
energies

Article

An Application of a Novel Technique for Assessing
the Operating Performance of Existing Cooling
Systems on a University Campus

Elnazeer Ali Hamid Abdalla 1,2 ID , Perumal Nallagownden 1,* ID , Nursyarizal Bin Mohd Nor 1,
Mohd Fakhizan Romlie 1 and Sabo Miya Hassan 1

1 Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS (UTP),
Seri Iskandar 32610, Perak, Malaysia; neese555@gmail.com (E.A.H.A.);
nursyarizal_mnor@utp.edu.my (N.B.M.N.); fakhizan.romlie@utp.edu.my (M.F.R.);
hsmiya2010@gmail.com (S.M.H.)

2 Department of Electrical and Electronics Engineering, University of Bahri (UoB), Bahri,
Khartoum 1660, Sudan

* Correspondence: perumal@utp.edu.my; Tel.: +60-112-538-9927

Received: 23 January 2018; Accepted: 16 March 2018; Published: 22 March 2018
����������
�������

Abstract: Optimal operation is an important aspect of energy efficiency that can be employed to
reduce power consumption. In cooling systems, the chillers consume a large amount of electricity,
especially if they are not optimally operated, therefore, they cannot produce the required or rated
cooling load capacity. The objective of this paper is to improve coefficient of performance (COP)
for the operation of chillers and to reduce power consumption. Two contributions in this work
are: (1) the prediction of a model by using Adaptive Neuro-Fuzzy Inference System (ANFIS)-based
Fuzzy Clustering Subtractive (FCS), and (2) the classification and optimization of the predicted
models by using an Accelerated Particle Swarm Optimization (APSO) algorithm. Particularly, in
contribution (1), two models are developed to predict/assess power consumption and cooling load
capacity. While in contribution (2), the predictive model’s data obtained are used to classify the
operating performance of the chiller and to optimize the model in order to reduce power consumption
and cooling capacity. Therefore, data classification by APSO is used to enhance the coefficient of
performance (COP). The proposed technique reduces the total power consumption by 33.2% and
meets the cooling demand requirements. Also, it improves the cooling performance based on COP,
thus resulting in a 15.95% increase in efficiency compared to the existing cooling system. The studied
ANFIS-based FCS outperforms the ANFIS-based fuzzy C-means clustering in terms of the regression.
Then, the algorithm-based classifier APSO has better results compared to the conventional particle
swarm optimization (PSO). The data was acquired from the District Cooling System (DCS) at the
Universiti Teknologi Petronas (UTP) campus in Malaysia.

Keywords: power consumption; cooling capacity; coefficient of performance (COP); adaptive
neuro-fuzzy inference system (ANFIS); fuzzy clustering subtractive (FCS); fuzzy C-means clustering
(FCM); particle swarm optimization (PSO); accelerated particle swarm optimization (APSO)

1. Introduction

In recent times, energy efficiency has become an interesting topic for researchers, especially in
relation to the energy consumed by buildings [1]. Several types of load use such as lighting systems,
compressed air, and cooling systems consume energy in buildings. Cooling systems are some of the
major energy consumers. Globally, the cooling load demand in buildings accounts for 40% of the total
energy consumption [2,3], but in Malaysia it accounts for 58% of the total energy in buildings and
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it is expected to increase further in the coming decades [4,5]. At Universiti Teknologi PETRONAS
(UTP), the cooling systems for buildings is a District Cooling Systems (DCS) which consists of three
different chiller systems: cooling by steam absorption, electricity powered water cooling and air
chillers. In DCS, the electrical water and air chillers consume more power and their consumption
increases dramatically if the chillers are not performing efficiently. This problem has recently resulted
in a poor coefficient of performance (COP) and low efficiency. Several measurements have been
conducted by DCS staff to evaluate chiller performance that include; the flow rate of chilled water,
supply and return temperatures, cooling load, and power consumption. To address this issue, one
month of data has been collected from the DCS center. The data has been analyzed and the artificial
intelligence (AI) techniques have adopted to reassess the chiller operating performance.

1.1. Review of Artificial Intelligence-Based Techniques

Several AI techniques such as fuzzy logic controller (FLC), artificial neural networks (ANN) and
adaptive neuro-fuzzy inference system (ANFIS) have been applied in cooling applications to achieve
different tasks. A FLC has been designed to manage chiller operation [6]. The advantages of FLC
overcame the drawbacks of the existing programmable logic controller. Another study compared ANN
and ANFIS in terms of the chiller input variables in calculating the coefficient of performance (COP)
during the summer of 2013 (in Turkey) [7]. ANN has four input variables; evaporator inlet/outlet
water temperatures, and condenser inlet/outlet water temperatures. Six parameters were considered
in calculating the system COP for the ANFIS. These six parameters are the chilled-water (CHW)
supply and return temperatures, the cooling water (CW) inlet and outlet temperatures, and CHW
supply and return temperatures on the cooling load (building). The results obtained indicated that
the ANFIS model had better accuracy compared to ANN. A simple mathematical formulation have
derived from ANN to compute the COP and water-circulation ratio of an absorption refrigeration
system. ANN regression models were derived using a generator temperature, evaporator temperature,
condenser temperature, absorber temperature, rich and poor solution concentration [8]. A multilayer
feed-forward neural network (MFFNN) with three layers has been proposed. The refrigerant tonnage,
inlet, and outlet temperatures have been are used input layer 1, and they are interconnected to the
hidden layers and output layer. The output layer was used for energy forecasting. The results showed
that MFFNN has a poor COP with regression (R2) of 0.93 and that indicates to an error of R2 = 0.07 [9].

Another set of ANFIS models have been developed to predict COP, and were investigated and
validated with experimental work [10–12]. A COP model was also developed and assessed with
a systematic analysis method [13]. The technique was able to adjust the operating sets based on
clustering groups to identify the influential variables that make the COP higher. In [14], an ANFIS
model was used to predict the COP, based on the adjusted water temperature in the cooling tower.
In addition a control system based on ANFIS was used to tune the chiller water temperature [14,15].
The controller adjusts the water temperature by controlling the fan speed of the cooling tower. This
resulted in increased energy efficiency and reduced power consumption. Also, another study used an
ANFIS model to assess the power consumption based on a tree algorithm. This algorithm was used to
adjust the fuzzy rules. The algorithm was used to classify and divide data into branches to reduce the
power consumption [16]. The authors mentioned in this section only adopted COP by using ANN
and ANFIS, except for Costa et al. who used an ANFIS-based tree algorithm to evaluate the power
consumption [16].

1.2. Review of PSO Techniques

Several strategies have been proposed based on particle swarm optimization (PSO). A two-layer
controller has been proposed by Beghi et al. for a multiple chiller to solve the problem of optimal
chiller loading (OCL) and sequence using PSO [17]. In the first layer, the scheduling stage determines
which chillers are loaded during each sub-time period, while the second layer for the operating stage
was used to calculate the operation conditions in each sub-time period. In another work Beghi et al.
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proposed using PSO to solve the optimal chiller problem through efficient energy management. This
was achieved in two steps to estimate the cooling load and to determine which chiller is to be “ON”
or “OFF” according to the predicted load. Various optimization techniques have been suggested to
reduce energy consumption [18]. A two-level intelligent technique based on a genetic algorithm (GA)
and PSO was used to tune the entering water temperature parameters of chiller plants for saving
cooling load and energy. Here, GA was used to control the ON-OFF operation of the chillers using
binary variables (0, 1) while PSO was used to tune the inlet water temperature in order to determine
the cooling load [2]. Xu et al. also used PSO to propose an optimal energy consumption strategy
by shifting the peak load of a building [19]. A hybrid PSO and Hooke-Jeeves algorithm (HJA) was
used to adjust the set-points of chilled-water and cooling water temperatures [20]. It was found that
when PSO-HJA is employed, the power consumption of the chilled-water system is reduced by 11.1%.
In addition, Chen et al. developed a hybrid neural network (NN) and PSO algorithm for optimal
energy consumption. NN is used to train the cooling load, while PSO is used to optimize each chiller
to reduce the power consumption [21]. The NN-PSO algorithm has the ability to converge even at low
loads [22,23]. Multi-objective PSO and evolutionary algorithm (EA) are combined to minimize hourly
energy consumption [24]. The global search ability of the EA algorithm is used to strengthen the weak
global search capability of the PSO. In another study, Abdalla et al. proposed an intelligent method for
energy management using a PSO-based fuzzy algorithm to solve the problem of optimal operation of a
chiller plant to reduce cooling consumption and electricity cost [1]. The works reviewed in this section
have used PSO algorithms to optimize the variables of chillers in order to reduce power consumption.
The PSO studies all suffer from convergence problems.

1.3. Review of Clustering Techniques

Clustering studies have been used in chiller systems. A clustering method was used by
Lam et al. [25] to study the effect of weather on chiller plant power consumption in Hong Kong.
In the study, five climatic data items were considered: dry-bulb temperature, wet-bulb temperature,
solar radiation, clearness index, and wind velocity. The variables have a directly effect on buildings
leading to increased energy consumption. The data measured for these climatic variables were
analyzed using three linear models. The data models for the chiller plant were classified based on
three categories: (1) daily power consumption, (2) day-type power consumption, and (3) monthly
power consumption. The results based on daily power consumption gave a poor modeling regression
because of the reduced amount of data and the fact their grouping was scattered. In another study,
the COP of a chiller system was assessed for five chillers using a clustering analysis method. In this
regard, five clusters were built for seven variables to assess the system performance. It has been
observed that among all variables, the flow rate of chilled water showed a high cluster sensitivity for
two chillers, whereas the flow rate of chilled water dropped to 26% leading to a greater chilled water
temperature difference, thus affecting the cooling load and hence COP [13]. The study showed that
the high sensitivity in the flow rate of chilled water resulted in insufficient COP and hence cooling
load capacity for meeting cooling demand. The studies based on clustering techniques reviewed in
this section have some shortcomings, represented by the lack of rational explanations regarding the
number of clusters [26].

1.4. Summary and Shortcomings of the Review

This literature review can be summarized by stating that the previous studies indicate that
the ANN, FLC and ANFIS techniques can be used to simulate and evaluate system performance.
Broadly, ANN and FLC suffer from some reported drawbacks [27–34]. However, the cooperative of
neuro-fuzzy algorithms can be used to overcome the deficiencies of the ANN and FLC methods [35].
ANFIS also suffers from having more rules, which would result in taking a long time to optimize
the system performance. Also the PSO studies suffer from convergence problems [36,37]. There are
some techniques which lack rational explanations regarding the number of clusters [26]. The main
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shortcoming of ANN and ANFIS study by Sun et al. is that the flow rate is ignored as a variable input
for a system. This results in a low COP [7]. ANN has been used to evaluate COP and given a poor
efficiency based on a model regression of 0.93 [8].

Most of the existing works do not give an adequate consideration for ANFIS-based adjusted FCS
through an automatic clustering with APSO. To overcome the shortcomings of the reviewed works this
study proposes a new model using ANFIS-based FCS, and the model is optimized based on an APSO
classifier to evaluate the operating performance of a chiller. The proposed method will be implemented
using actual operation data from a DCS. In this study, Sections 2 and 3 gives detailed descriptions
of DCS and our methodology. Sections 4 and 5 are concerned with the results and discussion in two
parts, and Section 6 gives a summary of the findings of this study.

2. Cooling Systems Description

The DCS serving Universiti Teknologi PETRONAS was selected for investigation and is shown in
Figure 1. It has eight chillers which are made up of two steam absorption chillers, two cooled water
chillers, four cooled air chillers, and a thermal storage system.
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Figure 1. A block diagram of District Cooling Systems at UTP campus. 
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Figure 1. A block diagram of District Cooling Systems at UTP campus.

The absorption and water chillers are used to send the chilled water (CHW) to consumers
(buildings) directly. The four electric air chillers are operated to charge chilled water to the storage
tank from 19:00 p.m. to 0.5:00 a.m. This CHW will be discharged from 06:00 a.m. to 20:00 p.m. to
maintain the cooling demand requirements in UTP buildings [6]. Only 20 buildings are targeted for
cooling by the DCS, while other buildings use small air-conditioning units. The targeted cooling
buildings by DCS are: (1) Block 1 to Block 5 and Block 13 to Block 23 which are part of the academic
building complex. It is used for staff offices, halls, labs, and student research. Each block is four floors
high, (2) R&D Building: this is a four-floor research building with a total area of 21,225 square meters.
It is used for carbon dioxide management and enhanced oil recovery research. It has 65 laboratories
and accommodates up to 550 researchers, (3) Chancellor Complex which has a gross floor area of
40,000 square meters and is made up of the following: Chancellor Hall with capacity to accommodate
2910 persons; Resource Centre accommodating 2000 persons and over 500,000 books. It aims to provide
up-to-date and adequate information resources to cater for the UTP population’s study and teaching
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needs, (d) Masjid An-Nur is a mosque, (4) Block C is a four floor building used for public and adjunct
lectures. It also has some classrooms as well as the students’ health care center, and (5) Block D is
an academic building consisting of four floors. It is made up of the student support unit, teaching,
retail, and other student entertainment facilities. In this study, four Dunham Bush centrifugal chillers
of the same capacities were used. Each of them has a rated cooling capacity of 325 Refrigerant Ton
(1 RT = 3.517 kW). The total capacity of the chillers is stored in order to meet the demand during
day-time hours. The chillers are connected in parallel and operate at constant speeds. The CHW pump
consumes 15 kW to deliver the amount of CHW at 131 m3/h each. The CHW supply and return
temperatures are 5 ◦C and 12.5 ◦C, respectively, when they operate at full load. The compressor power
for each chiller is about 266.8 kW. The heat rejection in the chillers is attained with the aid of four
cooling towers for each of the chillers. The towers have four cooling fans with a rated power of 16 kW
each. This study is only concerned with one of these chillers (chiller No. 2) as shown in Figure 2.
The electrical chiller (EC) consumes a huge amount of energy, which resulted in lower efficiency and
insufficient cooling. The study addressed this problem by proposing a novel method for re-evaluating
the operating performance of the chiller (No. 2). Table 1 shows the recommended values for each
chiller, and Figure 2 shows power consumption and cooling load capacity for all four chillers system
for the month of May 2016.
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Table 1. The chiller recommended values.

Parameter Value

COP (QkW/QC) 0.82
TCHWS/TCHWR (◦C) 5/12.5

mCHW (kg/S) 36.68
∆TCHW (◦C) 7.5

QC (RT) 325
QC (kW) 1143
Efficiency 4.28
QkW (kW) 266.8

3. Proposed Methodology

Figure 3 shows the proposed methodology used to achieve the objectives of this work.
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It can be implemented in four steps as follows:

(1) Data Preprocessing

The data was collected from the DCS. The data includes the variables flow rate of the CHW,
supply and return temperatures of the CHW, number of chillers, operation load conditions, in addition
to the ambient temperature. The variables were selected to fit the requirements of the clustering
technique range between 0 and 1. The data were combined in two components-variables as stated in
Section 3.1. Sampling was done on 744 data points and scaled to suit the clustering technique based on
the FCS algorithm.

(2) Data Classification

The data collected in the Data Pre-processing stage were classified into grouping centers using
the FCS algorithm to generate new fuzzy inference system (FIS) rules. The new extracted rules were
used to determine the exact data-point centers to be used from the inputs and outputs data. A linear
decision model based on fuzzy reasoning was introduced to tune the influence radius.
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(3) ANFIS for Data Modeling

After classification of the data by the FCS algorithm, 5-layer ANFIS was applied to carry out the
simulation process using two inputs, ycompI and ycompII. Thus, the data modeling output for estimating
power consumption and cooling capacity is introduced for classification into five clusters.

(4) Data Classification and Optimization

The data modeling by ANFIS based on FCS is introduced through an objective function in the
following section. This function is used to classify the data-set into five groups. Afterwards, APSO is
employed to select the group or cluster center for data modeling and also to minimize the distance
between data points and cluster center.

3.1. Basic System Modeling

The following section presents mathematical models based on statistical analysis for the collected
real data of chillers plant to be represented by ANFIS. For kth chiller (k = 1, 2, . . . , N), the operation
mode γk can be expressed in two conditions as given in Equation (1):

γk =

{
1, when kth chiller is ON
0, when kth chiller is OFF

(1)

In the chillers plant, the best performance occur, when the chiller’s compressor is operated at
partial load (Lr). Thus, the chillers’ operation based on the input power to the compressor can be
expressed by Equation (2) [38]:

QkW = γk

4

∑
k=1

(ak + bkLr + ckL2
r + dkL3

r + ekL4
r ) (2)

where ak, bk, ck, dk, ek are the power curve coefficients of kth chiller. The chillers produce a mass flow of
CHW (kg/s) at a supply temperature, TCHWS via an evaporator for the distribution of load in order
to serve the cooling utilities. The flow of CHW will return to enter evaporator under a certain return
temperature, TCHWR [1]. This chilled water must meet the requirements of cooling load demand in kW
which can be expressed according to:

QC = γk

4

∑
k=1

cpmCHW(TCHWR − TCHWS) (3)

where cp is specific heat of CHW (4.197 kJ/kg ◦K), mCHW is the flow rate of CHW in (kg/s), TCHWR and
TCHWS are the return and supply temperatures of CHW in (◦C), respectively. Therefore, the ratio of
Equations (2) and (3) can be used to assess the operating chiller performance which is known as the
coefficient of performance (COP). Thus, COP can be written as:

COP = QkW/QC (4)

Thus, reducing power consumption will result in minimizing COP. Where the minimization of
performance will result in increasing energy efficiency of chiller as given by Equation (5):

EFici = RT/COP (5)

where EFici is the chiller efficiency, RT = 3.517 kW.
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3.2. Data Modeling Preprocessing

The flow rate of CHW and its return/supply temperatures are two variables that will be affected
by any increase/decrease in cooling load consumption [21,39–42]. However, energy efficiency will
be affected by the increasing/decreasing cooling water return temperature, while reducing this
temperature will result in an improved COP [43–46]. In this section the models to assess the COP for
electric chillers will be predicted. The COP model will be developed according to the prediction of
cooling load (QC) and power consumption (QkW). The behavior of QkW and QC can be simulated based
on the selection of six influential variables: (1) the supply temperature of CHW (TCHWS), (2) the return
temperature of CHW (TCHWR), (3) number of chillers (k), (4) the flow rate of CHW (mCHW), (5) part
load ratio (Lr), and (6) ambient temperature (Tamb). The Tamb is one of the influential variables that can
be used as a climatic parameter [47]. This temperature, Tamb has effect on the temperature difference
of CHW (∆TCHW) that would result in an increase of cooling load consumption. Thus, ∆TCHW is
expressed in Equation as:

∆TCHW = (TCHWR − TCHWS) (6)

The recommended temperature of TCHWS and TCHWR are 5 ◦C and 12.5 ◦C, respectively. However,
a TCHWR reaches up to 19.3 ◦C due to the ambient temperature effect (θ) and this will result in more
power consumption. Therefore, the return temperature of CHW can be expressed by Equation (7):

T′CHWR = TCHWR + θ (7)

θ =
2.5λ

0.12

Tamb,max∫
Tamb,min

1
Tamb

dTamb + 1.44 (8)

Herein, the Tamb for average values varies from 1 to 31 May 2016 [47]. Thus, the temperature,
T’CHWR can be expressed by Equation (9),

T′CHWR = TCHWR +
2.5λ

0.12

Tamb,max∫
Tamb,min

1
Tamb

dTamb + 1.44 (9)

s.t; λ =


0, i f Tamb < Tamb,min

Tamb−Tamb,min
Tamb,max−Tamb,min

, i f Tamb,min ≤ Tamb ≤ Tamb,max

1, i f Tamb > Tamb,max

(10)

Here by substituting Equations (9) and (10), the new temperature difference ∆T’CHW according to
T’CHWR can be used as the first-component (ycompI) to assess the cooling load which can be expressed by:

ycompI = ∆T′CHW = T′CHWR − TCHWS (11)

Also, the flow rate of chilled-water (mCHW) is of factors can influence power consumption.
However, during the off-peak hour, a number of chillers (k) are operated under partial load (Lr)
conditions. Thus, the second-component can be written as,

ycompII = kmCHW Lr (12)

Equations (11) and (12) are used to predict the power consumption and cooling load capacity by
Equations (2) and (3). Then, it will be used to assess the COP based on data classification of energy
consumption and cooling load. In this work, chiller 2 is adopted for assessment and it will be operated
under partial load condition. Figure 4 shows the operating conditions of all four chillers including
chiller 2.
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3.3. Fuzzy Clustering Subractive

A fuzzy clustering subtractive (FCS) algorithm is used to estimate the data clustering numbers.
In particular, the data will be scaled between (0, 1) and each data sampling point will be assigned as a
potential cluster center. The cluster centers are calculated and lth data points or grouping (ul = u1, u2,
uz) have high influences on any cluster center within this group. Assume M dimensions, the density
function Dl of lth data point is expressed by:

Dl =
z

∑
l=1

exp

{
‖ul − up‖2

(ra/2)2

}
(13)

where ul and up are data points, ra is the influence radius. The 1st cluster center will be at the highest
density point uCCl. In the next cluster center, the density of each ul data point is expressed by:

Dl = Dl − DCCl

z

∑
l=1

exp

{
‖ul − up‖2

(ra/2)2

}
(14)

From Equation (14), the distance between data point ul and cluster center up can be written as:

dlp = exp

{
−
‖ul − up‖2

σ2

}
(15)

The membership function µl for lpth each cluster of data-point can be computed by [48]:

µl = exp

−
M

∑
p=1

−
(

ulp − ctr

)2

2σ2
p

 (16)

where ulp is the corresponding data points, ctr is the cluster center, σ =
√

α/2 and α = 4/r2
a [49]. The

influence radius, ra is sufficient for most studies with acceptable results ranged 0.1 to 0.7 [48,50].
A lower ra generates more clusters, these clusters be closer to each other and this would result in less
errors. High ra should be used in a low density data, which will result in a small number of clusters, in
this particular case, a fuzzy model is introduced with a fuzzy decision function of ra by:
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ra =


1, when fa ≤ f min

a

fa− f min
a

f max
a − f min

a
, when f min

a < fa < f max
a

0, when fa ≥ f max
a

 (17)

where f min
a and f max

a are the minimum and maximum values of ath objective function. If ra = 0, it will
be only one cluster (the first) and hence no more clusters after the first one. If ra = 1, the numbers of
clusters generated will be few and best (ra) to be ranged f min

a < fa < f max
a according to Equation (17).

3.4. Adaptive Neuro-Fuzzy Inference System

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a logic controller introduced in 1993 by
Jang et al. [35]. It is a combination of an artificial neural network (ANN) and fuzzy inference system
(FIS). The ANN and FIS have good capabilities and interpretability for learning methods and both
are used as expert systems [31]. The combination of these two techniques overcome the limitations of
ANN computational time and FIS rules error [27–31].

In this work, two models will be predicted, which are cooling load capacity (QC) and power
consumption (QkW) to assess the chiller performance. The two models have two inputs, ycompI and
ycompII in the ANFIS structure shown in Figure 5.Energies 2018, 11, x FOR PEER REVIEW  10 of 23 
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Then, a Sugeno fuzzy inference system (Sugeno-FIS) is used to generate the system rules from the
input variables to the outputs. The combination of inputs can be modeled as first order using “fuzzy
if-then rules” by:

Rule#1 = i f
(
ycompI is A1

)
and

(
ycompII is B1

)
, then f1 = m1ycompI + n1ycompII + o1 (18)

Rule#2 = i f
(
ycompI is A2

)
and

(
ycompII is B2

)
, then f2 = m2ycompI + n2ycompII + o2 (19)

where ycompI and ycompII are the input variables, Aq and Bq are the fuzzy sets of antecedents, fq are the
system outputs, and mq, nq, oq are the parameters of fuzzy consequences. The structure of ANFIS
shown in Figure 5 has five layers, each layer with specific task.

In Layer 1, each node gives a function, and the output of the qth node in each mth layer is denoted
by Dm

q , then this function can be expressed by:

D1
q = µAq

(
ycompI

)
, when q = 1, 2 (20)
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D1
q = µBq−2

(
ycompII

)
, when q = 3, 4 (21)

Let A = (A1, A2, B1, or B2), therefore each q generates membership grades of input variables with
the Gaussian function. The output of the qth node in the Layer 1 based on FCS in Equation (16) is given
by Equation (22):

D1
q = µAq

(
ycompI

)
= exp

{
−
(
ycompI − cq

)
2σ2

q

}2

(22)

where µAq is the corresponding membership function, ycompI or ycompII are the input to the node at
Layer 1, σq and cq are parameters sets of membership functions (MF) determined from the actual
data. When the parameters change, the MF shape changes accordingly. In Layer 2, each q in this
layer is a fixed node labelled and then the output is the multiplication of labeled data as expressed by
Equation (23):

D2
q = ωq = µAq

(
ycompI

)
× µBq

(
ycompII

)
, q = 1, 2 (23)

In Layer 3, the q will be calculated as the ratio of the firing strength to the total of all firing
strengths using Equation (24):

D3
q = ω̃q =

ωq

ω1 + ω2
, q = 1, 2 (24)

In Layer 4, the output in Equation (24) will be multiplied by the first order model in
Equations (18) and (19), where it represents the weights (ω̃q) of the consequent of each calculated fuzzy
rule. The overall output is given in Equation (25):

D4
q = ω̃q × fq = ω̃q

(
mqycompI + nqycompII + oq

)
(25)

In Layer 5, the summation in Layer 4 will be calculated in this node as weighted, therefore the
overall output can be written as,

D5
q = ∑

q
ω̃q fq =

∑q ωq fq

∑q ωq
(26)

The ANFIS algorithm is a hybrid of gradient descent and least squares methods. When the
premised parameters are fixed, the final output for each model is a linear combination of the consequent
parameters. Based on the 2 variable-components ycompI and ycompII, the overall output for each model
(fq = f 1 + f 2) can be expressed in Equation (27) as:

fq = f1 + f2 =
ω1×m1ycompI+ω1×n1ycompII+ω1×o1

ω1+ω2
+

ω2×m2ycompI+ω2×n2ycompII+ω2×o2
ω1+ω2

(27)

3.5. ANFIS-Based FCS and ANFIS-Based FCM Set-Up

Three techniques have been developed: (1) ANFIS-based FCS, (2) ANFIS-based fuzzy
clustering-means (FCM), and (3) the traditional ANFIS. The techniques were developed and executed
in two parts: training and checking of the data. 75% (588) of the data sampling points were used
as training data selected randomly from the recoding, whereas the remaining 25% (186) of the data
sampling points were used as testing data to verify the ANFIS models. The data was simulated in
MATLAB Environment. From the data collected (1–31 May 2016), the QkW and Qc are 122,495 kWh and
115,174 RTh, respectively (COP = 1.06, Equation (4)). Therefore, the chiller did not perform efficiently.
Here, ANFIS-based FCS and ANFIS-based FCM data modeling were developed and compared
with the ANFIS. Tables 2 and 3 show simulation parameters for the data-set of QkW and QC versus
ycompI & ycompII.
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Table 2. ANFIS-based Fuzzy Clustering Subtractive parameter for Chiller 2.

ANFIS-Based FCS: Chiller 2 QkW QC

No. of nodes 29 29
No. of linear parameters 12 12

No. of non-linear parameters 16 16
Total No. of parameters 28 28

No. of training data pairs 558 558
No. of checking data pairs 186 186

No. of each input (ycompI&II) 2 2
No. of fuzzy rules 4 4

No. of clusters 4 4
No. of epoch 250 250

Influence radius (ra) 0.12 0.12
Error goal 0 0

Initial step size 0.01 0.01
Step size decrease rate 0.9 0.9
Step size increase rate 1.1 1.1

Table 3. ANFIS-based Fuzzy C-Means clustering parameter for Chiller 2.

ANFIS-Based FCM: Chiller 2 QkW QC

No. of nodes 29 29
No. of linear parameters 12 12

No. of non-linear parameters 16 16
Total No. of parameters 28 28

No. of training data pairs 558 558
No. of checking data pairs 186 186

No. of each input (ycompI&II) 2 2
No. of fuzzy rules 4 4

No. of clusters 4 4
No. of epoch & iterations 250 250
Minmum improvement 0.00001 0.00001

Error goal 0 0
Initial step size 0.01 0.01

Step size decrease rate 0.9 0.9
Step size increase rate 1.1 1.1

Partition matrix exponent 2 2

3.6. System Classifier-Based Optimization Method

To reassess the operating performance of Chiller 2, the power consumption and cooling capacity
data was analyzed with the aid of the ANFIS-based FCS and computed using:

fQkW = 7.3674ycompI + 7.3674ycompII + 8.9967 (28)

fQC = 8.9967ycompI + 8.9967ycompII + 9.9967 (29)

Equations (28) and (29) are objective functions which need to be minimized and can be written as
Equation (30) with constrained values for variables of ycompI and ycompII in Equation (31):

fq(gg) ↓= COP = min
{

fQkW

fQC

}
(30)
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gg =



0 ≤ k ≤ 1
0.1 ≤ lr ≤ 1
0 ≤ θ ≤ 6.8
0.1 ≤ λ ≤ 1

5 ≤ TCHWS ≤ 5.5
12.5 ≤ T′CHWR ≤ 19.8

0 ≤ mCHW ≤ 36.68
26.4 ≤ Tamb ≤ 34


(31)

3.6.1. PSO Algorithm

PSO was first used to simulate the foraging swarm of particles such as bird flocks and fish schools
by Kennedy and Eberhart [51]. Each particle (i) is defined by its position xij

t = {xi1
t, xi2

t, . . . , xij
t, . . . ,

xim
t} and velocity vij

t = {vi1
t, vi2

t, . . . , vij
t, . . . , vim

t} of jth dimension. At each iteration, i remembers
the best position achieved so far and stores it as (pbestij

t). Then each i stores the best position achieved
in the whole swarm as (gbestj

t). At each step, a particle is directed to fly a distance with a velocity,
defined as a weighted term with separate random numbers toward a location of pbest and gbest. Hence,
the velocity of particles and their positions can be expressed by [1]:

v(t+1)
ij = ck

{
wv(t)ij + c1r1ij

(
pbest(t)ij − x(t)ij

)
+ c2r2ij

(
gbest(t)j − x(t)ij

)}
(32)

x(t+1)
ij = x(t)ij + v(t+1)

ij , i = 1, 2, . . . , ps (particles) (33)

where vij
t+1 is the updated velocity for the particles at iteration (t + 1), and vij is the velocity of ith

particle at iteration, t,. Where the velocity can be expressed by this boundary:

vij,min ≤ vij ≤ vij,max (34)

c1 and c2 are the learning factors used to accelerate particles to find pbestij
t and gbestj

t, and r1, r2

are random numbers (0, 1) with a matrix dimension (ij), xij
t+1 is the updated particle’s current position,

ck is the constriction factor and w is the inertia weight expressed as:

w = wmax −
[

wmax − wmin
Itmax

]
iter (35)

ck = 2 ∗ ζ/
{∣∣∣∣2− ψij −

√
|ψ2 − 4ψ|

∣∣∣∣} (36)

where wmax and wmin are initial and final inertia weight factors, respectively, iter is the current iteration
number, Itmax is the maximum iteration, and ζ is a constant = 1. Herein, it is known that PSO has a
shortcoming which is converging at high speed [36,37], to avoid this drawback, an accelerated PSO
(APSO) based fuzzy is proposed in Section 3.6.2. Even though, PSO was used to solve the objective
function in Equation (30). Table 4 lists the parameters of PSO that have been used in this study.

Table 4. The setting parameters of Particle Swarm Optimization.

Symbol Value Symbol Value

Swarm 50 wmax 0.95
Itmax 250 vmax +0.5 *v

c1 1.5 vmin −0.5 *v
c2 1.5 r1, r2 0, 1

wmin 0.35 ck 0.733
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3.6.2. Accelerated Particle Swarm Optimization

To accelerate the convergence of PSO, an accelerated particle swarm optimization (APSO) is
used [52]. The APSO could accelerate the convergence using the global best only. Therefore, the
updated particle’s velocity and its position can be modified by:

v(t+1)
ij = v(t)ij + αrij + β

(
gbest(t)j − x(t)ij

)
(37)

x(t+1)
ij = x(t)ij (1− β) + β

(
gbest(t)j

)
+ αrij (38)

where rij is a random number (0, 1), α and β are parameters typically less than 1. In most applications,
it uses β = 0.1~0.7 and α = 0.1~0.5 [52], whereas, in other studies the values ranged between α = 0.1~0.4
and β = 0.1~0.7 [53]. In this study, it is recommended to set α = 0.2 and β = 0.5. However, β can be
adjusted using a fuzzy linear model by:

βt
i =


1, when yi ≤ ymin

i

yi−ymin
i

ymax
i −ymin

i
, when ymin

i < yi < ymax
i

0, when yi ≥ ymax
i

 (39)

where ymin
i and ymax

i are the minimum and maximum values (0~1) (ob). If β = 0, there will be no
movement for the particle, i, no updating for the velocity and the particle will be fixed at only one
position. If β = 1, there will be no change in the global best and no updating in the current position.
Thus, the fuzzy decision for β ranged between (0.1~0.7) at t population. The membership’s degree can
be determined by:

βt =
∑i=1 βt

i

∑t=1 ∑i=1 βt
i

(40)

To solve objectives functions in Equation (30), APSO was used and Table 5 shows their parameters
for power consumption and cooling capacity optimization.

Table 5. The setting parameters of Accelerated Particle Swarm Optimization.

Symbol Value Symbol Value

Swarm 50 nD 2
Itmax 250 vmax +0.5 *v

α 0.47 vmin −0.5 *v
β 0.63 rij 0, 1

3.7. Methodology Implementation

The study was implemented in three steps as mentioned earlier, and the procedures for the steps
are as follows:

1. In the 1st step, the data collected for TCHWS, TCHWR, mCHW, Tamb, Lr, and k were selected and
scaled to be clustered by FCS algorithm.

2. Each of these data was classified into five groups of lth data (ul = u1, u2, . . . , u5) using
FCS algorithm.

3. Each group or cluster has a center or mean represented by the vector of pth (up = u1, u2, . . . , u5).
4. The data density Dl was calculated to determine data grouping with their 5 centers using

Equation (13).
5. In density formula, the radius of cluster or influence radius was adapted by a fuzzy linear

function in Equation (17) for an appropriate number for the clusters.
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6. In the 2nd step, the data was loaded and simulated into two parts; training data model and
testing data model.

7. 75% of the collected data was employed for training data, whereas 25% was used to verify
the model.

8. A matrix relationship for input data—output data was created.
9. The training data was used to build fuzzy membership function using Gaussian with 2-4-4.
10. The 2-4-4 are 2 ANFIS-based FCS inputs (ycompI and ycompII), 4 memberships function, and 4 Sugeno

FIS rules.
11. Each input based FCS has 4 values and the all memberships function inputs responsible for

determining/developing the final output model of first order model based Sugeno FIS.
12. The training data used a hybrid learning algorithm to identify consequent parameters of

each model.
13. The model fitness performance for training/testing data occurred when both reach to a minimum

and similar error.
14. In the 3rd step, the output data of ANFIS-based FCS was loaded, clustered again and then

optimized by APSO.
15. The variables in Equations (28) and (29) were defined and ranged in Equation (31) and then

optimized based a classifier in Equation (30).
16. Then data loaded in two input columns.
17. The clustering cost function was created based on numbers of decision variables.
18. A decision matrix clustering was created in five positions for each input column.
19. Calculate the density and identify the cluster centers with adjustable cluster radius.
20. Then, the velocity of particles and their position were initialized.
21. The clustering cost function was evaluated.
22. The global best position for the particles was selected for assigning cluster centers.
23. The velocity limits for the particles were initialized and applied.
24. Then, the velocity of particles was updated.
25. The system output was evaluated, otherwise APSO parameters re-adjusted by the fuzzy system.

The implemented parameters for ANFIS-based FCS and APSO are given in Tables 2 and 5, and
Figure 6 shows the implementation of the ANFIS-based FCS with the APSO flow chart.
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optimized based a classifier in Equation (30) 

16. Then data loaded in two input columns. 

17. The clustering cost function was created based on numbers of decision variables. 

18. A decision matrix clustering was created in five positions for each input column. 

19. Calculate the density and identify the cluster centers with adjustable cluster radius 

20. Then, the velocity of particles and their position were initialized. 

21. The clustering cost function was evaluated. 

22. The global best position for the particles was selected for assigning cluster centers  

23. The velocity limits for the particles were initialized and applied. 

24. Then, the velocity of particles was updated.  

25. The system output was evaluated, otherwise APSO parameters re-adjusted by the fuzzy system. 

The implemented parameters for ANFIS-based FCS and APSO are given in Tables 2 and 5, and 
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4. Results and Discussion (Part 1)

4.1. ANFIS-Based FCS and ANFIS-Based FCM Set-Up

ANFIS were developed and executed in two parts; training and checking data. 75% of data
sampling points were used as training data selected randomly from the recording, while the remaining
25% were used as testing data to verify the ANFIS models. The system has been implemented
in a MATLAB environment based on the actual data that have been collected during the period
(1–31 May 2016). From that, the power consumption and cooling load capacity of a chiller 2 were
122,495 kWh and 115,174 RTh, respectively. Based on actual data, the estimated COP is 1.06, which
is less efficient compared to other chillers shown in Figure 2. In this study, the simulation was
implemented on two models (QkW and QC) against variables of the two-component ycompI and ycompII.

4.1.1. ANFIS-Based FCS Technique

The results obtained for the ANFIS-based FCS are shown in Figure 7. The results indicate that the
training and testing data for power consumption and cooling load were identically consistent with the
actual data in Figure 7a–d, respectively. The power consumption and cooling load models are shown
in a surface plot output versus two input variables, ycompI and ycompII in Figure 7e,f, respectively. The
actual data for the power consumption in Figure 7b is identical with the simulated power with a mean
error of 1.62% (0.02).
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Meanwhile, the predictive cooling load capacity is also identical in Figure 7d. Therefore, the
simulation of predictive power consumption and cooling load capacity are almost similar to the
existing system. The analytical performance for the simulation using ANFIS-based FCS according to
the coefficient of determination (R2), it was about 0.99601 and 0.99895 for power consumption and
cooling capacity, respectively. Hence, the simulation results tend to be similar to the existing DCS
system at UTP.

4.1.2. ANFIS-Based FCM Technique

The ANFIS-based FCM model was implemented and simulated, and the results are given in
Figure 8. The results indicate that the training and testing data for power consumption and cooling
load were also identically consistent with the actual data as in Figure 8a–d, respectively. The data for
power consumption and cooling load models are shown in a surface plot of output versus two input
variables, ycompI and ycompII (Figure 8e,f, respectively).

The actual energy consumption in Figure 8d was compared with the one simulated using
ANFIS-based FCM and the cooling load capacity in Figure 8f was also compared with the simulated
too. Herein, the simulation performance was not similar to the actual data in case of ANFIS-based
FCM. The regression for both power consumption and cooling load capacity are 0.99436 and 0.99825,
respectively. This resulted in increases in root square mean error (RSME) as given in Table 6 for both
ANFIS-based FCS and ANFIS-based FCM. Therefore, the analytical data based on R2 and RSME show
that the ANFIS-based FCS is more accurate compared to the ANFIS-based FCM.

Table 6. A comparison between ANFIS-based FCS and ANFIS-based FCM.

Model Performance RMSE (QkW) RMSE (QC) R2 (QkW) R2 (QC)

ANFIS-FCS: Training data 12.3570 5.3446 0.99440 0.99890
ANFIS-FCS: Testing data 11.2486 5.3264 0.99601 0.99895

ANFIS-FCM: Training data 12.2018 5.7747 0.99460 0.99873
ANFIS-FCM: Testing data 12.6965 6.8174 0.99434 0.99825



Energies 2018, 11, 719 18 of 24

Energies 2018, 11, x FOR PEER REVIEW  16 of 23 

 

  

(e) (f) 

Figure 7. ANFIS-based FCS chiller 2; (a,b) Power consumption: Training—Testing data; (c,d) Cooling 

load: Training—Testing data; (e,f) Power consumption—Cooling load output surface. 

Meanwhile, the predictive cooling load capacity is also identical in Figure 7d. Therefore, the 

simulation of predictive power consumption and cooling load capacity are almost similar to the 

existing system. The analytical performance for the simulation using ANFIS-based FCS according to 

the coefficient of determination (R2), it was about 0.99601 and 0.99895 for power consumption and 

cooling capacity, respectively. Hence, the simulation results tend to be similar to the existing DCS 

system at UTP. 

4.1.2. ANFIS-Based FCM Technique 

The ANFIS-based FCM model was implemented and simulated, and the results are given in 

Figure 8. The results indicate that the training and testing data for power consumption and cooling 

load were also identically consistent with the actual data as in Figure 8a–d, respectively. The data for 

power consumption and cooling load models are shown in a surface plot of output versus two input 

variables, ycompI and ycompII (Figure 8e,f, respectively). 

  
(a) (b) 

Energies 2018, 11, x FOR PEER REVIEW  17 of 23 

 

  
(c) (d) 

  
(e) (f) 

Figure 8. ANFIS-based FCM chiller 2; (a,b) Power consumption: Training—Testing data; (c,d) Cooling 

load: Training—Testing data; (e,f) Power consumption—Cooling load output surface. 

The actual energy consumption in Figure 8d was compared with the one simulated using 

ANFIS-based FCM and the cooling load capacity in Figure 8f was also compared with the simulated 

too. Herein, the simulation performance was not similar to the actual data in case of ANFIS-based 

FCM. The regression for both power consumption and cooling load capacity are 0.99436 and 0.99825, 

respectively. This resulted in increases in root square mean error (RSME) as given in Table 6 for both 

ANFIS-based FCS and ANFIS-based FCM. Therefore, the analytical data based on R2 and RSME show 

that the ANFIS-based FCS is more accurate compared to the ANFIS-based FCM. 

Table 6. A comparison between ANFIS-based FCS and ANFIS-based FCM. 

Model Performance RMSE (QkW) RMSE (QC) R2 (QkW) R2 (QC) 

ANFIS-FCS: Training data 12.3570 5.3446 0.99440 0.99890 

ANFIS-FCS: Testing data 11.2486 5.3264 0.99601 0.99895 

ANFIS-FCM: Training data 12.2018 5.7747 0.99460 0.99873 

ANFIS-FCM: Testing data 12.6965 6.8174 0.99434 0.99825 

5. Results and Discussion (Part 2) 

The objective function in Equation (30) was introduced and the COP was optimized based on 

the APSO. The COP was optimized using data classification for QkW and QC. The data for QkW and QC 

were classified and assign cluster centers with a density minimization by: 

Figure 8. ANFIS-based FCM chiller 2; (a,b) Power consumption: Training—Testing data; (c,d) Cooling
load: Training—Testing data; (e,f) Power consumption—Cooling load output surface.

5. Results and Discussion (Part 2)

The objective function in Equation (30) was introduced and the COP was optimized based on the
APSO. The COP was optimized using data classification for QkW and QC. The data for QkW and QC
were classified and assign cluster centers with a density minimization by:
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Dl = min
z

∑
l=1

exp

{
‖ul − up‖2

(ra/2)2

}
(41)

Herein, a fuzzy adopts to partitioning system with membership ranges between 0 and 1. Five
clusters (up, p = 1, 2, 3, 4, 5) were grouped using the APSO algorithm from the output data of the
ANFIS-based FCS. For ul = 1, 2 the data pairs for cluster QkW and QC can be written as (QkW1, QkW2,
QkW3, QkW4, QkW5) and (QC1, QC2, QC3, QC4, QC5). The clusters up were assigned five centers for each
cluster of QkW and QC. The data were scaled by 300 to satisfy clustering dimensions (0, 1). Each particle
i has j dimensions j = 1, 2 to indicate the set-point value for each particle vector. This jth particle vector
in the search space is restricted according to the specific scaling. After data has been classified by PSO
and APSO, the data was multiplied by 300 (re-scaled) again to give the final classification based on
five cluster centers.

5.1. Classifier-Based PSO

After the fuzzy algorithm was adopted to the partitioning system with membership ranging from
(0~1), the matrix obtained for cluster centers using PSO is given by:

PSO =



Cluster center 1
Cluster center 2
Cluster center 3
Cluster center 4
Cluster center 5


=



47.1446 45.9117
01.6115 01.9193

184.0488 195.7765
269.5352 262.7565
110.9093 146.9420


=



1.0268
0.8396
0.9401
1.0258
0.7548


(42)

where each row in the matrix represents cluster centers, while the first and second column represent
power consumption and cooling load capacity, respectively. The last column represents COP.
In cluster 1, the chiller was operated at a condition of the partial load (18%). The power consumption
and cooling load capacity were 47.1446 kW and 45.9117 RT, respectively and this resulted in a COP of
1.0268. In cluster 2, the chiller was not operated at a condition of no load (0%), while in cluster 3, the
chiller was operated at a condition of (69%) and its operating performance COP was 0.9401. In cluster 4,
the chiller was operated at a condition of the full load (100%). Where it consumed a power of 269.5 kW
and delivered a cooling capacity of 262.7 RT. In this case, the chiller performed efficiently with a
COP of 0.9401, which is even better than the existing system. In cluster 5, the chiller operated at a
condition of the partial load (42%) and performed efficiently with COP of 0.7548. Therefore, overall
performance for cluster 1 and cluster 4 shows that the chiller performed well compared to the existing
system. Based on the recommended values, the chiller did not perform efficiently. This is because of
several influential factors mentioned earlier. The chiller energy efficiency according to Equation (5) is
about 3.4252 and 3.4288 for cluster 1 and cluster 4, respectively. For clusters 3, the chiller performance
improved a little bit compared to clusters 1 and 4. In the 5th cluster, the chiller was operated and
performed more efficiently than the recommended values. Cluster 5 represents efficient cluster for
the chiller and power consumed. The overall operating performance using PSO-based classifier was
optimized and gave COP of 0.9393 with an efficiency of 3.74.

5.2. Classifier Based APSO

After fuzzy was adopted to partitioning system with membership ranged (0~1), the matrix of
clusters obtained after performing APSO are:
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APSO =



Cluster center 1
Cluster center 2
Cluster center 3
Cluster center 4
Cluster center 5


=



255.5098 270.5731
184.0491 195.7763
1.8728 2.2026

273.3892 260.5466
110.1508 146.0347


=



0.9443
0.9401
0.8503
1.0493
0.7543


(43)

Five clusters have been assigned for paired data of power consumption and cooling capacity
using APSO. In cluster 1, it consumed 255.5 kW power and produced a cooling capacity of 270.5 RT.

The energy efficiency in this cluster increased by 3.7245 and the COP improved by 0.9443
compared to that using PSO. In cluster 2, the chiller consumed 184.5 kW and produced 195.8 ton.
The COP is 0.9401, which is similar to that of cluster 3 in PSO. In the 4th cluster, APSO consumed
about 273.5 kW, which is even more than the rated value (266.8 kW) with a production of 260.5 RT
cooling capacity. In this particular case, the chiller did not perform efficiently. Therefore, energy
efficiency in this case is about 3.3518 which is even less than PSO. Cluster 5 is one of the most efficient
clusters with a 0.7543 improvement in COP and energy efficiency increase 4.6626. In this case, COP and
EFici were even better than the recommended. The overall operating performance using PSO-based
classifier was optimized to give COP of 0.8908 with an efficiency of 3.95. It can be concluded that APSO
demonstrated that it is an efficient tool for data classification compared to PSO. Also, it outperformed
PSO drawback regarding the problem of convergence. Figure 9a,b shows the final classification for
five cluster centers by PSO and APSO, respectively. Figure 9c shows the clustering of COP based on
calculation of (a) and (b). Figure 9d shows the objective function using PSO and APSO compared to
the existing system.

The energy efficiency of the chiller increased when the ANFIS-based FCS classified with APSO
was used compared to when the ANFIS-based FCS classified with PSO as shown in Table 7 according
to Equation (5). The ANFIS-based FCS is better than the ANFIS-based FCM in terms of regression
in Table 6. The data obtained by ANFIS-based FCS was classified and cluster No. 5 was found to be
the best. From Table 7, cluster No. 5 was efficient and improved the performance by 40.53%. In this
particular case, the chiller consumed 110 kW and produced 140 RT multiplied by all data points
(744 h) to give a total energy consumption and cooling load capacity of 81,840 kWh and 104,160 RTh,
respectively for May 2016. The data by ANFIS-based FCS was classified using PSO and APSO and the
optimal results are given in Table 8.

Table 7. A comparison of chiller efficiency.

Cluster EFici (Exsiting) EFici (PSO) EFici (APSO) Increased (PSO)% Increased (APSO)%

Cluster#1 3.3179 3.4252 3.7245 3.23 12.25
Cluster#2 3.3179 4.1889 3.7411 26.25 12.75
Cluster#3 3.3179 3.7411 4.1362 12.75 24.66
Cluster#4 3.3179 3.4285 3.3518 3.33 1.02
Cluster#5 3.3179 4.6595 4.6626 40.43 40.53

Table 8. A comparison of chiller consumption and cooling capacity.

Technique Cluster 5 (kWh) Saving (%) Cluster 5 (RTh) Saving (%)

Existing System 122,495 - 115,174 -
ANFIS—FCS with PSO 82,584 32.6 109,368 5.0

ANFIS—FCS with APSO 81,840 33.2 108,624 5.7
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6. Conclusions

This paper adopted ANFIS-based FCS to simulate the energy consumption and cooling capacity
for a chiller in an existing cooling system at UTP. The simulation was done in two parts. In Part 1,
a simulation was done by ANFIS-based FCS. In this, data of six variables was collected and used to
model two components. It was classified into four clusters centers with an adjusted influence radius of
0.12. The clusters were used as inputs to a 5-layer ANFIS. The output was then optimized by APSO
to evaluate the operating performance of the chiller based on COP. The simulation results by using
ANFIS-based FCS showed a good agreement and tended to be similar. Where the RMSE was about
11.2486 and 5.3269 for power consumption and cooling load capacity, respectively. In a simulation by
ANFIS-based FCM, the results showed that the RMSE slightly increased compared to ANFIS-based
FCS. Where the RMSE by ANFIS-based FCM for power consumption and cooling capacity was about
12.6965 and 6.8174, respectively. In Part 2 simulation by APSO was introduced. In this, the data
modeling of energy consumption and cooling capacity by using ANFIS-based FCS were optimized.
The overall results indicate that the COP using ANFIS-based FCS with a classifier APSO improved by
0.8908 and the efficiency increased by 3.95 (19.05%). Whereas, the COP using ANFIS-based FCS with a
classifier PSO improved by 0.9393 and the efficiency increased by 3.74 (12.72%). In both cases, cluster 5
by ANFIS-based FCS with PSO and APSO reduced energy by 32.6% and 33.2% and cooling load by
5.0% and 5.7% of total consumption and capacity at DCS, respectively. The proposed technique was
an efficient tool not only for system improvement but also for saving energy and can be used for any
application of cooling systems.
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