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Abstract: The integration of renewable energies into combined cooling, heating, and power (CCHP)
systems has become increasingly popular in recent years. However, the optimization of renewable
energies integrated CCHP (RECCHP) systems (i.e., optimal component configurations) is far
from being well addressed, especially in isolated mode. This study aims to fill this research
gap. A multi-objective optimization model characterizing the system reliability, system cost, and
environmental sustainability is constructed. In this model, the objectives include minimization of
annual total cost (ATC), carbon dioxide emission (CDE), and loss of energy supply probability
(LESP). The decision variables representing the configuration of the RECCHP system include
the number of photovoltaic (PV) panels and wind turbines (WTs), the tilt angle of PV panels,
the height of WTs, the maximum fuel consumption, and the capacity of battery and heat storage tanks
(HSTs). The multi-objective model is solved by a multi-objective evolutionary algorithm, namely, the
preference-inspired coevolutionary algorithm (PICEA-g), resulting in a set of Pareto optimal (trade-off)
solutions. Then, a decision-making process is demonstrated, selecting a preferred solution amongst
those trade-off solutions by further considering the decision-maker preferences. Furthermore, on the
optimization of the RECCHP system, operational strategies (i.e., following electric load, FEL, and
following thermal load, FTL) are considered, respectively. Experimental results show that the FEL
and FTL strategies lead to different optimal configurations. In general, the FTL is recommended
in summer and winter, while the FEL is more suitable for spring and autumn. Compared with
traditional energy systems, RECCHP has better economic and environmental advantages.

Keywords: CCHP; renewable energy; FEL; FTL; multi-objective optimization; isolated-mode

1. Introduction

The combined cooling, heating, and power (CCHP) system—also known as the tri-generation
system—has received increasing attention in both academia and industry in recent years because
of its high efficiency in the use of energy sources [1,2]. The CCHP system has shown to be capable
of converting about 80% of the available fuel into usable energy, which is much more efficient than
separation systems [3,4]. Given the depletion of fossil energy and degradation of environment,
renewable energies are currently strongly recommended to be integrated into CCHP systems [5].
The use of renewable energies facilitates the application of CCHP systems in places where the power
grid is unavailable (e.g., islands, plateaus, deserts).

The early studies of CCHP system optimization mainly focus on the system cost minimization [6–10].
Recently, researchers have started to consider system reliability and environmental sustainability, in
addition to the system cost [4,11–15]. Since the optimization model is often non-convex and/or
non-linear and involves both integer and real decision variables, a number of algorithms have been
proposed to solve the model. For example, Lahdelma et al. [16] modelled the hourly CCHP operation
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as a linear programming problem, and used the power simplex algorithm to solve it. Rong et al.
[17] proposed different algorithms for their CCHP models, such as the extended power simplex
algorithm and the relaxed ramp-constraints [18]. Hussain et al. [19] developed a mixed integer linear
programming-based CCHP model to minimize the daily operation cost of the external energy network.
Other related studies include [16,20–24]. However, since mathematical programming methods may
face difficulty in some complex optimization problems, intelligent algorithms such as particle swarm
algorithm (PSO) [25,26] and genetic algorithm (GA) [27] have also been used. For instance, Wang
et al. [25,28] employed PSO and GA to find the optimal configuration of a CCHP system such that
the system cost is minimized. In [29] the primary energy saving (PES), energy efficiency (ηexergy),
and CO2 emission reduction (CER) are employed to evaluate the performances of CCHP systems
for a hypothetical building in Dalian (China). Wei et al. adopted the non-dominated sorting genetic
algorithm-II to find a set of Pareto optimal configurations [14]. Gimelli et al. [30] used a predictive
analysis method to optimize CCHP system configuration with the aim of maximizing the global energy
saving. Muccillo et al. [31] carried out predictive analyses first, then employed a multi-objective
approach to find optimal plant configurations that maximize the energy production while guaranteeing
reasonable profitability. The results show that the proposed method can save over 17% primary energy.
Alvarado et al. [32] presented a technology selection and operation (TSO) model for distributed energy
systems in which the life-time cost, carbon emissions, and real-time energy prices and demands are
used as indicators. This model provides meaningful insights that enable decision-makers to make more
assured technical investments. Wang et al. [33] proposed a two-stage model (i.e., day-ahead cursory
and real-time scheduling). The Search Improvement Process-Chaotic Optimization-Particle Swarm
Optimization-Elite Retention algorithm (SIP-CO-PSO-ERS) is used to solve the model, and is shown to
converge faster than traditional approaches. It is worth mentioning that the optimal configuration for
a particular scenario may not be optimal when the scenario is changed. To overcome this shortage,
very recently Gimelli et al. [34] developed a simple yet effective approach which can identify the most
stable plant solutions through a multi-objective robust optimization.

There are also studies applying renewable energies to CCHP systems. For example,
Soheyli et al. [35] built a novel CCHP system with renewable energies, and applied the co-constrained
multi-objective particle swarm optimization algorithm to optimize the model. Wu et al. [36] proposed
an optimization CHP micro-grid containing renewable energies. The model is shown to be able to
reduce the operation cost of the micro-grid, and simultaneously to effectively increase the utilization
rate of renewable energies. A photovoltaic-assisted CCHP system is introduced in [37], and a type of
solar-assisted tri-generation system is analyzed in [38,39]. Both show that the system is efficient in
terms of energy usage, emission reduction, and economic benefits [40]. Kang et al. [41] investigate the
environmental and energy potential of a renewable CCHP system in a residential application under
Korea and Canada weather conditions. In addition, there are two widely adopted operation strategies
in CCHP systems: following electric load (FEL) and following thermal load (FTL) [3,11]. Rey et al.
[42] reveal that the micro-CCHP system is suitable in mild weather during the summer season in
the FTL strategy. Wang et al. [43] explain that the FTL strategy is more suitable for cold areas, while
the FEL prefers mild climate zones. According to the life cycle assessment, the FTL is found to be
more environmentally-friendly than the FEL in terms of energy saving and emission reduction [44,45].
However, the above studies on FEL and FTL are not very applicable to CCHP systems containing
renewable energies. Therefore, new research needs to redesign the FEL and FTL operating strategies
for the RECCHP system.

Although many studies in the literature have investigated the optimization of CCHP systems,
the multi-objective optimization of isolated CCHP systems embedded with renewable energies has not
been systematically studied—in particular, the performance of CCHP systems under the use of both
FEL and FTL strategies and more detailed considerations about component models of stand-alone
RECCHP systems. This study fills in this research gap. Its main contributions are as follows: (I) the
system architecture of a renewable energies integrated CCHP (RECCHP) system in isolated mode
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is presented; (II) a multi-objective model considering the criteria of system cost, system reliability,
and environmental sustainability is built to optimize configurations of the RECCHP system; (III)
PICEA-g has been applied for the first time to the design of a multi-objective CCHP system with
renewable energies [46]. Lastly, the effect of improved FEL and FTL strategies is discussed for the
RECCHP system.

The rest of this paper is organized as follows. Section 2 introduces the structure, mathematical
model, evaluation criteria, and operational strategies of the considered RECCHP system. Section 3
elaborates the problem solver (i.e., the multi-objective evolutionary algorithm, PICEA-g). The case
study and results are discussed in Section 4. Section 5 concludes this study and identifies some future
research directions.

2. System Model of CCHP System with Renewable Energies in Isolated Mode

2.1. Traditional Energy System

Traditional energy systems in isolated mode provide the electrical demand by the power generated
by the generator directly and meet the heat and cold demand using electric boilers and electric chillers,
respectively (see Figure 1). In other words, all electric, heat, and cold demands are from the electricity
generated by a generator, which means the waste heat generated during generator operation will
be wasted.

cl

hl

el

SP

g

Figure 1. Illustration of the traditional energy system structure in isolated mode.

2.2. Structure of RECCHP System

A typical CCHP system mainly contains four parts: energy sources, power generation units
(PGUs), energy conversion devices, and user load demands, as shown in Figure 2.

Energy sources include fossil energies(e.g., natural gas, coal); and renewable energies (e.g., solar
energy, wind energy). A PGU contains prime movers and heat recovery systems. The prime movers
can be boilers, turbines, internal combustion engines, Stirling machines, fuel cells, and so on. Usually,
the prime mover works with the heat recovery system, producing electricity and thermal energy.
Conversion devices contain heat conversion devices (e.g., heat exchangers, electric boilers, and heating
coils), cold conversion devices (e.g., electric chillers, absorption chillers, and adsorption chillers), and
storage devices (e.g., batteries and heat storage tanks, HSTs) [25,47]. The electrical, cold, and heat
energy are the main forms of user demand. The thermal demand is equal to the sum of cold and heat
demand from user.

According to the composition of the CCHP system, Figure 3 illustrates the structure of the
RECCHP system in isolated mode. The RECCHP system contains four parts: renewable energies



Energies 2018, 11, 743 4 of 26

devices, conversion devices, storage devices, and the user load. The renewable energies are converted
into usable energy through photovoltaic (PV) panels and wind turbines (WTs). The function of the
conversion device is to change the form of energy to meet the user demand. Additionally, given the
stochastic feature of renewable energies, energy storage devices are required to improve the energy
efficiency and system reliability. The introduction to the working procedure of the RECCHP is in
Section 2.4.

al

l

Figure 2. Illustration of the composition of a typical combined cooling, heating, and power (CCHP)
system. PGU: power generation unit.

Figure 3. Illustration of the renewable energies integrated CCHP (RECCHP) system structure in
isolated mode. PV: photovoltaic.

2.3. Component Model

In order to formulate the performance of the RECCHP system, the mathematical models including
the PV panel, the wind turbine, the battery, HST, and PGU are constructed as follows.
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2.3.1. PV Panel

PV panels convert solar irradiation into electricity. The output electricity of a PV panel can be
calculated as Equation (6) [48]. From the horizontal component of the solar radiation (S), the incident
radiation on the inclined surface (St) can be calculated as follows [49]:

St =
S

sin(h)
, (1)

Sp = St · sin(h + β). (2)

As shown in Figure 4, Sp represents solar radiation perpendicular to the inclined PV panel, which is
used to calculate the maximum output power of PV panels. The relationship equations are shown as
follows [50,51]:

Tc(t) = Ta(t) +
NCOT − 20

800
· Sp(t, β), (3)

Isc(t) = [ISTC
sc + ηI(Tc(t)− 25)] ·

Sp(t, β)

1000
, (4)

Voc(t) = VSTC
oc − ηV · Tc(t), (5)

Epv(t, β) = Npv · Isc(t, β) ·Voc · FF(t), (6)

where FF and Npv respectively represent the fill factor and the total number of PV panels. Isc(t)
and Voc(t) respectively denote the short-circuit current and open-circuit voltage. ISTC

sc and VSTC
oc are

short-circuit current and open-circuit voltage under standard test condition (STC). ηI and ηV represent
short-circuit current temperature coefficient and open-circuit voltage temperature coefficient. NCOT is
nominal cell operating temperature.

Figure 4. Representation of solar irradiation.
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2.3.2. Wind Turbine

Wind power generation is closely related to the wind velocity, and can be calculated as
Equation (7) [52]. When the wind speed exceeds Vf (m/s), wind turbines stop working to protect
themselves.

Ewt (v) =



0 v < Vc
1
2

ηwt · ρ · Awt · v3 Vc 6 v < Vr

Pwtr Vr 6 v < Vf

0 v > Vf

(7)

with:

v = vr

(
Htow

Hr

)γ

, (8)

where Vc and Vf are the cut-in and the cut-off wind velocity, respectively; Vr is the wind velocity
measured at the reference height Hr. ηwt is the coefficient of wind power generation. The air density
is marked as ρ. Awt represents the cross-section of the rotor and Pwtr is the rated power of the wind
turbine. Htow is the height of the wind tower. The power law coefficient is denoted as γ.

2.3.3. Renewable Energy Generation

As can be seen from Figure 3, the renewable energy generation (EREE) comes from the solar
energy (Epv) and the wind power generation (Ewt). Therefore, it can be calculated by Equation (9) and
Equation (10):

EREE = Epv + Ewt, (9)

EREE = EREE
el +

Qeb
ηeb

+
Qec

ηec
+ EREE

bat , (10)

where EREE
el is renewable energy generation meeting the electrical demand. Qeb and Qec are the heat

and cold energy generated by electric boiler and electric chiller. ηeb and ηec represent the efficiency of
the electric boiler and electric chiller, respectively. EREE

bat is excess renewable energy generation stored
in the battery.

2.3.4. Battery

The activity procedure of the battery is described as Equation (11) [50]:

Soc(t + 1) = Soc(t) +
EBAT(t) · ηBAT

ch
CBAT

max
,

Soc(t + 1) = Soc(t)− EBAT(t)
CBAT

max · ηBAT
dis

,
(11)

S.T.
Socmin 6 Soc(t) 6 Socmax,

0 6 EBAT
ch (t) 6 EBAT

ch,max,

0 6 EBAT
dis (t) 6 EBAT

dis,max,

(12)

where EBAT
ch and EBAT

dis are the charging/discharging power of the battery, retained within [0,EBAT
ch,max]

and [0,EBAT
dis,max], respectively. Round-trip efficiency is denoted as ηBAT

ch and ηBAT
dis . State of charge

denoted as Soc is an important specification of the battery, retained within [Socmin, Socmax]. t(t =

1, 2, . . . , 8760) is the time step.
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2.3.5. Heat Storage Tank

The function of the HST is described as Equations (13) and (14):

CHST(t + 1) = CHST(t) + QHST
in (t) · ηHST

in , (13)

CHST(t + 1) = CHST(t)− QHST
out (t)
ηHST

out
. (14)

Constraints in the process are explained as follows:

CHST
min 6 CHST(t) 6 CHST

max ,

0 6 QHST
in (t) 6 QHST

in,max,

0 6 QHST
out (t) 6 QHST

out,max,

(15)

where QHST
in and QHST

out denote the input and output thermal energy of HST interacted with outside,
retained within [0, QHST

in,max] and [0, QHST
out,max], respectively; ηHST

in and ηHST
out are their efficiency. CHST

represents the content of HST.

2.3.6. Power Generation Unit

The electricity (Epgu) and the thermal energy (Qpgu) generated by the PGU are calculated
as follows:

Epgu = F · ηpgu, (16)

Qpgu = F · (1− ηpgu) · ηr, (17)

Qpgu = Qrh + Qrc =
Qac

COPac
+

Qhc
ηhc

, (18)

where F is the fuel supplied to the PGU, and it produces electricity (Epgu) and waste heat as a
byproduct. The waste heat can be reused as thermal energy (Qpgu) by a heat recovery system, whose
efficiency is ηr. As shown in Figure 3, Qrc and Qrh are the recovery heat supplied to the absorption
chiller and the heating coil; Qac and Qhc respectively represent the cooling and heating from the
absorption chiller and the heating coil. The efficiency of the absorption chiller and heating coil are
marked as COPac and ηhc, respectively.

The electrical and thermal balance of the RECCHP system in isolated mode are defined as
Equations (19) and (20):

EREE + Epgu − EBAT
ch ·UBAT

ch + EBAT
dis ·U

BAT
dis = Eel , (19)

Qec + Qeb + Qac + Qhc −QHST
in ·VHST

in + QHST
out ·VHST

out = Qcl + Qhl , (20)

S.T.
UBAT

ch + UBAT
dis 6 1,

VHST
in + VHST

out 6 1,
(21)

where Eel , Qhl , and Qcl represent the electrical, heat, and cold demand, respectively. UBAT
ch , UBAT

dis ,
VHST

in , and VHST
out are binary variables denoting the operation status of the battery and HST.

2.4. Operation Strategy

Typically, the energy supply procedure in the RECCHP system is as follows. First, the power
generated by renewable energies is used to meet the load demand (to maximize the usage of renewable
energies). If the load demand is not satisfied, storage devices start working to supply energy. If the
load demand still cannot be satisfied, the PGU starts to work. When the energy of the storage device is
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used up and the PGU works at rated power, the load demand is still unmet, then some load demands
will be cut off and a loss of energy supply is recorded. With respect to the FEL and FTL operation
strategies, the detailed RECCHP operational process is described in the following sections.

2.4.1. FEL Operation Strategy

In the FEL operation strategy, the electrical demand should be satisfied with a higher priority
than the thermal demand. In this case, no extra electricity will be generated from the RECCHP system,
since the amount of electricity from RECCHP follows the electrical demand. Besides, the thermal
energy generated from the RECCHP system meets the thermal demand for the heating and cooling
process. Note that the extra thermal energy might be generated by the PGU, which would be stored
in the HST. Moreover, through the electric boiler and electric chiller, the electricity from the battery
can be easily converted to the thermal energy used to meet the thermal demand. The FEL operational
strategy is shown in Figure 5.

Figure 5. Flowchart of the following electric load (FEL) operation strategy. DC: discriminant condition.

Case 1. If DC1 is TRUE, the electrical load demand is fully met by the renewable energy
generation. The discriminant condition (DC) is expressed as Equation (22):

DC1 : EREE > Eel . (22)

Then, the RECCHP system runs as follows:
1. If DC2 is TRUE, excess renewable energy is stored in the battery until it is fully charged.

The discriminant condition is expressed as Equation (23):

DC2 : EREE > El , (23)

with:
El = Eel +

Qcl
ηec

+
Qhl
ηeb

, (24)

where El is the amount of renewable energy generation meeting load demands.
2. If DC2 is FALSE and DC4 is TRUE, HST starts working to supply the thermal energy.

The discriminant condition is expressed as Equation (25). The remaining cold and heat demand
are denoted as QR

cl and QR
hl .

DC4 : QHST
out · ηHST

out > QR
cl + QR

hl (25)
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3. If DC4 is FALSE and DC6 is TRUE, PGU starts working to meet the gap of the thermal demand.
Meanwhile, the unused electricity is stored into batteries. The discriminant condition is shown as
Equation (26):

DC6 : QHST
out,max · ηHST

out + Qpgu > QR
hl + QR

cl . (26)

4. If DC6 is FALSE, a loss of the thermal energy is recorded, that is, the count of the thermal
energy loss (LossCountq) plus one, as defined in Equation (27). In this state, HST is exhausted and
PGU works at the rated power. The unused electricity is used to charge batteries.

LossCountq = LossCountq + 1 (27)

Case 2. If DC1 is FALSE and DC3 is TRUE, the system runs as follows. The discriminant
condition is expressed as Equation (28):

DC3 : EREE + EBAT
dis · η

BAT
dis > Eel . (28)

1. If DC4 is TRUE, HST starts to supply the thermal energy. The discriminant condition is
expressed as Equation (29).

DC4 : QHST
out · ηHST

out >
Qhl
ηhc

+
Qcl

COPac
(29)

2. If DC4 is FALSE and DC6 is TRUE, PGU starts to work. Meanwhile, the unused electricity is
stored in batteries. The discriminant condition is expressed as Equation (30):

DC6 : QHST
out,max · ηHST

out + Qpgu >
Qhl
ηhc

+
Qcl

COPac
. (30)

3. If DC6 is FALSE, a loss of the thermal energy is recorded and LossCountq increases one, as
defined in Equation (27). In this state, HST is used up and PGU works at the rated power. Meanwhile,
the unused electrical energy is stored into batteries.

Case 3. If DC3 is FALSE and DC5 is TRUE, the next steps are the same as 1, 2, and 3 in Case2.
The discriminant condition is expressed as Equation (31):

DC5 : EREE + EBAT
dis,max · η

BAT
dis + Epgu > Eel . (31)

Case 4. If DC5 is FALSE, a loss of the electrical energy is recorded; that is, the count of electrical
energy loss (LossCountP) plus one, defined as Equation (32). In this state, batteries are exhausted and
PGU works at the rated power. In addition, the remaining thermal energy is stored into HST.

LossCountp = LossCountp + 1 (32)

2.4.2. FTL Operation Strategy

In the FTL operation strategy, the thermal demand is satisfied with a higher priority than the
electrical demand. In this case, no extra thermal energy will be generated, since the amount of thermal
energy from RECCHP follows the thermal demand. Additionally, excess electricity would be stored in
batteries if the electrical demand is less than the electricity from RECCHP system. The FTL operational
strategy is shown in Figure 6.
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Figure 6. Flowchart of the following thermal load (FTL) operation strategy.

The operational details of the FTL strategy are analogous to the FEL strategy, and thus are not
repeated here. However, the related discriminant condition and flowchart are described in Algorithm 1.

Algorithm 1: Flowchart of FTL

1 if DC1 : EREE > Qcl/ηec −Qhl/ηeb then
2 if DC2 : EREE > El then

3 else if DC4 : EREE + EBAT
dis · η

BAT
dis > El then

4 else if DC6 : EREE + EBAT
dis,max · η

BAT
dis + Epgu > El then

5 else
6 LossCountp+1
7 end
8 else if DC3 : QHST

out · ηHST
out > QR

hl + QR
cl then

9 if DC4 : EBAT
dis · η

BAT
dis > Eel then

10 else if DC6 : EREE + EBAT
dis,max · η

BAT
dis + Epgu > El then

11 else
12 LossCountp+1
13 end
14 else if DC5 : QHST

out,max · ηHST
out + Qpgu > QR

hl + QR
cl then

15 if DC4 : EBAT
dis · η

BAT
dis > Eel then

16 else if DC6 : EREE + EBAT
dis,max · η

BAT
dis + Epgu > El then

17 else
18 LossCountp+1
19 end
20 else
21 LossCountq+1
22 end
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3. RECCHP System Optimization Model Using PICEA-g

3.1. Overview of PICEA-g

The optimization problems of the above RECCHP model are seen as multi-objective problems
(MOPs), which is implemented in MATLAB (2015(b), MathWorks, Natick, MA, USA) and three
objective functions (i.e., annual total cost (ATC), carbon dioxide emission (CDE), and loss of energy
supply probability (LESP)) are optimized simultaneously using a multi-objective evolutionary
algorithm. MOPs often appear in real-world design scenarios, requiring simultaneous optimization
of two or more goals. As these objectives are generally conflicting with each other, the optimal
solution of MOPs is not a single one, but rather a set of Pareto optimal solutions [53–55]. Due to
the population-based approach, the multi-objective evolutionary algorithms are well-suited to solve
the MOPs, since they can naturally lead to an approximately trade-off surface (or Pareto front) in
operation.

The multi-objective evolutionary algorithms aim to find solutions satisfying all the conflicting
objectives ( f ) simultaneously. Without loss of generality, a general multi-objective evolutionary
minimization problem is stated as follows:

Minimize F(x) = ( f1(x), f2(x), · · · , fm(x)), (33)

S.T.
x ∈ Ω, (34)

gi(x) 6 0 i = 1, 2, . . . , p, (35)

hj(x) = 0 j = 1, 2, . . . , q, (36)

where Ω is the decision space. A solution x is a vector of n decision variables: x = x1, x2, · · · , xn. m
is the number of objectives; gi(x) and hj(x) are the inequality and equality constraints, and p and q
are the number of them, respectively. F: Ω → Rm include m real-valued objective functions and Rm

represents the objective space.
In this study, the state-of-the-art MOEA, PICEA-g, is applied as the problem solver. It is generally

agreed that a set of preferences could orientate the search toward a subset of Pareto front interested by
the decision maker; that is, different preferences sets may result in different Pareto fronts. The PICEA-g
is a co-evolutionary algorithm in which the candidate solutions are co-evolved with a set of goal
vectors. The formulations for calculating the fitness Fs of the candidate solution s and the fitness Fg of
the preference g is given as follows [46]:

Fs = 0 + ∑
g∈G∪Gc |s6g

1
ng

, (37)

Fg =
1

1 + α
, (38)

α (v) =

1 ng = 0
ng − 1
2N − 1

otherwise
, (39)

where ng represents the number of solutions satisfying the preference g. N is the population size of
candidate solutions. G denotes the initial goal vectors set and Gc is the goal vectors set after genetic
variation. when s does not satisfy any g, the fitness Fs is defined as 0.

The candidate solutions try to satisfy (Pareto dominate) as many goal vectors as possible, being
guided towards the Pareto optimal front. The goal vectors try to avoid being satisfied by candidate
solutions. Thus, the main idea of PICEA-g is that if multiple sets of hypothetical preferences are
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specified during the co-evolution process simultaneously, a meaningful subset of the Pareto front for a
decision maker can be achieved. PICEA-g has been demonstrated as effective both on benchmarks
and some real-world applications [50,56,57]. For more information about PICEA-g, please refer to the
literature [46,58,59]. The source code of PICEA-g is available online at: http://ruiwangnudt.gotoip3.
com/optimization.html.

3.2. Optimization Objectives

Three objectives from the aspects of economy, environment, and reliability are considered in
the optimization of the RECCHP system. The three objectives are annual total cost, carbon dioxide
emission, and loss of energy supply probability.

3.2.1. Annual Total Cost

Annual total cost (ATC) contains three parts; i.e., the initial investment cost (Cinv), the operating
and maintenance cost (Com), and the fuel cost (CF). They are calculated as follows:

ATC = Cinv + Com + CF. (40)

• The annual operating and maintenance cost can be written as:

Com = Npv ·OMpv · Tpv + Nwt · (OMwt + OMtow) · Twt+

(OMpgu + OMac + OMhc) · Tpgu.
(41)

• The annual fuel cost is described as:

CF = Σ(F) · Fprice. (42)

• The initial investment cost can be written as:

Cinv = CREE
cap + CPGU

cap + CS
cap, (43)

with:
CREE

cap = CRF · {Npv · Cappv + Nwt · (Capwt + Captow · Htow) + Capac + Caphc}, (44)

CPGU
cap = Cappgu · CPGU

max , (45)

CS
cap = Caphst · CHST

max · L/Lhst + Capbat · CBAT
max · L/Lbat. (46)

CRF denotes the capital recovery factor, written as follows:

CRF =
ireal · (1 + ireal)

L

(1 + ireal)L − 1
, (47)

with:

ireal =
(in − in f )
(1 + in f )

, (48)

where CREE
cap , CPGU

cap , and CS
cap respectively represent the capital of the renewable energy device,

PGU, and the storage device. Capbat and Caphst denote the capital of the battery and HST; Capwt,
Captow, Capac, Caphc, and Cappgu are the capital of the wind turbine, the wind tower, the absorption
chiller [60], the heating coil, and PGU. CPGU

max represents the maximum capacity of the PGU.
The operation and maintenance cost of the PV panel, the wind turbine, the wind tower, PGU,
the absorption chiller, and the heating coil are respectively marked as OMpv, OMwt, OMtow, OMpgu,

http://ruiwangnudt.gotoip3.com/optimization.html
http://ruiwangnudt.gotoip3.com/optimization.html
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OMac, and OMhc. Htow is the height of the wind tower. Tpv, Twt and Tpgu represent the running time of
the PV panel, the wind turbine, and the PGU. ireal is the annual real interest rate. The annual inflation
rate and nominal interest rate, denoted as in f and in, are 1.5% and 3.75%, respectively. L, Lbat, and Lhst
are the lifetime of the system, the battery, and HST. Fprice is the fuel price.

3.2.2. Carbon Dioxide Emission

The carbon dioxide emission (CDE) is used to measure the environmental sustainability of the
system, which can be calculated using the emission conversion factor ηCO2 .

CDE =
t=8760

∑
t=1

F(t) · ηCO2 , (49)

where F(t) denotes the hourly fuel consumption.

3.2.3. Loss of Energy Supply Probability

Loss of energy supply probability (LESP) is defined as the probability of failing to satisfy the
electrical demand and the thermal demand. It is calculated by Equation (50):

LESP =
ΣT

t=0T(Etotal(t) < Eel(t)) + ΣT
t=0T(Qtotal(t) < (Qcl(t) + Qhl(t)))

T

=
LossCountp + LossCountq

T
,

(50)

where Etotal and Qtotal are the available electrical and thermal energy generated from the RECCHP
system. LossCountp and LossCountq represent the count of electrical and thermal energy loss over a
year, respectively.

3.3. System Simulation and Optimization Model

The decision variables representing the configuration of the RECCHP system include the number
of photovoltaic (PV) panels and wind turbines (WTs), the tilt angle of PV panels, the height of WTs,
the maximum fuel consumption, and the capacity of battery and heat storage tank (HST). Decision
variables related to renewable energies include the number of PV panels (Npv) and wind turbines
(Nwt), the inclination angle of the tilted PV panel (β), and the height of the wind tower (Htow), which
are obtained from the PV and wind tower model. The maximum capacity of PGU (CPGU

max ) impacts the
selection of other devices and the capital cost [61], and thus is also considered as a decision variable
obtained from the PGU model. In addition, the maximum capacity of the battery (CBAT

max ) and HST
(CHST

max ) are two other decision variables obtained from battery and HST model. In summary, decision
variables are written as follows:

(Npv, β, Nwt, Htow, CPGU
max , CBAT

max , CHST
max ). (51)

The simulation flowchart in the optimization process is described in Figure 7. EREE(D, H)

represents the total renewable energy generation produced by PV panels and wind turbines at hour
H of day D. Through this simulation, individuals can obtain the corresponding values of ATC, CDE,
and LESP.
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pv wt tow PGU.max BAT.max HST.max

REE

No

Yes

Yes

No

Figure 7. Flowchart of system simulation. ATC: annual total cost; CDE: carbon dioxide emission; LESP:
loss of energy supply probability.

In order to minimize the three objectives (i.e., ATC, LESP, CDE) simultaneously, a three-objective
optimization model is constructed as follows:

minF(x) = {ATC(x), LESP(x), CDE(x)}. (52)

The parameter range is determined with the daily experience to improve solving speed.

x = (Npv, β, Nwt, Htow, CPGU
max , CBAT

max , CHST
max ) ∈ Ω, (53)

S.T.
0 6 Npv 6 20,

0 6 β 6 90,

0 6 Nwt 6 20,

5 6 Htow 6 30,

0 6 CPGU
max 6 1000,

0 6 CBAT
max 6 500,

0 6 CHST
max 6 500,

(54)

where x is a vector consisting of decision variables; Ω is the decision space; and the objective set is
defined as {F(x)|x ∈ Ω}.

4. Case Study and Result Analysis

4.1. Case Study

4.1.1. Input Data

This section presents a case study to verify the proposed model and algorithm. A place (latitude
41.65◦) in Spain is considered. Meteorological data are averaged over ten years that include the solar
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radiation intensity, the wind velocity at 10 m altitude, and the environmental temperature, as shown
in Figure 8.

The hourly electrical, heat, and cold demand in representative days of spring, autumn, summer,
and winter are taken from the study [62]. The distributions of electrical, heat, and cold load demands
during a day are shown in Figure 9.
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Figure 8. Hourly mean values of meteorological conditions.
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From Figure 9, the electrical demand is basically stable, while cold and heat demands vary greatly
throughout a year. Specifically, the heat demand is large in winter while it is small in summer. The
cold demand is the opposite.

4.1.2. Parameters

All parameters related to the RECCHP system are summarized in Tables 1–3 [28,50]. Additionally,
the service life of the RECCHP system is assumed as 15 years in this study, and those of the battery
and HST are 5 years.

Table 1. The specifications for the RECCHP system components. COP: coefficient of performance.

Components Cinv Com Lifetime (year) η & COP

PV panel 1000 CNY 0.05 CNY/h 15 0.73
Wind turbine 30,000 CNY 0.4 CNY/h 15 0.4
Wind tower 2000 CNY/m 0.1 CNY/m 15 Null

Battery 200 CNY/kW 0.2 CNY/kW·h 5 0.8/0.8 (ch/dis)
Heat storage tank 200 CNY/kW 0.2 CNY/kW·h 5 0.85/0.85 (in/out)

Electric boiler 5500 CNY 0.1 CNY/kW 15 0.9
Electric chiller 9000 CNY 0.1 CNY/kW 15 3

Absorption chiller 64,000 CNY 0.20 CNY/kW 15 0.7
Heating coil 700 CNY 0.24 CNY/kW 15 0.9

PGU 3800 CNY/kW 0.3 CNY/kW·h 15 0.3
Heat recovery system 3000 CNY/kW 0.2 CNY/kW·h 15 0.8

Table 2. Wind turbine modules specifications.

Vc Vr Vf Awt Pwtr Hr ρ γ

4 m/s 14 m/s 20 m/s 12.59 m2 10 kW 10 m 1.29 kg/m3 0.143

Table 3. PV modules specifications. NCOT: nominal cell operating temperature.

Isc Voc Imax Vmax ηI ηV NCOT

7.22 A 21 V 17 6.47 0.95 0.95 43 ◦C

The technical characteristics of RECCHP system components as the inputs to the simulation
and optimization process are given in Tables 1–3. The specifications, lifetime, and efficiency of all
components are presented in Table 1. Table 2 shows the characteristics of wind turbine modules.
Additionally, the wind turbine height is limited between 5 m and 30 m, and the rated power of
wind turbine (Pwtr) is 10 kW. The investment cost of a wind turbine tower depends on its length.
Besides, Table 3 shows the characteristics of PV modules that encompass the short-circuit current,
the open-circuit voltage, the maximum operating voltage, and current. Both short-circuit current
temperature coefficient and open-circuit voltage temperature coefficient equal 0.95. The operation and
maintenance cost (Com) of battery, heat storage tank (HST), PGU, and heat recovery system are related
to the operation time. The fuel is liquefied natural gas (LNG) whose price is 6.5 CNY/kg. In addition,
the parameters settings of PICEA-g are shown in Table 4.

Table 4. Parameter settings of PICEA-g.

Parameter Value Parameter Value

Population size 100 Mutation probability 0.01
Evolutionary generations 100 Position parameter (k) 18
Crossover probability 0.9 Distance parameter (l) 14
Length of genes 7 Decision variables (nvar) 32
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4.2. Results and Discussion

The planning time span in this article is one year (8760 h). For each system configuration,
we simulated the operation of the various components of the RECCHP system every hour of the
year until 8760 h. Then, the indicators of system configuration were obtained (i.e., ATC, CDE, and
LESP), determining the system configuration as good or not. Through constant iteration, the system
configuration was optimized toward the optimal direction of the indicator. By solving the model with
PICEA-g, a set of Pareto optimal solutions was obtained as shown in Figures 10 and 11.

In both Figures 10 and 11, sub-figures (b), (c), and (d) are the left view, main view, and top view of
sub-figure (a). As can be seen from sub-figure (b), the results from the optimization problem highlight
a clear trade-off between indicator ATC and LESP. Reducing the value of LESP will often increase
the value of ATC; that is, a high-energy reliable system is more expensive than a low-demand one.
From sub-figure (d), indicators LESP and CDE are also contradictory. Reducing the value of LESP
will often increase CDE. In other words, a higher energy reliable system will emit more CO2. If the
desirable level for LESP and CDE are defined, we can find a lower cost for a better solution with the
PICEA-g approach.

Among the obtained Pareto optimal solutions, the decision-maker can further introduce their
preference so as to select the preferred one for implementation. For example, three solutions from the
Pareto set are selected according to the desired LESP less than 0.1%, and the satisfactory configurations
of the RECCHP system are shown in Table 5.

• A reliable RECCHP system should have a low LESP value, which is preferably 0. Three solutions
with LESP less than 0.1% for the FEL and FTL strategies are shown in Table 5.

• Furthermore, if the decision-maker is more concerned about the system cost, the solution with
the smallest ATC should be chosen. Likewise, solutions with the minimum CDE are more likely
to be selected if the fuel usage and CO2 emission are considered as more important for the
decision-maker.

Table 5 presents the final optimal configurations of the RECCHP under the FEL and FTL
strategies. It is found that the optimal system configurations for the two operation strategies are
greatly different—for example, solution 1 in both FEL and FTL (marked as bold inTable 5). For FEL,
10 solar panels, 59 degree tilt angle for PV panels, 19 wind turbines, 29 m height for wind tower,
650 kW·h for the capacity of PGU, 145 kW·h for the capacity of battery, 2 kW·h for the capacity of
heat storage tank, causing 1.55 (105) CNY for annual total cost, 0% for LESP, and 4.49 (105) kg, are the
best components of RECCHP system in terms of decreasing cost. For FTL, 20 solar panels, 59 degree
tilt angle for PV panels, 16 wind turbines, 25 m height for wind tower, 489.7 kW·h for the capacity
of PGU, 0.2 kW·h for the capacity of battery, 439.5 kW·h for the capacity of the heat storage tank,
causing 1.35 (105) CNY for annual total cost, 0% for LESP, and 3.83 (105) kg, are the best components
of the RECCHP system in terms of decreasing cost. To further illustrate the difference, configurations
with the smallest ATC are used to simulate a one-year energy supply process of the RECCHP system.
The results are shown in Figures 12 and 13.
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Figure 10. RECCHP in FEL. ATC: annual total cost; CDE: carbon dioxide emission; LESP: loss of energy
supply probability.
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Figure 11. RECCHP in FTL.

Table 5. Selected results using PICEA-g with specified preference.

FEL

Solution Npv β(◦) Nwt Hwt (m) CPGU
max (kW·h) CBAT

max (kW·h) CHST
max (kW·h) ATC (CNY) LESP(%) CDE (kg)

1 (ATC.opt) 19 59 19 29 650 145 2 1.55 (105) 0 4.49 (105)

2 20 40 13 23 612 274.5 2 1.62 (105) 0 3.89 (105)

3 19 48 12 18 620 311 1.9 1.68 (105) 0 3.77 (105)

FTL

1 (ATC.opt) 20 59 16 25 489.7 0.2 439.5 1.35 (105) 0 3.83 (105)

2 20 56 17 10 468.6 0 321 1.43 (105) 0.1 3.43 (105)

3 20 59 17 6 474.4 0.003 327 1.46 (105) 0.1 3.34 (105)
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Figure 12. RECCHP in FEL.

It can be clearly seen from Figures 12 and 13 that in the simulation process, all the constraints
of the system are satisfied. It can be observed that when the renewable energy generation is unable
to meet the higher load demand, the storage system will first discharge until the maximum depth of
discharge is reached, and then the PGU starts working to supply the deficit energy.

• In both FEL and FTL strategies, the fuel consumption is large in summer and small in other
seasons. This might be caused by the reduction of renewable energy generation and the increase
of the cold demand in summer, which can be observed from Figures 12a,b and 13a,b.

• Comparing the fuel consumption of PGU under FEL and FTL strategies, it is obvious that the
fuel consumption in FEL is large in summer and winter while small in spring and autumn. In
addition, the difference for FTL in different seasons is as evident as that for the FEL.

• Regarding the FEL strategy, we can observe from Figure 12c,d that the battery has a large capacity
while the capacity of HST is small and sometimes even reaches 0.
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• Regarding the FTL strategy, we can observe from Figure 13c,d that the capacity of the battery is
small while HST has great capacity. Obviously, in spring and autumn, HST is only slightly used.
The reason may be that the thermal demand in these seasons is pretty small, which can be directly
met by renewable energy generation. Hence, some thermal energy generated from PGU may
be wasted.
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Figure 13. RECCHP in FTL.

The thermal demand in summer and winter is high. The FTL aims to meet the thermal demand
as much as possible. Excess electricity generated from the PGU is stored into batteries which can
then be used as needed, improving the system performance even further. The FEL aims to meet the
electrical demand as much as possible. This strategy is shown as suitable for spring and autumn.
In these seasons, the thermal demand is relatively low, which then can be easily met by the recovery
thermal energy from the PGU. Using the FEL strategy, in the course of its operation for one year,
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renewable energy generation is 1.67× 105 kW· h, which is equivalent to saving 5.5 × 104· kg of LNG.
LNG consumption of the RECCHP system is 2.33 × 105 kg, while traditional energy systems need
to consume 4.63 × 105 kg of LNG. It can be seen that using the RECCHP system reduces the LNG
consumption and CO2 emissions by 50%. Besides, the annual total cost (ATC) of the RECCHP system is
1.55 × 105 CNY, while it is 3.03 × 105 CNY for traditional energy systems; thus, the RECCHP system
has a better economic performance. This is mainly due to the savings in fuel costs. With the increase in
fuel prices, the economic advantages of the RECCHP system will be more pronounced. When working
in the FTL strategy, the total renewable energy generation is 1.51 × 105 kW· h, which is equivalent to
saving 5.0 × 104 kg of LNG. The LNG consumption of the RECCHP system is 2.05 × 105 kg, which
means that using the RECCHP system reduces the LNG consumption and CO2 emissions by 55%.
Similarly, the RECCHP system has good economic performance under the FTL strategy because of the
reduction of fuel usage.

5. Conclusions

The combined cooling, heating, and power (CCHP) system has been widely used due to its
high efficiency in terms of energy usage. This research studied optimal configurations of renewable
energies integrated CCHP systems in isolated mode. A multi-objective optimization model aimed
at the minimization of system cost, loss of energy supply, and carbon emission is constructed. It is
solved by the multi-objective evolutionary algorithm, PICEA-g, obtaining a set of Pareto optimal
solutions (optimal system configurations). These solutions represent different trade-offs among the
three objectives. Lastly, the most satisfactory solution is finalized by introducing the decision-maker
preference. In addition, it is found that the optimal system configurations vary greatly under FEL
and FTL strategies. The FEL strategy is more suitable for spring and autumn, while the FTL strategy
is more suitable for winter and summer. It can be seen that RECCHP system has better economic
and environmental advantages. More specifically, compared to traditional energy systems, using the
RECCHP system reduces the LNG consumption and CO2 emissions by 50% and 55% in FEL and FTL,
respectively. At the same time, the ATC of the RECCHP system is lower.

In terms of future studies, first we would like to explore day-ahead optimal scheduling of CCHP
systems. Second, an adaptive selection of operation strategies would be quite useful, which deserves
further study. Lastly, more effective algorithms (i.e., dealing with mixed categorical and real decision
variables) will be investigated.
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Abbreviations

ATC annual total cost
CCHP combined cooling, heating, and power
CDE carbon dioxide emission
CRF capital recovery factor
DC discriminant condition
FF fill factor
HST heat storage tank
MOEA multi-objective evolutionary algorithm
NCOT nominal cell operating temperature
PGU power generation unit
RECCHP renewable energies integrated CCHP
LESP loss of energy supply probability
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LNG liquid natural gas
SOC battery state of charge
Superscripts
BAT battery
CCHP combined cooling, heating, and power
FEL following electric load
FTL following the thermal load
R the remaining user load after renewable energies supply
REE renewable energies
S storage devices
HST heat storage tank
STC standard test condition
Subscripts
ac absorption chiller
bat battery
c cool
cap capital
CO2 carbon dioxide
cl cold load
ch charge
dis discharge
e electricity
eb electric boiler
ec electric chiller
el electrical load
h heat
hc heating coil
hl heat load
in input
max maximum
min minimum
oc open-circuit
out output
pgu power generation unit
pv photovoltaic
r waste heat recovery system
rep replace
sc short-circuit
st heat storage tank
tow wind turbine tower
wt wind turbine
Symbols
C cost
Cap capital
COP coefficient of performance
E electric power
F fuel
I current
Q thermal power
U operation status of battery
V operation status of heat storage tank/voltage
η energy efficiency
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