationship
between the individual predictor and final results.

With the above-mentioned analysis considered, the nonlinear combined method can be adapted
to obtain the better performance than linear combined models. Since the middle of the 1990s, the SVM
model has been widely used in many fields, such as vessel traffic flow forecasting [34], air quality
early-warning [35], electrical load forecasting [6], etc. Especially, in the fields of electrical load
forecasting, Hong et al. [36–38] developed a series of SVM-based model that integrates some advanced
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optimization algorithm, which obtains better forecasting performance than other compared models.
Inspired by the outstanding studies of Hong et al., the authors find that the SVM has superiority in
nonlinear time series forecasting and is powerful and simply implemented in application. Therefore,
the modified SVM model is developed, which employs the advanced optimization algorithm to
determine the parameters for further improving the forecasting performance. More specifically,
the modified SVM model is employed as a nonlinear combined method to combine forecasters.

Therefore, with the limitations and strengths discussed above, a novel nonlinear combined
forecasting system, based on improved data pre-processing module, the forecasting module, and the
evaluation module, is developed in this study. More specifically, the data preprocessing module
improved by longitudinal data selection is incorporated in the developed combined forecasting
system to extract and identify the main feature of electrical power load data, which further
enhance the effectiveness of data pre-processing and then enhance the final forecasting performance;
the forecasting module, including individual forecasting models (BPNN, firefly-algorithm-optimized
back propagation neural network (FABPNN), Elman neural network (ENN) and wavelet neural
network (WNN)) and the combined model construction, performs multi-step forecasting for electrical
power load with an effective forecasting performance, which can provide the basic information for
scientific operations of electrical power system. More specifically, the modified support vector machine
is developed to integrate all the individual predictors and obtain the final prediction, which successfully
overcomes the upper drawbacks of linear combined model. Furthermore, the comprehensive
evaluation module is an integral part of a complete forecasting system, which can verify the forecasting
effectiveness from typical evaluation metric and statistical perspective. In summary, the developed
nonlinear combined model takes full advantage of each components and ultimately achieves final
success in electrical load forecasting.

The major contributions of this paper are as follows:

(1) In this study, we develop a new nonlinear combined forecasting system that can integrate the
merits of individual forecasting models to achieve higher forecasting accuracy and stability.
More specifically, the improved data pre-processing module based on longitudinal data selection
is successfully proposed, which further enhance the effectiveness of data pre-processing and
then improve the final forecasting performance. Moreover, the modified support vector
machine is developed to integrate all the individual predictors and obtain the final prediction,
which successfully overcomes the upper drawbacks of linear combined model.

(2) The proposed combined forecasting system aims to achieve effective performance in
multi-step electrical load forecasting. Multi-step forecasting can effectively capture the dynamic
behavior of electrical loads in the future, which is more beneficial to power systems than one-step
forecasting. Thus, this study builds a combined forecasting system to achieve accurate results
for multi-step electrical load forecasting, which will provide better basic for power system
administration, load dispatch and energy transfer scheduling.

(3) The superiority of the proposed nonlinear combined forecasting system is validated well in a
real electrical power market. The novel nonlinear combined forecasting displays its superiority
compared with the individual forecasting model, and the prediction validity of the developed
combined forecasting system demonstrates its superiority in electrical load forecasting compared
with linear combined models and the benchmark model (ARIMA) as well. Therefore, the new
developed forecasting system can be widely used in engineering application.

(4) A more comprehensive evaluation is performed for further verifying the forecasting system’s
effectiveness and significance. The results of Diebold–Mariano (DM) test and forecasting
effectiveness reveal that the developed nonlinear combined forecasting system performs a higher
degree of prediction accuracy than other comparison models and that it is significantly different
from traditional forecasting models in terms of the level of prediction accuracy.

(5) An insightful discussion is provided in this paper to further verify the forecasting
effectiveness of the proposed system. Four discussions are performed, which include the
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significance of the proposed forecasting system, the comparison with linear combined models,
the superiority of the optimization algorithm and the developed forecasting system’s stability,
which bridge the knowledge gap for the relevant studies, and provide more valuable analysis
and information for electrical load forecasting.

The remainder of this paper is structured as follows. Section 2 illustrates the framework of
the developed combined system. In Section 3, complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN), individual forecasting models (the BPNN, FABPNN, ENN and
WNN), the method of constructing the combined model and certain forecasting evaluation criteria
are provided. Section 4 describes the results of three experiments. Further discussion is described in
Section 5, and finally, a conclusion is provided in Section 6.

2. Framework of Proposed Nonlinear Combined Forecasting System

A new nonlinear combined forecasting system is developed that exhibits greater effectiveness in
electrical load forecasting. It addresses the drawbacks of the individual models, which cannot always
be optimal in any given case; in addition, it considers the contribution of nonlinear terms of individual
forecasting models to improving the final forecasting performance compared with the linear combined
model. The basic framework of the developed combined forecasting system is outlined as follows.

© Considering that uncertainty and randomness exist in raw electrical load series, the data
pre-processing module improved by longitudinal data selection is employed during the first
stage of electrical load forecasting to extract the primary features of the raw electrical load series.

© Four ANNs, namely BPNN, FABPNN, ENN and WNN, which are regarded as the individual
forecasting models, are constructed to predict the filtered load time series. Then the combination
forecasting is constructed based on modified SVM, which is used to combine the forecasting
results obtained by the BPNN, FABPNN, ENN and WNN.

© The prediction performance of the developed forecasting system is evaluated by employing
typical accurate metrics, the Diebold–Mariano (DM) test and forecasting effectiveness.

© Multi-step forecasting is applied in order to further test the forecasting abilities of the proposed
combined forecasting system. Multi-step forecasting is an extrapolation process for realizing
forecasting values by means of historical data and previous forecasting values. The multi-step
forecasting process is as follows:

(a) 1-step forecasting: on the basis of the historical data {v(1), v(2), v(3), . . . , v(M)},
the predicted data v̂(M + 1) is acquired, where M is the sampled time of the data sequence.

(b) 2-step forecasting: on the basis of the historical data {v(2), v(3), v(4), . . . , v(M)} and
previously predicted value v̂(M + 1), the predicted data v̂(M + 2) is acquired.

(c) 3-step forecasting: on the basis of the historical data {v(3), v(4), . . . , v(M)} and previously
predicted value {v̂(M + 1), v̂(M + 2)}, the predicted data v̂(M + 3) is acquired.

3. Proposed Combined Forecasting System

To obtain high-precision forecasting results, the developed nonlinear combined forecasting system
includes three modules: data pre-processing, forecasting and evaluation module. Figure 1 depicts the
flowchart of the proposed forecasting system. The main procedure how the developed forecasting
system is working in electrical load forecasting mainly include: first, the improved data pre-processing
module based on longitudinal data selection is successfully developed to eliminate the negative effects
of noise, which seems to be a promising technique to extract and identify the main feature of electrical
power load data, as shown in Figure 1 part I; second, the structure of input-output for modeling is
shown in Figure 1 part II; third, four individual forecasters are provided to forecast future changes of
electrical load data, as shown in Figure 1 part III; and then, as shown in Figure 1 part IV, the modified
SVM model is developed as a nonlinear combined method to combine all forecasters and obtain the
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final forecasting result; Finally, as shown in Figure 1 part V, the comprehensive evaluation module is
used to verify the forecasting effectiveness from typical evaluation metric and statistical perspective.
The details of each module are presented as follows.
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3.1. Module 1: Improved Data Pre-Processing Module

Huang et al. [39] developed the empirical mode decomposition (EMD) technique, which can
be employed to resolve the original sequences into intrinsic mode functions (IMFs). EMD can
analyze complex data, such as non-stationary data, and many studies [40–42] successfully used
EMD method in electrical load forecasting. However, it exhibits the defect of mode mixing, then the
ensemble empirical mode decomposition (EEMD) method [43] has been developed to solve this defect.
However, EEMD introduces two additional difficulties: residual noise exists in the reconstructed signal
and the quantities of IMFs are likely to differ with the same decomposition. To address the mode
mixing problem while maintaining the capacity to solve these additional difficulties, CEEMDAN was
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developed [44], and its main steps are illustrated in Figure 2 part A. Compared to EEMD, the main
distinction of CEEMDAN is the introduction of adaptive noise. Therefore, this work employs the
CEEMDN algorithm for data pre-processing. Several studies [45,46] have confirmed the successful
application of CEEMDAN in the component filtering field. However, most previous studies only
focused on conducting a simple data pre-processing, while ignoring the significance of data selection,
which leaves much to be desired. Therefore, the improved data pre-processing module based on
longitudinal data selection is successfully proposed, which further enhance the effectiveness of data
pre-processing and then improve the final forecasting performance.
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3.2. Module 2: Forecasting Module

3.2.1. Individual Forecasting Models

A variety of individual models can be used to obtain effective load forecasting performance.
In this study, four widely used ANNs, namely the BPNN, FABPNN, ENN and WNN, are selected for
the electrical load forecasting. The topological structure of the individual neural networks is depicted
in Figure 2 part B.

Definition 1. BPNN. There are two significant parameters in BPNN: weight and threshold. Suppose wab
implies the weight connecting hidden node a and output node b, ubt represents the weight connecting input node
t and hidden node b, and θ̂b and θa display the threshold value of hidden node b and output node a, respectively.
Then the output of hidden b: Hb can be calculated as:

Hb = F(
T

∑
t=1

ubt It + θ̂b) (1)

where It is the input data of input node t, T denotes the input nodes’ number, and F implies the S activation
function which can be displayed as:

F(t) =
1

1 + e−t (2)
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Then the output layer calculates the sum through:

Oa =
B

∑
b=1

wab Hb + θa (3)

where B represents the hidden nodes’ number.

Definition 2. FABPNN. The FABPNN is a neural network model that mainly consists of two parts:
firefly algorithm (FA) optimization and BPNN. More specifically, the thresholds and the weight values of
BPNN are optimized by FA method. In addition, the detail description of FA algorithm can be found in [36].

Definition 3. ENN. The ENN model possess four layers: the input layer, the hidden layer, the context layer,
and the output layer. Suppose the input data of neurons at time t is Iit (i = 1, 2, . . . , r), the context layer neurons
cvt (v = 1, 2, . . . , n) and netvt (v = 1, 2, . . . , n) at time t.

The hidden layer neurons Hvt (v = 1, 2, . . . , n) at time t can be displayed as:

Hvt(l) = F(netvt(l)) = F(
r

∑
i=1

wiv Iit(l) +
n

∑
v=1

svcvt(l)) (4)

where F is the hidden layer activation function which can be obtained by Equation (2), wiv represents the weights
connecting input layer node i and the hidden layer node v, and sv is the weight between hidden layer node v and
the context layer.

The output layer Ot+1 is represented as follows:

Ot+1(l) = f (
n

∑
v=1

kv Hvt(l)) (5)

where kv is the weight between hidden layer node v and the output layer and f is an identity map as the
activation function.

Definition 4. WNN. Suppose the input data and output data in WNN are xd (d = 1, 2, . . . , g) and
yj (j = 1, 2, . . . , l), separately. In addition, the output of hidden layer H is represented by:

H(d) = Hd(
∑

g
i=1 widxd − qd

ad
) (6)

where Hd is the wavelet basis function, wid is the weights connecting the input layer and hidden layer, qd is the
translation factor of the wavelet basis function, ad represents the scaling factor of the wavelet basis function.
Then the output is displayed as:

o(j) =
p

∑
i=1

wijH(i), j = 1, 2, . . . , l (7)

where p represents the number of hidden node, and wij implies the weights connecting the output layer and
hidden layer.
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3.2.2. Combined Forecasting Model

The combination model is regarded as a promising method for acquiring prediction validity in
load forecasting and can incorporate the advantages of the individual models.

The Theory of Combined Forecasting

Combined forecasting methods can be categorized as linear and nonlinear combined forecasting.
The traditional linear combined method is represented as follows:

f =
d

∑
t=1

wt ft (8)

where wt denotes the weight coefficient of the t-th prediction method, ft is the forecasting result
from the t-th prediction method, d is the quantity of single models, and f is the prediction result of
the combined method. However, the linear prediction model offers limited applications, because it
merely determines each model’s influence, resulting in poor forecasting accuracy. The nonlinear
combined method can successfully solve this problem of the linear combined model, as well as reducing
uncertainty and taking full advantage of the information of each forecasting method. Meanwhile,
it avoids computing the weight of the linear combined method. The nonlinear combined model is
represented as follows:

f = ϕ( f1, f2, . . . , fd) (9)

where ft implies the prediction results of the t-th forecasting method, ϕ( ) is the nonlinear combined
forecasting function, and f is the forecasted value of the nonlinear combined model.

Considering the strong nonlinear function mapping abilities of neural networks, we can
implement an electrical load combination prediction method according to a neural network. However,
owing to the generalization ability limitation, a neural network easily becomes trapped in the local
optimal solution and cannot make full use of information by selecting a small sample [47]. Compared to
traditional neural networks, the SVM seeks structural risk minimization and its two convex properties
guarantee that a global optimal solution can be obtained. Therefore, the modified SVM is developed
as a nonlinear combined method to combine all forecasters.

Support Vector Machine (SVM)

The SVM, developed by Vapnik [48,49], exhibits extensive application in nonlinear regression
estimation, which can be widely employed in the forecasting field [35]. Moreover, the SVM has
better performance in terms of electricity load forecasting [50–52]. According to Vapnik’s theory,
SVM equations are mainly expressed as follows.

Suppose pi means the input vector, pi ∈ Rn, and zi implies the output vector, zi ∈ R.
The estimation expression is represented as:

f (p) =< w, τ(p) > +q (10)

where τ(p) is nonlinear mapping that causes the input space p to be high-dimensional space,
w denotes the estimated weight vectors, and q represents a scalar. The values of w and q can be

obtained by means of a quadratic programming problem:

min
ω,q,η

1
2 ‖ w2 ‖ +C

N
∑

i=1
(ηi + η∗i )

s.t.

{
|zi− < w, τ(pi) > −q|≤ ε + ηi

ηi, η∗i ≥ 0, i = 1, 2, . . . , N

(11)
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where C is the error penalty coefficient, N is the quantity of factors in the training sequence of training,
ηi and η∗i are the relaxation factor, and ε represents the admissible error. For nonlinear regression
cases, we can convert them into linear regression cases using a kernel function k(pi, pj). The nonlinear
mapping can be obtained by:

f (p) =
N

∑
i=1

(σi − σ∗i )k(p, pi) + q (12)

where σi and σ∗i are the Lagrange multipliers. The RBF kernel function is used in this paper, and can
be written as follows:

k(pi, pj) = exp(−γ‖pi − pj‖2) (13)

where γ denotes the kernel parameter, and pi and pj are two vectors in the input space. In this paper,
two important parameters (γ, C) influence the prediction validity. The MFO algorithm is employed to
determine the parameters.

Moth-Flame Optimization (MFO)

Mirjalili [53] provided a new metaheuristic algorithm known as MFO, a nature-inspired
optimization method, by modeling the natural behavior of moths in a mathematical form. A specific
presentation of this optimization method can be found in [53,54], and the main procedures are
presented as follows.

Step 1 Parameter determination.

The parameters of the MFO method mainly include the quantity of moths, flames, and variables,
the maximum number of iterations, and the lower and upper bounds of variables.

Step 2 Position initialization.

Equations (14) and (15) are introduced to express the position of moths and flames separately:

U =


u1,1 u1,2 · · · u1,d
u2,1 u2,2 · · · u2,d

...
...

...
...

uk,1 uk,2 · · · uk,d

 (14)

V =


V1,1 V1,2 · · · V1,d
V2,1 V2,2 · · · V2,d

...
...

...
...

Vk,1 Vk,2 · · · Vk,d

 (15)

where k represents the quantity of moths, and d is the quantity of variables.
Equation (16) calculates the initialization of U and V :

u·h or V·h = (Ubh − Lbh)× rand( ) + Lbh (16)

where u.h and V.h denote the values of U and V separately, the upper and lower bounds of variables
are represented by Ub and Lb, respectively, and rand is a random number in [0, 1].
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Step 3 Selection of fitness values.

For the flames, there is a matrix OV , as shown in Equation (17), which can be used to obtain the
corresponding fitness values:

OV =


OV1

OV2
...

OVk

 (17)

where k implies the moths’ number.

Step 4 Iteration optimization.

A logarithmic spiral is selected as the update formula for the MFO method, as follows:

Uc = S(Uc, Vh) = Gc · ebr · cos(2πr) + Vh (18)

Gc can be determined by:
Gc = |Vh −Uc| (19)

where Gc represents the distance between the h-th flame and c-th moth, S implies the spiral function,
b is equivalent to a constant for determining the logarithmic spiral form, and the value of r is randomly
within the range of [−1, 1]. Moreover, the parameter r indicates how close the next position is to the
flame; when the position is farthest, r = 1, while r = −1 implies the closest.

However, the method of updating the position defined by Equation (18) causes the MFO algorithm
to converge to the local optimal solution quickly. To avoid converging to local optima, every moth can
only refresh its location based on one of the flames, following Equation (18). The flames are sorted
according to fitness values for each iteration and at the back of renovation. Next, the moths renew
their corresponding flame locations; however, the location renovating of moths of approximately k
various positions impairs the exploitation of optimal solutions. An adaptive mechanism is therefore
proposed to address this problem:

f lame no = round
(

W − s× W − 1
itermax

)
(20)

where W implies the maximum quantity of flames, s indicates the number of current iterations,
and itermax is the maximum number of iterations.

Step 5 Optimal flames selection.

If the flame is not determined to be superior to the optimal flame of the former iteration,
the flame’s position will be updated, and the most appropriate flame is re-decided. When the
iteration standard is reached, the optima are regarded as the most suitable approximation of the
optimum. The pseudo-code of MFO is described in Algorithm 1:
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Algorithm 1 Moth-Flame Optimization Algorithm.
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14  END IF 

15  FOR EACH = 1 :c k  DO 

16   FOR EACH = 1 :h d DO 

17    /* Update r */ 

18    Determine G with respect to the moth 
c h cG V= −U   

19    /* Update ( , )U c h  in relation to the matching moth */ 

20    ( , )=c c hU S U V , ( , ) (2 )π= ⋅ ⋅ +br
c h c hS U V G e cos r V   

21   END FOR 

22  END FOR 

23 END WHILE 

24 RETURN bestx  
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Construction of the Final Forecasting Result

The construction of final forecasting result is the important step in the combined forecasting
model. To overcome the above-mentioned drawbacks of linear combined model, the modified support
vector machine based on MFO algorithm is developed in this paper, which is employed as a nonlinear
combined method to search for the best function to combine each individual predictor. More specifically,
the obtained function is performed to aggregate all forecasting results of each predictor in the previous
steps as a final forecasting result for the original electric power load data. In other words, based on
the previous work, the forecasting results obtained from each individual predictor are input into the
modified SVM model to predict future electrical load data, which can achieve desirable forecasting
performance in engineering applications.

3.3. Module 3: Evaluation

It is vital to evaluate the forecasting system’s performance by employing appropriate
metrics. To evaluate the forecasting accuracy, several evaluation criteria are applied in this study,
including average error (AE), mean absolute error (MAE), mean square error (MSE), mean absolute
percentage error (MAPE) and ζ INDEX . Furthermore, for further verification of the model’s effectiveness
and significance, the Diebold-Mariano (DM) test and forecasting effectiveness are performed in
this work.

3.3.1. Forecasting System Evaluation Criteria

Several evaluation criteria are applied in this study, as shown in Table 1, where Oi is the observed
value, F̂i means the predictive value and T represents the number of prediction values. In addition,
the metric ζ INDEX is employed to compare the forecasting effectiveness of the proposed combined
model with other models.

Table 1. Evaluation rules.

Metric Definition Equation

AE The average error of T forecasting results 1
T ∑T

i=1 (Oi − F̂i)
MAE The mean error absolute of T forecasting results 1

T ∑T
i=1
∣∣Oi − F̂i

∣∣
MSE The mean square error of T forecasting results 1

T ∑T
i=1 (Oi − F̂i)

2

MAPE (%) The mean absolute percentage error 1
T ∑T

i=1

∣∣∣ (Oi−F̂i)
Oi

∣∣∣× 100%

ζ INDEX
1 (%) The decreased relative error of the index among different models

INDEXmodeli−INDEXmodelj
INDEXmodeli

× 100%

1 In this paper, the INDEX includes MAE, MSE, MAPE.

3.3.2. DM Test

The DM test [55] is applied in order to contradistinguish the predictive validity of the proposed
forecasting system from others. The details are as follows:

Assume that the real values are {yt; t = 1, . . . , n+m}, and the predictions of the compared models
are, respectively: {ŷ(a)

t ; t = 1, . . . , n + m} {ŷ(b)t ; t = 1, . . . , n + m}. Then, the prediction errors of these
two models are:

e(a)
n+l = yn+l − ŷ(a)

n+l , l = 1, 2, . . . , m. (21)

e(b)n+l = yn+l − ŷ(b)n+l , l = 1, 2, . . . , m. (22)

The loss function F(e(j)
n+g) j = a, b is used for evaluating the forecasting accuracy of the compared

models. Two popular loss functions reveal the following:
Square error loss:

F
(

e(j)
n+l

)
=
(

e(j)
n+l

)2
(23)
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Absolute deviation loss:
F
(

e(j)
n+l

)
=
∣∣∣e(j)

n+l

∣∣∣ (24)

The DM test statistic values are defined as:

DM =

m
∑

l=1

(
F
(

e(a)
n+l

)
− F

(
e(b)n+l

))
/m

√
S2/m

s2 (25)

where S2 is a variance estimator of dl = F(e(a)
n+l)− F(e(b)n+l). The hypothesis testing is:

H0 : E(dl) = 0 ∀t (26)

H1 : E(dl) 6= 0 (27)

The test statistics of DM gradually follow a standardized normal distribution. When the value of
DM satisfies a criterion, which is represented by Equation (28), the null hypothesis will be refused:

|DM| > zα/2 (28)

where zα/2 expresses the z-value from the standardized normal table and the level of significance is α.

3.3.3. Forecasting Effectiveness

This work also introduces the forecasting effectiveness to measure the prediction veracity of the
proposed forecasting system. Further details regarding forecasting effectiveness can be found in [56].

Definition 5. Assume that the actual values are {Bm; m = 1, . . . , M}, forecast values are {B̂m; m = 1, . . . , M},
and forecast errors are em = Bm − B̂m. Then, the forecasting accuracy is calculated by:

Am =


1−

∣∣∣ em
Bm

∣∣∣, 0 ≤
∣∣∣ em

Bm

∣∣∣ ≤ 1

0,
∣∣∣ em

Bm

∣∣∣ > 1
(29)

Definition 6. The kth-order forecasting effectiveness unit can be calculated as:

nk =
M

∑
m=1

Qm A k
m (30)

where k represents a positive integer, Qm expresses the discontinuous probability distribution at time m,

and
M
∑

m=1
Qm = 1, Qm > 0. Moreover, when the priori information of the discrete probability distribution cannot

be known, we define Qm as equal to 1/M.

Definition 7. The kth-order forecasting effectiveness can be represented as:

E
(

n1, n2, · · · , nk
)

(31)

where E indicates a continuous function of a certain k unit. In particular, when E(x) = x, the formula
for one-order forecasting effectiveness can be expressed as E(n1) = n1; when E(x, y) = x

(
1−

√
y− x2

)
,

the formula for two-order forecasting effectiveness can be expressed as E(n1, n2) = n1(1−
√

n2 − (n1)
2
).
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4. Experimental Study

All experiments are conducted in MATLAB R2015a on Windows 10 with a 2.60 GHz Intel Core
i7-6700HQ CPU, 64-bit and 8 GB RAM. The experimental parameters are displayed in Table 2.

Table 2. Experimental parameter values.

Model Experimental Parameter Default Value

CEEMDAN

Noise standard deviation 0.2
The number of realizations 500

Maximum number of sifting iterations 5000
The removed intrinsic mode functions IMF1

BPNN

Learning velocity 0.1
Maximum number of training iterations 1000

Training precision requirement 0.00004
Neuron number in the input layer 4

Neuron number in the hidden layer 9
Neuron number in the output layer 1

FABPNN

FA number of fireflies 30
Maximum number of FA iterations 500

FA randomness 0–1 0.5
FA minimum value of beta 0.2
FA absorption coefficient 1

BPNN maximum number of iteration times 200
BPNN convergence value 0.00001

BPNN learning rate 0.1
Neuron number in the input layer 4

Neuron number in the hidden layer 9
Neuron number in the output layer 1

ENN

Number of iterations 1000
Neuron number in the input layer 4

Neuron number in the hidden layer 9
Neuron number in the output layer 1

WNN

Number of iterations 100
Learning rate 0.01

Neuron number in the input layer 4
Neuron number in the hidden layer 9
Neuron number in the output layer 1

MFO

The number of search agents 30
Maximum number of iterations 300
The lower bounds of variables 0.01
The upper bounds of variables 100

The number of variables 2

SVM
The number of the input layer 4

The number of the output layer 1
The kernel function’s name RBF

4.1. Data Selection

In this study, half an hour of power load data from New South Wales in February and June
from 2009 to 2011 are selected to assess the validity of the proposed combined forecasting system,
as indicated in Table 3. To enhance the forecasting performance, a longitudinal data selection is
accepted to preprocessing the raw data. Each series of raw load datasets is divided into seven
subclasses (from Monday to Sunday), based on a designated date of one week, to ensure that the
inherent characteristics of each subset are the same. Figure 3 demonstrates the longitudinal data
selection process. For instance, there are 12 Mondays (48 data points per day) in February from 2009 to
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2011, which are selected as one subset. For each subset, we select the last one day as the testing set and
the other days as the training set. The training and testing data structures of the proposed combined
forecasting system are illustrated in Figure 1 part II.

Table 3. Statistical values of data used in this study.

Week Month
Mean Median Std. Minimum Maximum

(MW) (MW) (MW) (MW) (MW)

MON.
February 9334.305 9871.095 1520.628 6649.840 11,078.940

June 9720.624 9952.190 1409.115 7157.530 11,937.500

TUE.
February 8589.615 9019.185 1073.913 6488.980 9683.760

June 9920.198 10,129.775 1238.084 7453.350 11,996.360

WED.
February 8649.826 9031.205 1111.026 6452.950 9786.950

June 9682.923 9848.785 1189.045 7228.830 11,713.400

THU.
February 8864.992 9374.700 1255.005 6487.110 10,273.970

June 9603.785 9743.965 1206.705 7140.740 11,602.130

FRI.
February 8870.044 9170.695 1237.710 6516.410 10,200.400

June 9735.629 9894.510 1182.482 7327.950 11,451.680

SAT.
February 8540.942 8979.640 1133.162 6554.520 9928.520

June 9124.386 9226.755 982.705 7268.430 10,864.100

SUN.
February 8093.038 8554.020 1001.747 6391.530 9390.940

June 8772.331 8663.305 1116.673 6977.150 10,926.030Energies 2018, 11, x FOR PEER REVIEW  16 of 35 
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4.2. Experiment Setup

To test the performance of the developed nonlinear combined forecasting system, three experiments
are conducted in this study. The electrical load data collected from New South Wales in February
from 2009 to 2011 are used as Experiment I in this study. Meanwhile, due to the different electrical
load datasets with different characteristics, the datasets of June are also used as another case study,
called Experiment II, which is employed to further test the forecasting superiority of the proposed
combined forecasting system. In Experiment I-II, the developed combined forecasting system is
compared with other individual forecasting models, namely, BPNN, FABPNN, ENN and WNN. If the
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proposed forecasting system performs better than other individual models in different months, we can
safely conclude that the proposed system has better forecasting performance and universal applicability
for different datasets with different characteristics; in other words, the proposed combined forecasting
system based on improved data preprocessing and modified SVM can achieve better forecasting
performance than other comparison models in different environments. Moreover, the benchmark
model ARIMA was employed to evaluate and compare the developed combined forecasting system in
Experiment III based on the electrical load data of February and June.

4.2.1. Experiment I: The Case of February

In this experiment, to test the forecasting performance of the novel nonlinear forecasting system
by improved data preprocessing and modified SVM, the 30-min electrical data from Monday to Sunday
in February are employed. More specifically, four performance metrics, significant improvements
for combined model compared with the forecasting results of other models and statistical MAPE
values are used to evaluate the foresting accuracy and stability of the proposed forecasting system.
The multi-step prediction results of the developed combined forecasting system and single models are
displayed in Tables 4–6, and Figures 4 and 5.

(a) Table 4 shows the prediction capability of the combined forecasting system and four single models
in the 1-step to 3-step forecasting. Taking Fridays’ forecasting results as an example: in 1-step
forecasting, it is determined that the proposed nonlinear combined forecasting system achieves
superior results compared to other models for different forecasting horizons. The combined
forecasting system exhibits minimum forecasting errors, with AE, MAE, MSE, and MAPE values
of −3.7850, 41.5131, 2979.40, and 0.4739%, respectively. The forecasting ability of BPNN is
ranked second, while WNN exhibits the worst forecasting performance. In 2-step forecasting,
the combined forecasting system achieves the most exact prediction performance, with a
MAPE value of 0.8163%, while BPNN is the second most accurate model, and WNN is the
worst. For 3-step forecasting, the combined forecasting system still achieves the most superior
performance. The 1-step forecasting exhibits superior forecasting accuracy for the same model
compared with multi-step prediction.

(b) Table 5 presents the detailed results of multi-step improvements between the developed combined
forecasting system and other prediction models. Taking Fridays’ results: in the 1-step predictions,
the combined forecasting system decreases the MAE values by 57.4973%, 58.9966%, 61.2416%
and 71.2267%, the MSE values by 82.4779%, 83.4804%, 84.4607% and 91.0522%, and the MAPE
values by 57.6094%, 59.3157%, 61.7676% and 72.2005%, based on BPNN, FABPNN, ENN and
WNN, respectively. In the 2-step and 3-step predictions, the combined forecasting system still
decreases the MAE, MSE and MAPE values in comparison with other models.

(c) Table 6 shows the statistical values of MAPE (%). The developed combined forecasting system
obtains lower minimum and maximum MAPE values among the four individual models for
1-step to 3-step prediction. Furthermore, the developed forecasting system achieves minimum
standard deviation (Std.) values for MAPE compared to the individual models.

(d) Figure 4 displays the average values of AE, MAE, MSE and MAPE for 1-step, 2-step, and 3-step
forecasting. To analyze the detailed forecasting results, the 1-step forecasting results for Monday
are depicted in Figure 5. It can be observed that the prediction validity of the proposed
nonlinear combined forecasting system is more precise than that of the single models. Moreover,
the forecasting values of the developed forecasting system are more approximate to the real data.
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Table 4. Forecasting results obtained using February data from New South Wales.

Week Model
AE MAE MSE MAPE

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MON.

BPNN 1.3639 −10.7514 −14.7858 76.9680 87.3096 126.8697 9493.46 12,421.47 27,525.35 0.8632 0.9558 1.4429
FABPNN 3.7445 −6.6519 −5.2474 76.7589 88.2479 128.2259 9547.03 12,511.88 28,258.78 0.8612 0.9670 1.4564

ENN −1.0044 −13.5185 −15.2619 84.9175 105.2535 152.5501 12,425.12 18,729.96 41,127.41 0.9535 1.1599 1.7416
WNN −0.1408 −25.7658 −26.4372 134.9493 174.9007 236.5244 32,121.24 66,146.46 183,341.01 1.5029 1.9178 2.6471

Combined forecasting system −1.8954 4.8475 −25.3053 42.7547 55.7483 92.0454 2955.29 5066.13 15,392.98 0.4896 0.6125 1.0435

TUE.

BPNN −14.0677 −23.9245 −32.1850 82.8839 104.7622 135.1333 11,424.72 19,811.92 32,025.02 0.9856 1.2580 1.6543
FABPNN −16.8212 −28.3703 −39.8426 87.0675 111.3953 140.6762 12,832.80 22,262.70 34,626.02 1.0341 1.3385 1.7184

ENN −20.6985 −32.9486 −42.9214 104.1221 134.5153 158.6410 17,145.19 30,481.01 45,606.38 1.2659 1.6504 1.9700
WNN −18.6602 −31.9576 −50.3965 132.1093 179.5787 231.9993 32,314.95 95,482.40 228,634.12 1.6168 2.2088 2.8686

Combined forecasting system −3.5775 −3.1009 −1.3271 48.7534 72.6386 109.7521 3697.70 9420.42 21,857.92 0.5921 0.8679 1.3137

WED.

BPNN −17.0143 −31.5453 −35.0435 79.8144 113.2511 144.3384 10,635.37 23,724.32 36,327.29 0.9491 1.3497 1.7504
FABPNN −15.8284 −30.8274 −33.7778 83.1057 113.8130 139.9802 11,747.10 24,310.67 34,389.39 0.9930 1.3608 1.6969

ENN −13.7888 −25.2383 −26.1058 87.7993 117.0281 142.4337 13,134.19 25,093.04 35,466.31 1.0498 1.3961 1.7187
WNN −11.8223 −12.5006 −3.6612 118.3172 160.6506 198.1202 41,894.21 58,325.44 79,324.94 1.4270 1.9408 2.3941

Combined forecasting system −8.1485 −9.1175 −28.6959 49.4339 68.0790 104.9988 4082.45 9029.29 21,231.04 0.5998 0.8124 1.2458

THU.

BPNN −6.3561 −19.6933 −22.5452 104.6001 132.4169 174.4194 17,715.78 32,893.48 47,678.25 1.2009 1.5345 2.0338
FABPNN −8.0497 −22.9996 −23.4411 102.1040 129.9880 166.0143 17,458.21 32,981.15 43,922.02 1.1714 1.5080 1.9394

ENN −14.2674 −30.6256 −29.6502 114.5853 143.5429 171.5193 21,097.11 36,114.88 45,852.66 1.3363 1.6930 2.0229
WNN −33.6208 −53.1476 −63.9543 160.5429 200.8806 247.5782 45,415.21 82,931.44 124,086.68 1.8929 2.3803 2.9301

Combined forecasting system −6.5061 −10.1216 −4.2527 55.5226 80.3931 123.8744 4824.10 12,375.84 24,987.70 0.6553 0.9407 1.4463

FRI.

BPNN −10.2567 −23.5966 −21.2707 97.6717 140.9842 187.9748 17,003.61 37,922.83 61,624.94 1.1179 1.6060 2.1836
FABPNN −14.0009 −28.2144 −28.2492 101.2430 147.2809 198.5211 18,035.56 41,018.75 69,155.70 1.1647 1.6898 2.3062

ENN −12.1384 −27.6435 −22.5750 107.1073 146.7995 190.7033 19,173.26 38,936.81 59,817.36 1.2394 1.7010 2.2384
WNN −28.1042 −47.9970 −52.1578 144.2766 196.5340 258.1345 33,297.40 66,162.33 108,392.63 1.7046 2.3169 3.0409

Combined forecasting system −3.7850 −0.8954 −3.4699 41.5131 71.7784 105.1659 2979.40 10,037.04 22,513.69 0.4739 0.8163 1.1747

SAT.

BPNN −18.3668 −58.8065 −50.1905 83.6567 128.2100 149.5539 13,347.26 30,695.80 42,244.56 0.9949 1.5385 1.8127
FABPNN −18.2990 −58.7480 −52.0260 81.0710 122.2612 142.6670 12,678.25 27,997.98 37,079.79 0.9596 1.4585 1.7135

ENN −8.9057 −33.5612 −33.2007 88.3301 129.8825 159.4560 13,860.60 28,814.81 43,314.43 1.0473 1.5408 1.8951
WNN −76.2241 −103.5840 −110.5893 161.0754 203.1411 247.7138 107,836.75 137,768.64 166,982.05 1.9893 2.5032 3.0492

Combined forecasting system −9.9972 −15.8985 −16.9380 42.2213 60.0048 97.4307 3253.00 7601.39 16,427.04 0.5115 0.7260 1.1988

SUN.

BPNN −19.0006 −41.8885 −63.0577 87.1693 138.3510 146.6729 11,695.38 30,279.09 41,649.76 1.0927 1.7384 1.8840
FABPNN −14.7801 −33.2463 −50.9624 87.4692 134.0810 144.3636 11,198.22 26,233.76 34,582.41 1.0840 1.6733 1.8233

ENN −14.2234 −29.7956 −42.5369 81.0386 123.0542 124.7987 10,251.81 22,741.01 23,536.69 1.0041 1.5374 1.5672
WNN −30.0213 −49.0184 −68.3288 113.8393 164.9003 194.3404 19,452.64 42,417.10 64,463.36 1.4473 2.1072 2.5010

Combined forecasting system −3.1120 3.1278 −17.6043 40.6275 55.6796 74.5055 2549.95 5992.00 10,360.29 0.4988 0.6746 0.9197
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Table 5. Improvement percentages generated by the combined forecasting system from February data.

Week

Combined Forecasting System Combined Forecasting System Combined Forecasting System Combined Forecasting System

vs. BPNN vs. FABPNN vs. ENN vs. WNN

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MON.
ζMAE 44.4513 36.1488 27.4489 44.2999 36.8276 28.2162 49.6514 47.0343 39.6622 68.3179 68.1258 61.0842
ζMSE 68.8703 59.2147 44.0771 69.0449 59.5094 45.5285 76.2152 72.9517 62.5725 90.7996 92.3410 91.6042

ζMAPE 43.2778 35.9101 27.6819 43.1419 36.6539 28.3536 48.6478 47.1907 40.0867 67.4188 68.0597 60.5802

TUE.
ζMAE 41.1787 30.6634 18.7823 44.0051 34.7921 21.9825 53.1767 45.9998 30.8173 63.0962 59.5506 52.6929
ζMSE 67.6343 52.4507 31.7474 71.1856 57.6852 36.8743 78.4330 69.0941 52.0727 88.5573 90.1339 90.4398

ζMAPE 39.9223 31.0096 20.5897 42.7370 35.1567 23.5513 53.2227 47.4119 33.3134 63.3761 60.7058 54.2041

ζMAE 38.0639 39.8867 27.2551 40.5168 40.1834 24.9902 43.6966 41.8268 26.2823 58.2192 57.6229 47.0025
WED. ζMSE 61.6144 61.9408 41.5562 65.2472 62.8587 38.2628 68.9174 64.0167 40.1375 90.2553 84.5191 73.2354

ζMAPE 36.7974 39.8068 28.8274 39.5934 40.2975 26.5832 42.8602 41.8081 27.5157 57.9655 58.1405 47.9638

ζMAE 46.9192 39.2879 28.9790 45.6216 38.1534 25.3833 51.5448 43.9937 27.7782 65.4157 59.9797 49.9655
THU. ζMSE 72.7695 62.3760 47.5910 72.3678 62.4760 43.1089 77.1339 65.7320 45.5044 89.3778 85.0770 79.8627

ζMAPE 45.4345 38.6991 28.8866 44.0607 37.6218 25.4225 50.9610 44.4366 28.5023 65.3818 60.4796 50.6387

FRI.
ζMAE 57.4973 49.0877 44.0532 58.9966 51.2643 47.0253 61.2416 51.1045 44.8537 71.2267 63.4779 59.2593
ζMSE 82.4779 73.5330 63.4666 83.4804 75.5306 67.4449 84.4607 74.2222 62.3626 91.0522 84.8297 79.2295

ζMAPE 57.6094 49.1712 46.2056 59.3157 51.6906 49.0637 61.7676 52.0078 47.5228 72.2005 64.7666 61.3709

SAT.
ζMAE 49.5303 53.1980 34.8525 47.9206 50.9208 31.7076 52.2005 53.8007 38.8981 73.7879 70.4615 60.6680
ζMSE 75.6279 75.2364 61.1144 74.3419 72.8502 55.6981 76.5306 73.6199 62.0749 96.9834 94.4825 90.1624

ζMAPE 48.5887 52.8144 33.8674 46.6971 50.2268 30.0376 51.1612 52.8833 36.7424 74.2879 70.9991 60.6855

SUN.
ζMAE 53.3925 59.7548 49.2029 53.5523 58.4732 48.3903 49.8665 54.7520 40.2994 64.3116 66.2344 61.6624
ζMSE 78.1970 80.2108 75.1252 77.2290 77.1592 70.0417 75.1268 73.6511 55.9824 86.8915 85.8736 83.9284

ζMAPE 54.3518 61.1941 51.1820 53.9817 59.6848 49.5571 50.3214 56.1203 41.3132 65.5337 67.9861 63.2263
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Table 6. Statistical MAPE values of February data from New South Wales.

Week
BPNN FABPNN ENN WNN Combined Forecasting System

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MON.

Minimum 0.8263 0.8868 1.2521 0.8120 0.8529 1.1331 0.8120 0.9274 1.2315 0.9705 1.1373 1.3787 0.4529 0.5472 0.8730
Maximum 0.9434 1.1193 1.7437 0.9823 1.2637 2.1828 1.0879 1.4398 2.1751 3.0041 4.0754 7.2584 0.5151 0.6505 1.2038

Mean 0.8632 0.9558 1.4429 0.8612 0.9670 1.4564 0.9535 1.1599 1.7416 1.5029 1.9178 2.6471 0.4896 0.6125 1.0435
Std. 0.0345 0.0657 0.1616 0.0487 0.1037 0.2740 0.0741 0.1385 0.2470 0.6015 0.9387 1.5568 0.0153 0.0289 0.0867

TUE.

Minimum 0.8513 1.0494 1.3943 0.8942 1.1293 1.4114 0.9588 1.2102 1.4313 1.0894 1.3884 1.7998 0.5608 0.7945 1.0911
Maximum 1.1912 1.5185 1.9739 1.4806 1.8611 2.0036 1.5263 1.9735 2.3895 3.3843 6.9578 10.6987 0.6185 0.9187 1.5951

Mean 0.9856 1.2580 1.6543 1.0341 1.3385 1.7184 1.2659 1.6504 1.9700 1.6168 2.2088 2.8686 0.5921 0.8679 1.3137
Std. 0.0877 0.1299 0.1802 0.1493 0.2029 0.1622 0.1536 0.1937 0.2241 0.5693 1.3644 2.2010 0.0179 0.0366 0.1462

WED.

Minimum 0.8988 1.1342 1.3668 0.8959 1.0632 1.2543 0.9589 1.1811 1.3829 1.0015 1.2242 1.4547 0.5303 0.7643 0.7724
Maximum 1.0376 1.4876 2.0036 1.3294 1.9717 2.3057 1.1692 1.5723 2.0403 3.2969 4.7078 4.4628 1.0370 0.8529 1.4643

Mean 0.9491 1.3497 1.7504 0.9930 1.3608 1.6969 1.0498 1.3961 1.7187 1.4270 1.9408 2.3941 0.5998 0.8124 1.2458
Std. 0.0376 0.0944 0.1750 0.1175 0.2126 0.2517 0.0692 0.1186 0.1846 0.5523 0.8268 0.6952 0.1223 0.0309 0.1919

THU.

Minimum 1.1328 1.3555 1.7345 1.0592 1.2446 1.6240 1.1695 1.4815 1.7197 1.4439 1.6901 1.9451 0.5996 0.6861 1.2255
Maximum 1.6897 2.2229 3.1837 1.4571 2.0609 2.5822 1.4567 1.9075 2.4223 3.3581 5.0644 5.9695 0.6986 0.9970 1.7947

Mean 1.2009 1.5345 2.0338 1.1714 1.5080 1.9394 1.3363 1.6930 2.0229 1.8929 2.3803 2.9301 0.6553 0.9407 1.4463
Std. 0.1370 0.2010 0.3381 0.1043 0.1875 0.2672 0.0795 0.1300 0.2029 0.4819 0.8472 1.0381 0.0273 0.0761 0.1614

FRI.

Minimum 0.9789 1.3521 1.8090 0.9879 1.3789 1.9802 1.1533 1.5778 2.0425 1.1984 1.6895 2.1985 0.4217 0.7267 0.9891
Maximum 1.3273 1.8529 2.6347 1.6243 2.1960 2.8817 1.5201 1.8915 2.4986 2.3440 3.0883 4.2423 0.5172 0.9259 1.4602

Mean 1.1179 1.6060 2.1836 1.1647 1.6898 2.3062 1.2394 1.7010 2.2384 1.7046 2.3169 3.0409 0.4739 0.8163 1.1747
Std. 0.0869 0.1481 0.2171 0.1625 0.2330 0.2601 0.0967 0.1050 0.1391 0.3505 0.4306 0.6477 0.0272 0.0508 0.1357

SAT.

Minimum 0.8925 1.4090 1.5762 0.8792 1.3074 1.5122 0.9497 1.4249 1.6132 0.9158 1.1241 1.3579 0.4807 0.6395 1.0126
Maximum 1.0930 1.6887 2.1120 1.0835 1.6422 1.9560 1.2232 1.6595 2.1832 10.3437 11.1349 11.0434 0.5409 0.8148 1.4727

Mean 0.9949 1.5385 1.8127 0.9596 1.4585 1.7135 1.0473 1.5408 1.8951 1.9893 2.5032 3.0492 0.5115 0.7260 1.1988
Std. 0.0536 0.0912 0.1550 0.0573 0.0958 0.1237 0.0965 0.0795 0.1722 2.3444 2.4300 2.3140 0.0145 0.0472 0.1428

SUN.

Minimum 0.9423 1.4501 1.4459 0.9174 1.3993 1.4387 0.9367 1.4470 1.4025 1.0703 1.6719 1.6650 0.4750 0.4991 0.7836
Maximum 1.7058 2.7597 3.6231 1.4369 1.9129 2.2679 1.1217 1.6749 1.8943 1.8294 2.6436 3.1335 0.5144 0.7494 1.0195

Mean 1.0927 1.7384 1.8840 1.0840 1.6733 1.8233 1.0041 1.5374 1.5672 1.4473 2.1072 2.5010 0.4988 0.6746 0.9197
Std. 0.2429 0.4149 0.6700 0.1215 0.1744 0.2622 0.0597 0.0552 0.1404 0.2072 0.2701 0.4509 0.0122 0.0784 0.0729
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Remark. By comparing the forecasting error metrics for multi-step prediction, it is found that the proposed
forecasting system is superior in almost every aspect. Meanwhile, the developed combined forecasting system
achieves the lowest minimum and maximum MAPE values, implying that it is more exact than the single models.
The proposed combined forecasting system is the steadiest, because it achieves the minimum Std. values for
MAPE. Therefore, the proposed forecasting system has better forecasting accuracy and high forecasting stability
than the other models. Most importantly, the improved data preprocessing algorithm and modified SVM can act
as an effective technique to improve the forecasting performance of the proposed system, which can effectively
predict the electrical load data.

4.2.2. Experiment II: The Case of June

To evaluate the forecasting performance of the developed combined forecasting system for
different load datasets, the 30-min electrical data from Monday to Sunday in June are employed in
Experiment II. The dataset structure is the same as that of February, and the results are displayed in
Tables 7–9, and Figures 6 and 7.
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Figure 6. The results of AE, MAE, MSE and MAPE for June.

(a) Table 7 shows the final evaluations of the results for the 1-step to 3-step forecasting. For 1-step
forecasting, the proposed combined forecasting system outperforms the BPNN, FABPNN,
ENN and WNN models, according to the comparison of AE, MAE, MSE and MAPE from
Monday to Sunday. For example, the MAPE values of the combined forecasting system are
0.5270%, 0.5390%, 0.4489%, 0.5306%, 0.4429%, 0.5052% and 0.5332% from Monday to Sunday,
respectively. For 2-step forecasting, the developed combined forecasting system achieves the most
accurate prediction effect, with MAPE values of 0.8562%, 0.7543%, 0.7336%, 0.8335%, 0.6223%,
0.6898% and 0.7702% from Monday to Sunday, respectively. For 3-step forecasting, the developed
nonlinear combined forecasting system is still the most accurate.

(b) Table 8 illustrates the detailed multi-step improvements between the developed combined
forecasting system and other prediction models. Taking the results of Sunday as an example, in the
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1-step predictions, the combined forecasting system decreases the MAPE values by 49.1983%,
47.7906%, 59.3493% and 65.0099%, based on BPNN, FABPNN, ENN and WNN, respectively.
In the 2-step and 3-step predictions, the proposed combined forecasting system also decreases
the MAPE values.

(c) Table 9 displays the results of the MAPE value statistics. For the minimum, maximum, mean and
Std. of the MAPE values, the developed combined forecasting system obtains a lower value in all
aspects for BPNN, FABPNN, ENN and WNN.

(d) Figure 6 summarizes the results of the average values of four forecasting error indexes for 1-step,
2-step, and 3-step forecasting in June. Furthermore, Figure 7 illustrates the detailed forecasting
results of 1-step for Sunday. It is found that the combined forecasting system achieves a more
precise prediction performance than the other four models.
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Table 7. Forecasting results obtained using June data from New South Wales.

Week Model
AE MAE MSE MAPE

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MON.

BPNN 28.1490 40.2809 60.0420 87.2188 116.6938 157.3218 12,598.62 24,248.91 46,240.92 0.9174 1.2500 1.6564
FABPNN 31.9426 43.4337 70.0051 91.8725 122.9630 174.0908 14,715.99 27,952.61 57,357.07 0.9592 1.3000 1.8176

ENN 23.5497 25.6296 41.8058 107.7753 140.2308 191.1443 22,021.50 43,213.06 84,770.04 1.1190 1.4900 2.0180
WNN 21.3635 24.2720 40.4258 131.7077 172.9343 259.7937 34,847.82 61,929.17 162,633.65 1.3722 1.8200 2.6891

Combined forecasting system 13.1643 31.7783 33.2478 53.4406 81.4294 118.3925 4923.01 10,866.11 29,343.95 0.5720 0.8562 1.2510

TUE.

BPNN 11.8632 11.0946 30.6152 68.8202 93.5565 118.4368 7209.00 14,736.01 27,030.99 0.7028 0.9400 1.1964
FABPNN 8.2711 4.7844 23.4885 72.6215 96.1279 127.4886 8652.02 16,947.82 31,041.00 0.7372 0.9600 1.2870

ENN 9.9318 2.2467 25.5482 97.0374 117.4459 147.8419 16,480.67 30,382.58 52,207.81 0.9774 1.1800 1.4659
WNN 8.3753 4.2323 24.5869 113.9295 142.2588 203.1351 22,966.51 40,516.86 91,325.84 1.1504 1.4300 2.0418

Combined forecasting system 5.5324 5.2540 −0.8695 52.5606 74.6922 104.1388 4625.96 8844.65 20,139.94 0.5390 0.7543 1.0397

WED.

BPNN −12.3035 −26.7509 −41.0592 67.7807 94.4602 135.4084 8288.43 17,216.81 34,143.77 0.6894 0.9568 1.3600
FABPNN −8.0366 −20.7559 −26.5353 67.4427 94.1133 136.7037 8505.36 17,816.29 36,375.57 0.6917 0.9612 1.3900

ENN −12.0552 −29.6080 −34.3218 86.6654 124.5985 175.2954 14,665.42 31,819.07 64,573.05 0.8824 1.2715 1.7700
WNN −42.7244 −70.8510 −97.8009 126.2426 167.1746 243.5229 38,007.57 60,350.02 123,256.04 1.3027 1.7200 2.4900

Combined forecasting system −4.8054 −10.0858 −26.1299 43.0172 70.9730 93.2434 2939.59 9012.51 16,351.51 0.4489 0.7336 0.9664

THU.

BPNN −5.8352 −18.9423 −40.7135 82.8959 112.6687 151.2279 11,293.16 23,270.95 43,996.53 0.8543 1.1660 1.5612
FABPNN −9.7177 −24.0847 −54.5332 84.0990 111.3262 155.7279 11,357.10 21,913.86 44,006.92 0.8646 1.1457 1.6058

ENN −14.1086 −34.7318 −62.7759 104.5977 137.7137 201.8255 19,136.63 38,040.77 76,066.67 1.0751 1.4307 2.0714
WNN −27.2461 −54.1089 −91.1277 119.6625 160.5898 231.1756 24,307.85 49,421.97 103,282.74 1.2440 1.6800 2.4100

Combined forecasting system −0.1579 −1.2456 −1.1114 50.4318 79.7675 118.2327 3847.20 10,580.42 23,714.55 0.5306 0.8335 1.2603

FRI.

BPNN 12.2858 11.5586 19.3356 82.8441 104.8186 142.5571 13,523.99 26,727.86 53,413.52 0.8365 1.0593 1.4524
FABPNN 14.7240 15.6039 22.3312 87.5349 111.5343 156.4354 15,983.89 28,458.85 58,309.17 0.8845 1.1351 1.6003

ENN 12.1283 9.7140 17.3316 101.8761 131.7470 170.1288 20,140.88 38,866.10 72,284.31 1.0334 1.3553 1.7397
WNN −4.3370 −22.6447 −4.8305 155.6390 198.0136 266.9812 69,985.41 102,668.91 207,077.15 1.6050 2.0628 2.7662

Combined forecasting system 5.1834 8.8412 28.7141 43.1650 60.7125 100.7607 3316.25 7569.48 21,664.29 0.4429 0.6223 1.0342

SAT.

BPNN 15.5543 33.1097 48.4879 85.7014 113.2363 130.2246 17,019.51 26,498.77 33,826.42 0.9208 1.2238 1.4201
FABPNN 12.7572 30.7282 54.9176 91.6801 118.8509 135.0957 19,685.11 29,051.83 35,875.16 0.9865 1.2921 1.4751

ENN 8.9360 27.6970 69.9136 104.2473 144.1342 157.3298 26,924.21 42,076.42 51,964.64 1.1198 1.5648 1.7123
WNN 5.3048 17.9823 55.9119 119.7350 165.8653 194.2388 33,275.56 55,086.71 77,887.75 1.2868 1.7943 2.1188

Combined forecasting system −1.9062 2.6399 −7.8381 46.3772 63.6460 114.9571 3754.72 8630.02 33,023.62 0.5052 0.6898 1.2506

SUN.

BPNN 12.1084 13.4068 16.6830 93.6335 131.9624 164.3304 15,544.89 35,966.09 55,245.02 1.0496 1.4683 1.8586
FABPNN 9.4427 9.2576 14.3211 90.8458 130.7386 150.0563 14,898.63 33,837.19 46,475.60 1.0213 1.4608 1.6896

ENN 7.7045 14.5853 32.2788 117.4224 162.3855 212.7786 26,470.69 54,663.72 90,407.86 1.3117 1.7975 2.3623
WNN −7.0600 −15.6229 −14.4743 135.7484 191.2429 248.3169 33,576.98 72,513.26 123,455.02 1.5239 2.1430 2.7985

Combined forecasting system 3.4471 −4.2469 10.8028 46.7796 68.7158 101.1263 3391.82 8848.73 23,580.16 0.5332 0.7702 1.1393
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Table 8. Improvement percentages generated by the combined forecasting system from June data.

Week

Combined Forecasting System Combined Forecasting System Combined Forecasting System Combined Forecasting System

vs. BPNN vs. FABPNN vs. ENN vs. WNN

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MON.
ζMAE 38.7282 30.2196 24.7450 41.8318 33.7773 31.9939 50.4148 41.9319 38.0612 59.4249 52.9131 54.4283
ζMSE 60.9242 55.1893 36.5412 66.5465 61.1267 48.8399 77.6445 74.8546 65.3841 85.8728 82.4540 81.9570

ζMAPE 37.6519 31.5059 24.4726 40.3689 34.1403 31.1715 48.8846 42.5385 38.0085 58.3164 52.9574 53.4797

TUE.
ζMAE 23.6262 20.1635 12.0723 27.6239 22.2991 18.3152 45.8347 36.4028 29.5607 53.8657 47.4955 48.7342
ζMSE 35.8308 39.9793 25.4931 46.5332 47.8125 35.1182 71.9310 70.8891 61.4235 79.8578 78.1704 77.9472

ζMAPE 23.3009 19.7554 13.0928 26.8799 21.4272 19.2107 44.8495 36.0763 29.0718 53.1431 47.2518 49.0783

WED.
ζMAE 36.5347 24.8646 31.1391 36.2166 24.5877 31.7916 50.3640 43.0386 46.8078 65.9249 57.5456 61.7106
ζMSE 64.5338 47.6529 52.1098 65.4383 49.4143 55.0481 79.9556 71.6758 74.6775 92.2658 85.0663 86.7337

ζMAPE 34.8823 23.3265 28.9401 35.0988 23.6766 30.4738 49.1249 42.3050 45.4003 65.5392 57.3485 61.1882

THU.
ζMAE 39.1625 29.2018 21.8182 40.0329 28.3480 24.0773 51.7850 42.0773 41.4183 57.8550 50.3284 48.8559
ζMSE 65.9334 54.5338 46.0990 66.1252 51.7182 46.1118 79.8961 72.1866 68.8240 84.1730 78.5917 77.0392

ζMAPE 37.8899 28.5181 19.2756 38.6298 27.2544 21.5181 50.6458 41.7446 39.1567 57.3467 50.3883 47.7055

FRI.
ζMAE 47.8960 42.0785 29.3191 50.6882 45.5661 35.5896 57.6299 53.9174 40.7739 72.2659 69.3392 62.2593
ζMSE 75.4787 71.6795 59.4404 79.2525 73.4020 62.8458 83.5347 80.5242 70.0290 95.2615 92.6273 89.5381

ζMAPE 47.0586 41.2547 28.7937 49.9301 45.1731 35.3744 57.1434 54.0812 40.5519 72.4060 69.8308 62.6123

SAT.
ζMAE 45.8852 43.7937 11.7240 49.4141 46.4489 14.9069 55.5123 55.8425 26.9324 61.2668 61.6279 40.8166
ζMSE 77.9387 67.4324 2.3733 80.9261 70.2944 7.9485 86.0545 79.4896 36.4498 88.7163 84.3337 57.6010

ζMAPE 45.1301 43.6331 11.9339 48.7844 46.6150 15.2153 54.8811 55.9157 26.9623 60.7366 61.5560 40.9745

SUN.
ζMAE 50.0397 47.9278 38.4616 48.5066 47.4404 32.6078 60.1613 57.6836 52.4735 65.5395 64.0689 59.2753
ζMSE 78.1805 75.3970 57.3171 77.2341 73.8491 49.2633 87.1865 83.8124 73.9180 89.8984 87.7971 80.8998

ζMAPE 49.1983 47.5462 38.7030 47.7906 47.2734 32.5716 59.3493 57.1516 51.7731 65.0099 64.0597 59.2897
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Table 9. Statistical MAPE values of June data from New South Wales.

Week
BPNN FABPNN ENN WNN Combined Forecasting System

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

MON.

Minimum 0.8043 1.0825 1.2366 0.8942 1.1130 1.4995 0.9850 1.3292 1.5792 1.0627 1.3828 1.8189 0.5457 0.7561 1.1092
Maximum 0.9856 1.3688 1.9419 1.0261 1.5091 2.3099 1.2692 1.7254 2.2685 2.6880 2.9717 4.7548 0.5957 0.9456 1.6676

Mean 0.9174 1.2451 1.6564 0.9592 1.3014 1.8176 1.1190 1.4940 2.0180 1.3722 1.8197 2.6891 0.5720 0.8562 1.2510
Std. 0.0569 0.1021 0.2331 0.0441 0.1234 0.2300 0.0808 0.0998 0.2260 0.4092 0.4189 0.7260 0.0152 0.0548 0.1365

TUE.

Minimum 0.5935 0.7241 0.9108 0.6255 0.8279 1.1066 0.9018 1.0463 1.1664 0.8322 1.0390 1.3940 0.4993 0.6988 0.9078
Maximum 0.8542 1.1470 1.5677 0.9109 1.2244 1.4925 1.1213 1.4229 1.8940 1.5753 1.8114 2.8523 0.5820 0.8532 1.2966

Mean 0.7028 0.9438 1.1964 0.7372 0.9622 1.2870 0.9774 1.1772 1.4659 1.1504 1.4342 2.0418 0.5390 0.7543 1.0397
Std. 0.0743 0.1108 0.1890 0.0936 0.1134 0.1116 0.0599 0.0977 0.1834 0.2187 0.2220 0.3826 0.0265 0.0413 0.1148

WED.

Minimum 0.5241 0.7211 0.9437 0.5385 0.7347 1.1555 0.8101 1.1846 1.5087 0.8226 1.1076 1.6440 0.4281 0.6665 0.8328
Maximum 0.8211 1.2069 1.5934 0.8591 1.2694 1.7192 1.0159 1.4252 2.0176 4.1377 4.3909 5.7335 0.4704 0.7955 1.2923

Mean 0.6894 0.9568 1.3629 0.6917 0.9612 1.3910 0.8824 1.2715 1.7651 1.3027 1.7217 2.4934 0.4489 0.7336 0.9664
Std. 0.0892 0.1437 0.1863 0.0972 0.1576 0.2001 0.0541 0.0644 0.1688 0.8169 0.7633 0.9842 0.0129 0.0340 0.1311

THU.

Minimum 0.6916 0.9481 1.1672 0.6737 0.9123 1.3060 0.9899 1.3060 1.7124 1.0509 1.3108 1.8042 0.4991 0.7503 1.0305
Maximum 1.0146 1.3523 2.2435 0.9886 1.2857 1.8434 1.1688 1.5936 2.4102 1.8008 2.4480 3.3178 0.5863 0.9070 1.5658

Mean 0.8543 1.1660 1.5612 0.8646 1.1457 1.6058 1.0751 1.4307 2.0714 1.2440 1.6793 2.4111 0.5306 0.8335 1.2603
Std. 0.1020 0.1313 0.3072 0.0855 0.1159 0.1533 0.0510 0.0839 0.2123 0.1921 0.2765 0.3558 0.0223 0.0457 0.1396

FRI.

Minimum 0.5844 0.6814 0.9806 0.6386 0.8048 1.1689 0.9208 1.1742 1.4278 0.8704 1.1843 1.7069 0.4276 0.5480 0.8679
Maximum 0.9892 1.2772 1.7613 1.2784 1.5289 2.2955 1.1001 1.5049 2.0556 6.7672 7.3196 7.3120 0.4639 0.6833 1.1764

Mean 0.8365 1.0593 1.4524 0.8845 1.1351 1.6003 1.0334 1.3553 1.7397 1.6050 2.0628 2.7662 0.4429 0.6223 1.0342
Std. 0.1296 0.1985 0.2332 0.1542 0.1966 0.3306 0.0525 0.0881 0.1335 1.5514 1.6569 1.5244 0.0098 0.0376 0.0884

SAT.

Minimum 0.7830 1.0670 1.1481 0.8194 1.0228 1.1172 1.0202 1.4331 1.4778 1.1211 1.5391 1.6387 0.4792 0.6332 1.0244
Maximum 1.1444 1.5721 1.8496 1.1400 1.5249 2.1447 1.2005 1.7259 1.9487 1.8326 2.2039 2.9383 0.5381 0.7604 1.4706

Mean 0.9208 1.2238 1.4201 0.9865 1.2921 1.4751 1.1198 1.5648 1.7123 1.2868 1.7943 2.1188 0.5052 0.6898 1.2506
Std. 0.1246 0.1506 0.2028 0.0848 0.1567 0.2447 0.0549 0.0733 0.1507 0.1960 0.2133 0.3953 0.0161 0.0392 0.1528

SUN.

Minimum 0.8227 1.0935 1.2744 0.8200 1.1629 1.3323 1.1823 1.6308 2.0706 1.3185 1.8957 2.2049 0.5042 0.6573 0.9825
Maximum 1.2592 1.7874 2.3666 1.2804 1.7811 2.1908 1.5200 2.1595 2.6689 2.1173 2.6635 3.4449 0.5683 0.8527 1.5572

Mean 1.0496 1.4683 1.8586 1.0213 1.4608 1.6896 1.3117 1.7975 2.3623 1.5239 2.1430 2.7985 0.5332 0.7702 1.1393
Std. 0.1528 0.2266 0.3622 0.1400 0.2065 0.2922 0.0843 0.1425 0.1899 0.2158 0.2316 0.3270 0.0202 0.0500 0.1751
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Remark. Based on the above experiment, the proposed forecasting system exhibits superior performance in all
forecasting error indexes. Furthermore, the developed system achieves the smallest maximum and minimum
MAPE values, which means that it displays superior capability among the investigated models. The developed
forecasting system also achieves forecasting stability, because its MAPE Std. values are smallest. Therefore, the
proposed combined forecasting system achieves forecasting accuracy and stability simultaneously. Moreover, we
find that the combined forecasting system performs effectively in different month which can be safely conclude
that the improved data preprocessing and modified SVM have great contribution to enhance the forecasting
effectiveness of the proposed system. In summary, the proposed forecasting system has better forecasting
performance and universal applicability which can be widely applied for load forecasting as well as other fields.

4.2.3. Experiment III: Comparison with Benchmark Model

In this section, the ARIMA model is selected as a benchmark model for comparison with the
developed combined forecasting system. The half-hour power load data from February and June
are applied to contradistinguish the prediction performances of the developed combined forecasting
system and ARIMA model. The average values of AE, MAE, MSE and MAPE for February and June are
displayed in Table 10, where it is revealed that the combined forecasting system achieves lower MAPE
values than the ARIMA model. To express prediction capability clearly, the comparison of prediction
results for Wednesday in June, for the combined forecasting system and ARIMA model, are shown
in Figure 8. From the results of Table 10 and Figure 8, we can conclude that the proposed nonlinear
combined forecasting system can achieve better forecasting performance than ARIMA model.
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Table 10. Forecasting results of the proposed combined forecasting system and ARIMA model.

AE MAE MSE MAPE

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

February
ARIMA 0.4733 5.1282 2.3802 116.3646 168.6304 239.2805 23,001.97 52,536.41 92,779.14 1.3620 1.9657 2.8060

Combined forecasting system −5.2888 −4.4512 −13.9419 45.8323 66.3317 101.1104 3477.41 8503.16 18,967.24 0.5459 0.7786 1.1918

June
ARIMA −0.2541 8.4307 14.9222 139.1223 236.8844 397.5834 36,617.72 101,576.84 279,856.30 1.4511 2.4757 4.1315

Combined forecasting system 2.9225 4.7050 5.2594 47.9674 71.4195 107.2645 3828.36 9193.13 23,974.01 0.5103 0.7514 1.1345
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4.3. Summary

Based on experiments I–III, we conclude that:

(a) For 1-step to 3-step forecasting, the developed combined forecasting system achieves smaller values
for all forecasting error metrics than the single models. In addition, the developed combined
forecasting system also obtains the lowest MAPE Std. results. Overall, through improved data
preprocessing method and modified SVM, the developed system is superior to the four single
models in terms of both validity and stability.

(b) The developed combined forecasting system achieves lower MAPE results than the benchmark
ARIMA model in 1-step to 3-step forecasting. Therefore, we can conclude that the developed
combined forecasting system outperforms the ARIMA model in electrical load forecasting.

(c) Compared with the individual prediction models, the predictive ability of the developed
combined forecasting system exhibits significant improvements. According to relevant
literature [3], if the electrical load forecasting error were to decrease by 1%, the operating costs
would decrease by 10 million pounds. Consequently, considerable economic benefit could
be generated.

5. Discussion

An insightful discussion based on above case studies is conducted in this section, which can
provide detailed and comprehensive analysis for the experimental results.

5.1. Discussion of the Significance of the Developed Forecasting System with Testing Method

DM test and forecasting effectiveness are used as two testing method to demonstrate the capability
of the developed forecasting system.

(a) Table 11 presents the DM statistics, where the square error loss function values are applied,
and demonstrates that the combined forecasting system differs from BPNN, FABPNN, ENN,
WNN and ARIMA at the 1% significance level in multi-step forecasting.

(b) Table 11 implies the one-order and two-order forecasting effectiveness of the developed
forecasting system and other compared models. From Table 11, it can be determined that
the proposed forecasting system obtains the largest value of forecasting effectiveness compared
with other compared models in multi-step forecasting.

Remark. From the results of the DM test and forecasting effectiveness, we can conclude that the developed
nonlinear combined forecasting system exhibits superior forecasting performance to the other models and
the prediction validity of the developed forecasting system and others differs significantly.
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Table 11. Results for the DM test and the forecasting effectiveness.

Test Method Average Value 1-step 2-step 3-step

DM-test

BPNN 2.9934 *** 2.8608 *** 2.6476 ***
FABPNN 2.9884 *** 2.8418 *** 2.7172 ***

ENN 3.3992 *** 3.1337 *** 2.9694 ***
WNN 3.7132 *** 3.3533 *** 3.3633 ***

ARIMA 3.8003 *** 3.4451 *** 4.0389 ***

Average Value 1-step 2-step 3-step

Forecasting effectiveness 1

BPNN 0.9913 0.9879 0.9851
FABPNN 0.9913 0.9878 0.9853

ENN 0.9895 0.9857 0.9824
WNN 0.9885 0.9843 0.9796

ARIMA 0.9859 0.9778 0.9653
Combined forecasting system 0.9948 0.9925 0.9899

Average Value 1-step 2-step 3-step

Forecasting effectiveness 2

BPNN 0.9838 0.9770 0.9713
FABPNN 0.9836 0.9770 0.9717

ENN 0.9801 0.9724 0.9659
WNN 0.9787 0.9703 0.9616

ARIMA 0.9736 0.9584 0.9385
Combined forecasting system 0.9906 0.9858 0.9804

*** Indicates the 1% significance level; 1 Indicates the one-order forecasting effectiveness; 2 Indicates the two-order
forecasting effectiveness.

5.2. Discussion of Comparison with Linear Combined Models

To further validate the effectiveness of the developed nonlinear combined forecasting system,
two linear combined methods, which include the average value method and entropy weight method,
are applied to compare with the proposed nonlinear combined forecasting system. More specifically,
the average value method means that the weight of each individual model is equal to 1/M (M is the
number of the individual models), and the entropy weight method calculated the weights of each
single model by evaluating the amount of information of each individual model objectively.

To provide more detailed comparison information, the forecasting results of two randomly
selected days (Saturday in February and Friday in June) are presented in Table 12. It is clearly revealed
that the developed nonlinear combined forecasting system achieves lower MAPE values compared
with the linear combined models in multi-step forecasting, indicating that the nonlinear combined
forecasting system can provide more accurate forecasting result in engineering application.

Remark. As demonstrated by the performances of the developed combined forecasting system and linear
combined models, the developed combined forecasting system exhibits superior performance, indicating that
improved data preprocessing and modified SVM can greatly enhance the performance of the nonlinear combined
forecasting system in electrical load forecasting.

5.3. Discussion of the Superiority of the Optimization Algorithm

To test the superiority of the optimization algorithm used in the developed forecasting system, the
discussion of comparison with other typical optimization algorithm, i.e., FA, Ant lion optimizer (ALO)
and Dragonfly algorithm (DA), is performed in this section. As shown in Figure 9, four typical test
functions, including two unimodal test functions (i.e., Function 1 and Function 2) and two multimodal
test functions (i.e., Function 3 and Function 4), are tested in this section. Figure 9 presents the curve
of fitness value of the MFO and other compared algorithms, which is employed to validate the
effectiveness of the MFO algorithm in terms of convergence performance. In brief, it can be observed
that the MFO is better than that of other compared algorithms.
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Table 12. Comparison between the proposed combined forecasting system and linear combined models.

AE MAE MSE MAPE

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

SAT.
Average value method 30.4489 −63.6749 −61.5016 84.582 128.3602 149.4587 13,397.84 28,370.37 38,526.36 1.0156 1.5425 1.8083

Entropy weight method 29.3053 −62.6083 −59.9099 83.78 127.4186 147.9893 13,213.82 28,112.81 38,044.91 1.0044 1.5293 1.7879
Combined forecasting system −9.9972 −15.8985 −16.938 42.2213 60.0048 97.4307 3253 7601.39 16,427.04 0.5115 0.726 1.1988

FRI.
Average value method 8.7003 3.5579 13.542 83.3551 104.9405 142.5478 13,811.16 26,506.87 55,862.19 0.8416 1.0666 1.4595

Entropy weight method 8.9007 4.0851 13.8869 83.196 104.477 141.4894 13,779.77 26,349.11 55,349.16 0.8398 1.0618 1.4479
Combined forecasting system 5.1834 8.8412 28.7141 43.165 60.7125 100.7607 3316.25 7569.48 21,664.29 0.4429 0.6223 1.0342
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Remark. According to the comparison of the MFO algorithm and other compared algorithms, the MFO
algorithm shows superior performance, indicating that the MFO algorithm can provide very promising and
competitive optimization results, which further illustrates that the MFO algorithm can contribute greatly to the
excellent performance of the developed forecasting system.

5.4. Further Validation for the Stability of the Developed Combined Forecasting System

Although the statistical MAPE values presented in Tables 6 and 9 well evaluate the stability
of the developed forecasting system, to prove the effectiveness and applicability, further validation
needs to be conducted by another method. Therefore, based on the performance variance used in [57],
the standard deviation of forecasting errors is employed to verify the stability of the developed
combined forecasting system. As demonstrated in Table 13, the standard deviation values of the
proposed forecasting system are smaller than other compared models, indicating that the developed
forecasting system is more stable than other comparison models.

Table 13. Results for the standard deviation of forecasting errors.

Average Value 1-Step 2-Step 3-Step

BPNN 103.0949 141.1311 177.1506
FABPNN 104.3878 140.8473 175.7578

ENN 127.8786 174.4013 217.9661
WNN 132.0079 178.8134 236.4214

ARIMA 172.1966 274.8526 416.6033
Combined forecasting system 58.8549 89.8436 124.6596

Remark. The results for the standard deviation of forecasting errors also account for the conclusion obtained
from Tables 6 and 9, i.e., the developed combined forecasting system is superior to all considered compared
models in terms of stability. In summary, we can conclude that both the accuracy and stability of the developed
forecasting system performs better than all considered compared models.

6. Conclusions

Electrical load forecasting plays a considerably significant role in power systems. More accurate
forecasting results are vital for economic operation and provide more valid information for decision
makers. Therefore, conducting accurate forecasting of electrical loads appears to be particularly
important to reduce costs and risks. However, it is difficult to achieve desirable performance
using single methods. The combined method can sufficiently incorporate the advantages of
individual models; however, the application of linear combinations is limited because the possibility
of nonlinear terms is ignored. Therefore, in this study, a novel nonlinear combined forecasting
system, which consists of three modules (improved data pre-processing module, the forecasting
module, and the evaluation module) is developed for electric load forecasting which successfully
overcomes the drawbacks that existed in linear combined forecasting models. Different from the
simple data pre-processing of most previous studies, the improved data pre-processing module based
on longitudinal data selection is successfully developed in this system, which further improves the
effectiveness of data pre-processing and then enhances the final forecasting performance. Moreover,
the modified support vector machine is developed to integrate all the individual predictors and
obtain the final prediction, which successfully overcomes the upper drawbacks of the linear combined
model. Furthermore, the evaluation module is incorporated to perform a scientific evaluation for the
developed system.

According to the experimental results and analyses, the developed forecasting system exhibits
a more precise prediction capability than the four single models. For example, in 1-step prediction,
the average MAPE values of the developed forecasting system, BPNN, FABPNN, ENN and WNN are
0.5281%, 0.9411%, 0.9581%, 1.1011% and 1.5047%, respectively; in 2-step prediction, the average MAPE



Energies 2018, 11, 712 32 of 34

values are 0.7650%, 1.2889%, 1.3036%, 1.4834% and 2.0018%, respectively; and in 3-step forecasting,
the average MAPE values of the five models are 1.1631%, 1.6619%, 1.6800%, 1.8781% and 2.6247%,
respectively. Furthermore, the proposed forecasting system obtains the lowest MAPE Std. results,
indicating that it can maintain stability in electrical load forecasting. The results of the DM test and
forecasting effectiveness confirm the evidence that the developed nonlinear combined forecasting
system outperforms the single models and ARIMA benchmark model. Furthermore, the proposed
combined forecasting system exhibits effective prediction ability compared to the linear combined
models. In summary, the developed combined forecasting system, which has excellent properties, is a
promising model for power load forecasting as well as other fields.
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