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Abstract: In recent years, the fractional order model has been employed to state of charge (SOC)
estimation. The non integer differentiation order being expressed as a function of recursive factors
defining the fractality of charge distribution on porous electrodes. The battery SOC affects the fractal
dimension of charge distribution, therefore the order of the fractional order model varies with the SOC
at the same condition. This paper proposes a new method to estimate the SOC. A fractional continuous
variable order model is used to characterize the fractal morphology of charge distribution. The order
identification results showed that there is a stable monotonic relationship between the fractional
order and the SOC after the battery inner electrochemical reaction reaches balanced. This feature
makes the proposed model particularly suitable for SOC estimation when the battery is in the
resting state. Moreover, a fast iterative method based on the proposed model is introduced for SOC
estimation. The experimental results showed that the proposed iterative method can quickly estimate
the SOC by several iterations while maintaining high estimation accuracy.

Keywords: lithium-ion battery; fractal morphology; fractional calculus; parameter identification;
SOC estimation

1. Introduction

Lithium-ion batteries now become the main energy storage medium in electric vehicles.
A battery’s state of charge (SOC) indicates the battery remaining power which is of great significance for
battery management system (BMS). Accurate estimation method of the SOC can prevent over-charging
and over-discharging, which can prolong the lifetime of the battery [1]. The electrochemical
characteristics of the battery can be considered as an electrochemical system with strong non-linearity
and the battery SOC cannot be directly measured [2]. Affected by applied load, temperature and
cell degradation, vehicle batteries are usually divided into several groups, which switch between
dynamic condition and resting state. Each battery pack is equipped with BMS to monitor the state of
batteries. In the switching process of battery packs, a fast estimation method is needed to estimate
the SOC for multiple battery groups, which can provide accurate initial values for other real-time
estimation methods.

A number of estimation methods for battery SOC are used for different conditions.
The Ampere-Hour (Ah) counting method for the calculation of battery SOC is simple and easy
to implement, but it suffers from accumulated errors from noise and measurement error [3].
The data-driven approaches usually adopt artificial neural network, particle filter (PF) and relevance
vector machine (RVM) to generate the nonlinear relation with respect to measurements. This kind of
method relies on huge experimental data to achieve good estimation accuracy [4,5].
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Kalman filter method can correct the initial error and restrain the noise of the system to
a certain extent, but it relies heavily on the model [6–9]. Also, this algorithm assumes that the
measurement error is Gaussian white noise with zero mean and the noise covariance is known.
However, the noise characteristics are unknown in most practical cases, which may have an impact
on the estimation performance of the algorithm. SOC estimation method based on electrochemical
impedance spectroscopy (EIS) tries to find the relationship between the impedance parameters and the
battery SOC. Although this approach is accurate, it is complex and only suitable for the theoretical
research of batteries [10–12]. In addition, the alternating current used in EIS switches between charging
and discharging. Switching system belongs to nonlinear system, which is not suitable for the analysis
of frequency domain.

In recent years, the fractional order model has been introduced into SOC estimation because of
the characteristic of fractional order calculus method [13].

Compared with the integer order model, the fractional modeling method can provide a more
accurate battery model, and is suitable for a variety of operating conditions.

Many researchers have made efforts to estimate the battery SOC using fractional order models.
In [14], a fractional order form of partnership for the new generation of vehicles (PNGV) model based
on the analysis of EIS and the SOC estimation based on the fractional Kalman filter is presented. In [15],
a fractional Kalman filter for SOC estimation based on a fractional order model is presented, where the
differentiation order was fixed at 0.5, and the other parameters were identified based on a single pulse
response. In [16], model that uses the improved Oustaloup approximation method is proposed to
capture the dynamic behaviors of lithium-ion batteries, and a modeling parameters sensitivity study is
performed to analysis the relationship between the fractional order and the the output performance of
the fractional order model.

Although with many advantages, the SOC estimation method based on fractional order model
has several defects. Most SOC estimation methods based on the fractional order model are complex
and non-recursive. The high computational demand becomes one of the important reasons why the
fractional order model is difficult to apply to practical situations. In addition, in most literatures,
the orders used for SOC estimation are fixed without considering the effect of the battery SOC. Most of
the existing fractional order modeling methods aim to capture the nonlinear dynamic behavior of
batteries, so as to improve the accuracy of SOC estimation. However, the SOC estimation methods
based on fractional order and integral order models are almost the same. Generally, integal order
modeling method can be seen as a special case of the fractional order modeling method.

Nowadays, porous graphite is the most popular anode material in commercial lithium batteries.
Fractal morphology of charge distribution on porous electrodes could be illustrated by the relaxation
of water on a porous dike which has a fractal dimension [17]. The fractal structure of porous materials
has the function of storing energy, usually represented by fractional order model. The non integer
differentiation order between 0 and 1 being expressed as a function of recursive factors defining
the fractality of charge distribution on porous electrodes. The battery SOC, temperature, and the
cycle times affect the fractal morphology of charge distribution on the electrode. Therefore, the order
of the fractional order model varies with the working condition. As the fractional order is one of
the main characteristics that are affected by batteries’ remaining capacity, the determination of the
SOC can be done by identifying the order of the fractional order model during operation of the
battery. The fractal morphology of charge distribution is less influenced when the battery is charged or
discharged continuously, therefore the relationship between the fractional order and the battery SOC
is difficult to be found. However, the fractal morphology of charge distribution varies stably with SOC
after the battery inner electrochemical reaction reaches balanced.

In this paper, a rapid estimation method for the SOC based on fractional continual variable order
model is proposed. The remainder of the paper is organized as follows. In Section 2, a fractional order
model has been built to describe the fractal morphology of the charge distribution of lithium-ion
batteries. In Section 3, the least square method is applied to identify the fractional order at different
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SOC states, and the monotonic relationship between the fractal morphology of charge distribution
and battery SOC has been found. However, it has been indicated that the order identification might
be biased by the initial coefficient. To obtain a more accurate and stable SOC, an iterative method is
introduced for finding the solution of the equilibrium problem of the parameters in Section 4. We prove
the convergence of the proposed algorithm, which is the optimality condition for the minimization
problem of the SOC estimation error. The results confirm that the iterative method is advantageous
to SOC estimation. The summary is given in Section 5, along with an outlook of such an interesting
research field.

2. Fractional Order Model of Lithium-Ion Batteries

In this section, the proposed fractional order model is built to describe the dynamic behaviors
of lithium-ion batteries. The mathematical modelling equations is described and solved using the
fractional order approximation method. Finally, the dynamic effect of fractional order on the output
performance of the fractional capacitor is discussed.

2.1. Battery Modeling

A pair of contradictions happens when the current passes through the electrode. On the one hand,
the charge on electrode surfaces accumulates gradually, which is caused by the movement of
electrons. This polarization phenomenon causes the potential of the electrode to deviate from the
equilibrium state. On the other hand, the electrode reaction absorbs the charge so that the potential
gradually returns to the equilibrium state. The electrode reaction is complex, which includes the
accumulation of lithium-ion on the electrode, the diffusion of lithium-ion, the passivation of the
electrode surface and so on. The dynamic effects of electrode reaction can be collectively called
depolarization. The two electrochemical phenomena of polarization and depolarization are co-existing
when the battery is charging or discharging [18].

The voltage response when the battery is discharged with a step current is shown in Figure 1,
where the red dotted line represents the current, and the blue solid line represents the terminal
voltage. The mutation between point A and point B is mainly caused by the resistances of current
collectors, active material, electrolyte and separator. The recovering process of the voltage between
point D and point E is mainly related to the phenomenon of lithium-ion diffusion [19].

Figure 1. Voltage response of lithium-ion batteries.

The cumulative effect of the voltage between point B and point C, which contains several behaviors
of the battery, is mainly studied in this paper. In the charge and discharge process, there exists
a defect that the rate of the movement of electrons is faster than that of the electrode reaction [20].
Therefore, polarization usually plays a dominant role in the electrochemical reaction of batteries.
The depolarization phenomenon can be neglected when the battery is discharged in a short time with
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a small current magnitude. Because the porous structure of the electrode has a fractal dimension,
the fractal morphology of the charge distribution on the electrode has nonlinear characteristics,
which cannot be expressed accurately by integer order calculus. Finally, when other electrochemical
reactions are ignored, a fractional capacitor can be used to approximately characterize the battery
polarization phenomenon between point B and point C [21,22]. The capacitor Q which has a fractional
property is called fractional capacitor in general and its impedance can be defined as:

Z(jw) =
1

Q(jw)α
(1)

where Q ∈ R is a variable increment, α ∈ R (0 < α < 1) is the fractional derivation order.
We can use the equivalent circuit of fractional order model in Figure 2 to simulate the voltage

response between point B and point C in Figure 1.

Figure 2. Equivalent circuit of fractional order model.

In Figure 2, R0 is the voltage difference between point A and point B in Figure 1, the fractional
capacitor represents the voltage variation caused mainly by polarization, Uocv is open circuit voltage
source, I is the discharge current, and Uc and Ut are the voltage drop of fractional capacitor and terminal
voltage of the battery, respectively. The state equation and the output equation of the equivalent circuit
of fractional order model can be expressed as:∆αUc =

I
Q

Ut = Uocv − IR0 −Uc

(2)

where ∆ is the differential operator.
Equation (2) can be rewritten as follows in state space function form:{

∆αx = BI

y = Cx + DI
(3)

where x = [Uc], y = [Ut −Uocv], B = [1/Q], C = [−1], D = [−R0], I is the matrix of 1×1.
According to Equation (3), the discrete state space function is obtained:{

∆αxk+1 = BIk

yk = Cxk + DIk
(4)

where, at time index k, xk ∈ R is the state vector, Ik ∈ R is the system input; yk ∈ R is the system output.
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The Grünald-Letnikov fractional-order derivative is chosen in this work to obtain the numerical
solution of the voltage differential equation. The α-order fractional order calculus for state x at time
step k can be defined as [23–26]:

∆αxk =
1

Tα
s

k

∑
j=0

(−1)j
(

α

j

)
xk−j

(
α

j

)
=


1 j = 0

α(α) . . . (α− (j− 1))
j!

j > 0

(5)

where Ts is the sample interval, k is the number of samples for which the derivative is calculated,
j is the distance.

According to Equation (5), Equation (4) can be written as [15,24]:

∆αxk+1 =
1

Tα
s

k+1

∑
j=0

(−1)j
(

α

j

)
xk+1−j

=
1

Tα
s
(−1)0

(
α

0

)
xk+1−0 +

1
Tα

s

k+1
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j=1

(−1)j
(

α

j

)
xk+1−j

=
1

Tα
s
[xk+1 +

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j].

(6)

Equation (6) can be further formulated:

xk+1 = Tα
s ∆αxk+1 −

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j

= Tα
s BIk −

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j.

(7)

The output equation can also be discretized as:

yk = Cxk + DIk (8)

Finally, Equations (7) and (8) together determine the discrete state equation and output equation
of the fractional order model.

2.2. The Output Dynamic of the Fractional Capacitor

In most literatures, the fractional capacitor is used to simulate the frequency response of the
battery [27]. Few literatures have studied the output dynamic of the fractional capacitor in time domain.
In order to find the relationship between the voltage response and the fractional derivation order
of the fractional capacitor, a constant current is taken into Equation (7), and the coefficient is fixed
at a constant. The fractional order α varies from 0 to 1. By setting I = 5A, Q = 1000, an interval of
0.1 s, the corresponding output voltages of the fractional capacitor are calculated, which are presented
in Figure 3.

From Figure 3, in the case α = 1, the voltage curve is a straight line, and the fractional capacitor
turns into a pure capacitor. In the case α = 0, the voltage curve is a straight line parallel to the horizontal
axis, and the fractional capacitor turns into a pure resistor. In the case 0 < α < 1, the voltage of the
fractional capacitor increases rapidly in the first few seconds and increases slowly in the following
time. As the order of the fractional capacitor varies from 0 to 1, there exists a transformative process
from the resistor to the capacitor. If the voltage response of the battery varies with the SOC, the order
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of the fractional capacitor can be used to characterize the battery output voltage feature, and the SOC
can be estimated by the order of fractional capacitor.

Figure 3. Differences of fractional capacitor output voltage by changing fractional order.

3. Order Identification of Fractional Order Model

In order to study the relationship between the order of the fractional order model and the SOC,
the fractional order is identified based on the least squares method, and the experimental results and
analyses are performed in this section.

3.1. Identification Method

The fractional order model in this paper is used to simulate the voltage response when the
discharge current is loading, which corresponds to the voltage variation between point B and point C
in Figure 1. Therefore, the order identification of the fractional order model in this work is based on
test dataset of BC segment in Figure 1. Time-domain system identification is usually performed by
using least squares method, and this method is also utilized in this work. The ohmic resistance R0 is
calculated using the voltage difference between point A and point B. A fitness value is introduced to
evaluate the model precision [28,29],

Fit = min
{
∑T

k=T0
[yk − ŷk]

2
}

(9)

where yk is the voltage difference between open circuit voltage (OCV) and terminal voltage, and ŷk is
the estimated voltage at k time.

It is not suitable to identify the fractional order with other parameters in the fractional continual
variable order model. In this paper, the coefficient Q is fixed at a constant and the order is identified
with the dataset of pulse discharge. The typical values of the coefficient have been chosen based on the
identified results and the battery characteristic. The selection of coefficient Q is discussed in Section 4,
and Q is fixed at 1000 in this section.

For identification process, firstly, a series of independent random fractional orders with a uniform
distribution within in the selected range is generated. Subsequently, the fractional order is used for
calculating the fractional derivative equation using Grünald-Letnikov fractional-order derivative.
Meanwhile, the battery current is defined as the input of fractional order model, to calculate the
output voltage. The predicted terminal voltage ŷk can be obtained using Equations (7) and (8), then the
fitness value can be obtained using Equation (9). Finally, optimal order could be obtained at the end
of the identification process and the relationship between the fractional order and the battery SOC
could be found.
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The fractional order model does not represent the same battery model when the order is
continuously changed. Therefore, the fractional continual variable order model is not suitable for
real-time estimation. In addition, the continual variable order will increase the computation of the
model in the real time estimation. The proposed model is suitable for SOC estimation when the
battery is in the resting state. The most suitable identification signal is the pulse discharge in the
switching process of the battery groups and the start of the combustion engine of the hybrid vehicle.
The advantages of this signal are its short duration, which guarantees a low identification effort,
its unchanging shape, which allows an identification with always the same current magnitude, and its
regular occurrence in the driving profile. It also appears at the beginning of the operation after longer
resting periods and allows an identification of the fractional order of the balanced battery cell.

3.2. Experiment Setup

The experimental setup comes equipped with an Arbin BT2000 tester (Arbin Instruments,
College Station, TX, USA), a thermal chamber for environment control, a personal computer with
signal control software and data conversion software, and a lithium-ion phosphate battery (LiFePO4).
Arbin BT2000 tester charges and discharges the battery through signals sent by the computer,
and passes the collected dataset to the computer by the conversion module. The test units can record
load current, terminal voltage, temperature, accumulative Ah and so on. Both current and voltage
are recorded at a frequency of 10 Hz. The experimental platform is shown in Figure 4, and the main
parameters of the battery are listed in Table 1.

Figure 4. Configuration of the battery testing system.

Table 1. Specification of the lithium-ion battery.

Battery Nominal Capacity (Ah) Nominal Voltage (V) Max Voltage (V) Continuous Discharge Rate

LiFePO4 10 3.2 3.65 5C

In Table 1, C denotes the battery capacity value in Ah. The pulse discharge carried out at various
SOC levels fully reflects the relationship between fractal morphology of charge distribution and the
battery SOC. In addition, the pulse signal occurs during normal operation of the battery. Therefore,
the pulse excitation is carried out in this work, and the whole process of battery SOC from 100% to 0%
is divided into 20 segments.
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After fully charged, the battery is set to be standstill for 10 min, and the battery open circuit
voltage can be measured. Then, the battery is discharged for 45 s with constant discharge rate, followed
by an intermission of 10 min. Finally, discharge the battery until the remaining capacity drops by 5%.
The steps can be repeated until the battery SOC come to 5%. The battery shows strong nonlinearity at
100% SOC and 0% SOC, which is beyond the scope of this study. The pulse responses when the battery
is discharged in different SOC states at 0.5C at 25 ◦C are shown in Figure 5. It is necessary to mention
that the measured voltages in Figure 5 are interpolated with time.

Figure 5. Voltage response of lithium-ion batteries in different SOC states (25 ◦C, 0.5C discharging current).

From Figure 5, when the battery is discharging, it is obvious that the rate of the voltage variation
vary monotonically with the battery SOC. The main reason for this phenomenon is that the activity of
the chemicals inside the battery alleviates with the reduction of the battery remaining power, and the
battery SOC affects the fractal morphology of charge distribution on the electrode. According to the
analysis of Section 2, when the battery is discharging with a step current, the voltage variation is
simulated by the fractional order model, and the voltage variations of the fractional capacitor can be
characterized by the fractional order α. Therefore, the fractional order α of the fractional order model
can be used to characterize the battery SOC.

3.3. Identification Results

The fitting result when the pulse current is loading at 50% SOC and the variation of the fractional
order α of the fractional order model (25 ◦C, 0.5C discharging current) are shown in Figure 6a,b,
respectively. It is worth noting that the voltage response in Figure 6a corresponds to the voltage
variation between point B and point C in Figure 1.

From Figure 6b, the fractional order increases monotonously from 0.39 to 0.61 when the SOC
is discharged from 95% to 15%. When SOC is less than 15%, the fractional order increases rapidly,
indicating that the rate of the voltage variation is increasing. As the battery SOC decreases from 100%
to 0%, the order defining the fractality of charge distribution on porous electrodes changes from
fraction to integer. This meaningful phenomenon guides us that we could just take the fractional order
into account when estimating SOC.

Temperature, cycling times, and current magnitude also affect the order of the fractional order
model. The significance of these influences vary strongly with the battery chemistry. Figure 7a,b show
the order variations under different temperatures (0.5C discharging current) and different current
magnitudes (25 ◦C).
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(a)

(b)

Figure 6. (a) Fitting result of the voltage response at 50% SOC; (b) The variation of the fractional order
α (25 ◦C, 0.5C discharging current).

(a)

(b)

Figure 7. (a) The variation of the fractional order α under different temperatures (0.5C discharging
current); (b) The variation of the fractional order α under different current magnitudes (25 ◦C).
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From Figure 7a,b, it is obvious that there exists a strong temperature dependence of the fractional
order, but also a negligible dependence on the current magnitude. Figure 8 shows relationships
between the fractional order α and SOC for different batteries with the same model type and for
different cycling times (25 ◦C, 0.5C discharging current). Constant current and constant voltage
(CC-CV) mode is adopted in the charge/ discharge and cycle life test. The battery is charged and
discharged at 2C at 25 ◦C in the cycle test. Pulse discharge test is carried out every 100 cycle life test.

(a)

(b)

Figure 8. (a) Relationships between the fractional order α and SOC for different batteries (25 ◦C, 0.5C
discharging current); (b) Relationships between the fractional order α and SOC for different cycling
times (25 ◦C, 0.5C discharging current).

In Figure 8a, the different batteries exhibited different order variation at the same SOC and
temperature. These differences resulted from small variations in cell preparation.

Because the cell degradation has an influence on the activity of the electrolyte and polarization
effect, the fractional order is affected by the degradation, which is observable in Figure 8b.
The fractional order is found to be approximately 10% higher than the one of the new cell.
This phenomenon can also be explained by the theory of charge distribution due to the porous
structure of the electrode. The cell degradation changes the fractal dimension of the porous electrode.
As the cycling times increase, the fractional order of the fractional model approaches 1 at the same
SOC and temperature.
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The battery is discharged after the battery inner electrochemical reaction reaches balanced,
therefore the relationship between the fractional order and the SOC is stable. The identified order are
dependent on the external operational conditions and the cell degradation. Therefore, the fractional
order is time-variant and varies with temperature, power demand, and degradation. In this paper,
this task is solved for the investigated lithium-ion cells implicitly by the chosen identification signals,
where the battery conditions can be assumed to be homogeneous over all cells.

Nevertheless, it is necessary to compensate the influence of the varying temperature and
the cell degradation of the battery, as this has immense effect on the identified fractional order.
The identification of the fractional order is done with the special identification signal which has
a defined timespan and occurs regularly. Due to the short sampling time, the variation of temperature
can be ignored. For the calculation of the fractional order dependent SOC, the temperature and
degradation dependency of the fractional order values has to be eliminated. The calculation of the
fractional order is now performed by solving the equations:{

αi,act = kαi,new(θact)

αi,new(θact) = qαi,new(θ25)
(10)

where αi,act, αi,new(θact), and αi,new(θ25) are the actual fractional order at i time, the fractional
order of the new cell at the actual temperature and the fractional order of the new cell at 25 ◦C,
respectively. From Figures 7a and 8b, there is an obvious monotonic trend between the fractional
order α, temperature and cycling times at the same SOC. The scaling factor k between the theoretical
fractional order of the new cell at the actual temperature and the actual fractional order is calculated as
degradation index, and the scaling factor q between the theoretical fractional order of the new cell at the
actual temperature and the fractional order of the new cell at 25 ◦C is calculated as temperature index.

The actual cell temperature can be assumed to be measured by the external temperature sensor.
Then, the cells are balanced after the resting period and the temperature can be measured accurately
enough. The typical values of the scaling factor k and q have been chosen based on the identified
results and the battery characteristic.

4. SOC Estimation

As discussed above, the fractional order can indicate the battery SOC, thus the SOC could be
estimated by the relationship between the fractional order and SOC. However, during the identification
process, the selection of initial coefficient may have an impact on the fitting result. Consequently,
the estimated SOC will be unstable in a small range. To overcome this fitting drawback of order
identification and improve the accuracy of the SOC estimation, a new iterative method based on the
fractional continual variable order model is proposed in this section. The inaccurate SOC value will be
amended in the iteration process, and the coefficient and order of the fractional order model gradually
converge to the true value. The convergence of the iterative method is proved, and the experiment is
carried out to evaluate its performance.

4.1. The Iterative Method for SOC Estimation

The identified order when the coefficient Q is fixed within the given variation range is shown in
Table 2. The identified coefficient when the fractional order α is fixed within the given variation range
is shown in Table 3.

The relationship between coefficient Q and order α of the fractional order model in different SOC
states is shown in Figure 9. From Figure 9, there is an obvious monotonic trend between coefficient
Q and order α at the same SOC. The interpolation curve of coefficient and order moves up with the
decrease of the SOC.
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Table 2. Relationship between the order of the fractional order model and the battery SOC.

Q (SOC) 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300

α1 (95%) 0.520 0.499 0.477 0.453 0.427 0.399 0.368 0.333 0.294 0.249 0.196 0.131 0.048
α2 (90%) 0.528 0.507 0.485 0.461 0.435 0.407 0.376 0.341 0.302 0.257 0.204 0.139 0.056
α3 (85%) 0.542 0.521 0.499 0.475 0.449 0.421 0.389 0.354 0.315 0.270 0.217 0.152 0.069
α4 (80%) 0.555 0.534 0.512 0.488 0.462 0.433 0.402 0.367 0.328 0.282 0.229 0.164 0.081
α5 (75%) 0.569 0.548 0.526 0.502 0.476 0.447 0.416 0.381 0.342 0.296 0.243 0.178 0.095
α6 (70%) 0.568 0.547 0.524 0.500 0.474 0.446 0.415 0.380 0.340 0.295 0.242 0.177 0.093
α7 (65%) 0.573 0.553 0.530 0.506 0.480 0.452 0.420 0.385 0.346 0.301 0.247 0.182 0.099
α8 (60%) 0.582 0.562 0.539 0.515 0.489 0.461 0.429 0.394 0.355 0.309 0.256 0.191 0.108
α9 (55%) 0.595 0.574 0.552 0.528 0.502 0.473 0.442 0.407 0.367 0.322 0.268 0.203 0.120

α10 (50%) 0.608 0.587 0.565 0.541 0.515 0.486 0.455 0.419 0.380 0.334 0.281 0.216 0.132
α11 (45%) 0.622 0.600 0.578 0.554 0.528 0.499 0.468 0.432 0.393 0.347 0.293 0.228 0.144
α12 (40%) 0.633 0.612 0.589 0.565 0.539 0.510 0.478 0.443 0.404 0.358 0.304 0.239 0.155
α13 (35%) 0.639 0.618 0.596 0.572 0.545 0.517 0.485 0.450 0.410 0.364 0.311 0.245 0.161
α14 (30%) 0.653 0.631 0.609 0.585 0.558 0.529 0.498 0.462 0.423 0.377 0.323 0.257 0.173
α15 (25%) 0.689 0.667 0.645 0.620 0.594 0.565 0.533 0.498 0.458 0.412 0.358 0.292 0.208
α16 (20%) 0.708 0.687 0.664 0.639 0.613 0.584 0.552 0.516 0.476 0.430 0.376 0.310 0.226
α17 (15%) 0.732 0.711 0.688 0.664 0.637 0.608 0.576 0.540 0.500 0.454 0.400 0.334 0.249
α18 (10%) 0.818 0.796 0.773 0.748 0.721 0.692 0.659 0.623 0.583 0.536 0.481 0.414 0.328
α19 (5%) 0.961 0.939 0.916 0.890 0.863 0.832 0.799 0.762 0.721 0.673 0.617 0.549 0.462

Table 3. Relationship between the coefficient of the fractional order model and the battery SOC.

α (SOC) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Q1 (95%) 6764.89 4995.59 3701.96 2677.47 1943.05 1394.94 1004.62 724.90 523.43 379.37 277.40
Q2 (90%) 6612.03 4933.26 3561.10 2610.80 1883.99 1356.18 980.79 704.82 508.37 368.16 269.10
Q3 (85%) 6354.77 4666.28 3429.65 2476.08 1799.93 1301.13 936.63 674.77 486.86 352.75 258.05
Q4 (80%) 6110.80 4445.50 3282.41 2381.90 1723.12 1247.80 898.23 646.97 466.62 337.86 247.33
Q5 (75%) 5786.83 4289.07 3111.35 2272.46 1642.53 1186.48 854.41 616.02 444.06 321.68 235.17
Q6 (70%) 5805.85 4306.70 3124.99 2282.88 1645.93 1192.59 859.28 619.60 446.84 323.87 236.91
Q7 (65%) 5714.46 4226.74 3065.94 2239.94 1619.71 1170.04 842.43 607.98 438.43 317.73 232.45
Q8 (60%) 5566.95 4103.19 2975.21 2174.13 1571.84 1135.62 818.47 590.71 425.68 308.45 225.65
Q9 (55%) 5313.81 3932.67 2851.52 2084.47 1506.80 1090.73 785.65 565.63 408.37 295.77 216.37
Q10 (50%) 5127.95 3756.52 2731.28 1997.65 1444.12 1043.29 753.19 542.31 391.52 283.81 207.71
Q11 (45%) 4912.03 3603.20 2613.90 1912.71 1382.93 999.23 721.40 519.78 375.20 271.97 199.07
Q12 (40%) 4705.02 3482.07 2522.65 1843.67 1333.26 963.50 695.19 501.40 361.84 262.31 192.05
Q13 (35%) 4647.45 3396.71 2475.85 1803.53 1301.79 942.60 680.14 490.39 353.92 256.53 187.80
Q14 (30%) 4445.22 3251.03 2373.97 1728.31 1248.71 904.82 652.48 470.69 339.78 246.39 180.44
Q15 (25%) 3953.72 2894.10 2110.81 1534.47 1112.68 804.93 580.71 418.83 302.44 219.34 160.65
Q16 (20%) 3712.56 2720.42 1982.60 1443.31 1045.15 755.65 545.35 393.28 283.97 205.92 150.82
Q17 (15%) 3421.80 2509.61 1831.04 1331.00 965.15 697.89 503.46 363.02 262.12 190.08 139.21
Q18 (10%) 2607.84 1910.16 1395.86 1016.16 737.65 533.88 385.96 278.84 201.70 146.56 107.57
Q19 (5%) 1662.63 1219.92 892.37 650.39 472.720 342.75 248.09 179.50 130.06 94.68 69.63

Figure 9. Relationship between the coefficient and the order of the fractional order model.
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The main steps of the iterative method for estimating the battery SOC are as follows:

1. The initial coefficient Q(n) is selected in the given variation range which is shown in Table 2.
For convenience, the initial coefficient Q(n) is generally integer in this paper.

2. Based on the least square principle, the order α(n) is identified when the coefficient is fixed at
Q(n), and the battery SOC(n) can be obtained from Table 2.

3. According to Table 3, the coefficient Q(n)′ is searched when the order α(n) and the battery SOC(n)
are known.

4. The coefficient Q(n + 1) is calculated based on the formula:

Q(n + 1) =
[Q(n) + Q(n)′]

2
(11)

5. The coefficient Q(n + 1) is used as the new coefficient, repeat steps 2–4 until the coefficient and
the order converge to the fixed value. The framework of SOC estimation based on the iterative
method is shown in Figure 10.

Figure 10. Flow chart of the iterative method for SOC estimation.

It is worth noting that the ranges of the parameters in Tables 2 and 3 are selected based on the
fitting results and the battery characteristic. Moreover, only part of the parameters are listed in these
tables, the corresponding parameters which have not been presented in Tables 2 and 3 can be obtained
by fitting experimental data. Although part of the coefficients in Table 3 are out of the range in Table 2,
they always fall within the range of Table 2 in the estimation process. The order identification of the
fractional continual variable order model and the iterative method for estimating the SOC could be
implemented by the schematic shown in Figure 11.
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Figure 11. Block diagram for the structure of the order identification of the fractional continual variable
order model and the iterative method for SOC estimation.

In Figure 11, fitness value (1) and fitness value (2) are calculated based on Equations (9) and (11),
respectively. For the order identification, the deviation between calculated ŷk and measured yk is
fed back with the fitness value (1). In the SOC estimation process, the deviation between coefficient
Q(n) and Q(n)′ is fed back with the fitness value (2), thus new coefficient Q(n + 1) is taken into the
fractional order model to update the fractional order. Since SOC is one of the states, a more accurate
SOC is updated.

4.2. Proof of the Convergence of the SOC

Before using the iterative method to estimate the battery SOC, it is necessary to prove the
convergence of the parameters of the fractional order model and the battery SOC in the iterative
process. In a stable operation condition, the relationships between the coefficient, order and SOC can
be expressed as follows:

• When the order α is fixed, the coefficient Q given by the identification is positive with SOC,
and their relationship can be expressed as: Q ∝ SOC;

• When the coefficient Q is fixed, the order α given by the identification is inversely proportional to
SOC, and their relationship can be expressed as: α ∝ (1/SOC);

• At the same battery SOC, the coefficient is proportional to the order, and their relationship is
expressed as: Q ∝ α.

Assume that the initial coefficient Q(1) is smaller than the coefficient Q(1)′ obtained from Table 3.
According to the relation: Q ∝ α, the order α(1) obtained by the first identification is smaller than the
order α(1)′ obtained by the second identification. According to the relation: α ∝ (1/SOC), the battery
SOC(1) obtained by the first identification is larger than the battery SOC(1)′ obtained by the second
identification. Based on Equation (9), we can derive the inequality [30,31]:

Q(1) < Q(2) < Q(1)′

α(1) < α(2) < α(1)′

SOC(1)′ < SOC(2) < SOC(1)

(12)
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In the iterative process, the coefficients will present the following relations:

Q(1) < Q(2) < Q(2)′ < Q(1)′

Q(2) < Q(3) < Q(3)′ < Q(2)′

...

Q(n− 1) < Q(n) < Q(n)′ < Q(n− 1)′

(13)

Inequality (11) could be alternated as follows:∣∣Q(2)−Q(2)′
∣∣ = k1

∣∣Q(1)−Q(1)′
∣∣ , 0 < k1 < 1∣∣Q(3)−Q(3)′

∣∣ = k1k2
∣∣Q(2)−Q(2)′

∣∣ , 0 < k2 < 1
...∣∣Q(n)−Q(n)′

∣∣ = k1k2 . . . kn−1
∣∣Q(n− 1)−Q(n− 1)′

∣∣ , 0 < kn−1 < 1

(14)

where k1, k2,. . ., kn−1 is a sequence of constants. When the constant n approaches to infinity,
k1k2 . . . kn−1 tend to 0, and the following equation can be obtained:

Q(n) = Q(n)′ (15)

Similarly, the following equations can be proved during the iterations:

α(n) = α(n)′

SOC(n) = SOC(n)′
(16)

We can draw the same conclusion when the initial coefficient Q(1) is larger than the coefficient
Q(1)′. The coefficient Q, order α and the battery SOC will gradually converge to the fixed value after
several iterations, and the SOC estimation error will be reduced during the iterations. The schematic
diagram of the convergence of the SOC of the iterative method is shown in Figure 12.

Figure 12. The schematic of the convergence of the SOC of the iterative method.

4.3. Experiment Validation

In order to verify the accuracy of the iterative method and evaluate its performance, the step-pulse
current discharge is carried out at the random battery SOC (25 ◦C, 0.5C discharging current),
and the OCV method is regarded as the reference value in view of the highly precise measurement.
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The estimation result of the iterative method is shown in Table 4, and the relative error of the iterative
method is shown in Figure 13.

Table 4. Estimation result of the iterative method (25 ◦C, 0.5C discharging current).

OCV-SOC Method (%)
Iterative Method (%)

First Iteration Second Iteration Third Iteration Fourth Iteration Fifth Iteration Sixth Iteration

92.00 94.08 90.44 93.36 93.38 93.38 93.38
73.00 71.17 71.24 74.54 74.31 74.34 74.31
54.00 52.21 55.35 52.70 54.72 54.70 54.70
37.00 36.22 37.66 37.59 36.52 36.51 36.51
18.00 17.51 17.69 17.73 18.25 18.25 18.25

Figure 13. Estimation error of the iterative method (25 ◦C, 0.5C discharging current).

From Figure 13, the initial SOC estimation error of the iterative method is usually between 2%
and 3%. The estimated SOC of the iteration method gradually converges to the reference SOC and
traces it well with a small error confined to 2%. When the parameters are iterated for about 6 times,
the variation of the battery SOC can be neglected, and iteration calculation is terminated. Because of
the short duration of the pulse discharge, the whole identification process takes much less computation
time than other methods. The analysis of the iterative method for SOC estimation also illustrates its
less iterative times, faster calculation speed and better convergency. Since the experimental conditions
are usually different, it is difficult to make fair comparisons between different approaches. However,
it is easy to see that the estimation method is effective, accurate and stable.

5. Conclusions

This paper presents a fractional continual variable order model and a rapid SOC estimation
method for the battery system. It includes the fractional order modeling method of the battery,
the order identification based on least square method and the SOC estimation method based on
the correspondence between the fractional order and SOC. Results show the fractal morphology of
charge distribution varies stably with SOC after the battery inner electrochemical reaction reaches
balanced. Therefore, the proposed model is suitable for SOC estimation when the battery is in the
resting state, such as the pulse discharge in the switching process of the battery groups and the start of
the combustion engine of the hybrid vehicle. The proposed method can be easily implemented and
applied by iteration. Experiments have been carried out to demonstrate that the iterative method can
improve the precision of the estimated SOC. The drawback of the proposed method lies in where the
long previous test time are required to acquire the relationship between the parameters of the fractional
order model and the SOC. The proposed method is complementary to the existing SOC estimation
methods. Further research of the authors will focus on the combination of the proposed SOC estimation
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method and fractional Kalman filtering method. When the battery is in the static state, the iterative
method proposed in this paper can be used to quickly estimate the SOC. Meanwhile, the estimated
fractional order is used as the new fractional order of fractional Kalman filtering method, and the
real-time estimation of the battery SOC can be carried out. The fractional order will be gradually
updated between the dynamic condition and the static state and converges to the true value.
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