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Abstract: The photovoltaic (PV) systems generate green energy from the sunlight without any
pollution or noise. The PV systems are simple, convenient to install, and seldom malfunction.
Unfortunately, the energy generated by PV systems depends on climatic conditions, location,
and system design. The solar radiation forecasting is important to the smooth operation of PV
systems. However, solar radiation detected by a pyranometer sensor is strongly nonlinear and highly
unstable. The PV energy generation makes a considerable contribution to the smart grids via a large
number of relatively small PV systems. In this paper, a high-precision deep convolutional neural
network model (SolarNet) is proposed to facilitate the solar radiation forecasting. The proposed
model is verified by experiments. The experimental results demonstrate that SolarNet outperforms
other benchmark models in forecasting accuracy as well as in predicting complex time series with a
high degree of volatility and irregularity.

Keywords: green energy; energy technology; artificial intelligence; solar energy; solar radiation;
forecasting; deep convolutional neural networks

1. Introduction

Recent technological improvements have brought prosperity to the world but also significantly
increased global energy use. The dwindling reserves of fossil fuels and fear of global warming have
prompted many countries to explore clean, green sources of energy. Presently, solar energy is the
fastest-growing green energy alternative due to its convenience, ease of operation, safety, and reliability.
The actual capacity far exceeded the initial estimates due to the unexpected growth of photovoltaic
(PV) systems in mainland China, reaching 34 GW in 2015 [1].

Weather conditions that affect sunshine intensity, such as cloudiness and dust, can produce
significant fluctuations in the output of PV energy systems. Therefore, geographical differences and
variations in the type of solar cells used in different systems fluctuate greatly in energy production.
An inability to predict the amount of energy supplied by discrete solar installations can negatively
affect the operation of the power grids they supply [2,3].

Solar radiation is a major factor in influencing photovoltaic system power output. Accurate solar
radiance forecasting plays an important role in photovoltaic system power output. Sensitivity to
environmental factors is particularly emphasized to improve the forecasting model and raise prediction
accuracy. When higher percentages of grid connected power are generated from photovoltaic systems,
an effective solar radiation forecasting method becomes essential to ensure the quality and the security
of the electrical grid.
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Solar radiation forecasting can be categorized based on the forecast interval length. Presently,
there is no official categorization in the power industry. Yang et al. (2015) listed the four common
types of solar radiation forecasting: very short-term solar radiation forecasting (VSTSRF) (forecast
interval is less than 24 h), short-term solar radiation forecasting (STSRF) (forecast interval is 1–7 days),
medium-term solar radiation forecasting (MTSRF) (forecast interval is 1–52 weeks), and long-term
load forecasting (LTSRF) (forecast interval is longer than 1 year) [2].

Solar radiation forecasting methods can be divided into three categories:
(1) mathematical/statistical methods, (2) numerical methods, and (3) machine learning methods.
The mathematical/statistical methods employ regression analysis [4,5], time series analysis [6,7],
grey relational theory [8], fuzzy theory [9], wavelet analysis [10–13], and Kalman filters [14–16].
According to these studies mentioned above, Kardakos et al. propose an artificial neural network
(ANN) model [4] in short-term forecasting of PV power generation. Trapero et al. develop a
short-term solar irradiation forecasting based on Dynamic Harmonic Regression (DHR) [5]. These two
forecast models give good results. However, the length of the forecasting output is just within 24 h.
Besides this, a Coupled Auto Regressive and Dynamical System (CARDS) model is designed in
literature [6]. This approach combines an autoregressive (AR) model with a dynamical system model.
Voyant et al. used time series models in multi-horizon solar radiation forecasting [7]. This method is
verified to have results that are complementary and improve the existing prediction techniques with
innovative tools. Hu et al. proposed a grey model of direct solar radiation intensity [8]. This grey
model describes the attenuation pattern of solar radiation intensity more comprehensively and more
reasonably [8]. Chen et al. presented a solar radiation forecast based on fuzzy logic and neural
networks [9], which aims to achieve a good accuracy at different weather conditions. The experiments
in [9] show that the mean absolute percentage error (MAPE) is much smaller compared with that of
the other solar radiation method. In literature [10–13], these approaches adopt the wavelet analysis for
solar radiation forecasting. By preprocessing sample data by wavelet analysis, these techniques can be
combined with other machine learning models, such as ANN, recurrent neural networks (RNNs),
support vector machine (SVM), and etc. In literature [14–16], a Kalman filter is applied for solar and
photovoltaic prediction. These methods are convenient for real-time forecasting and can be used to
perform solar irradiation for different time horizons [15].

On the other hand, the numerical forecasting is based on the actual atmospheric conditions,
wherein a high-performance computer is used to derive the process of weather evolution over a
set period of time using equations based on fluid thermodynamics. Unfortunately, this approach is
highly complex, time-consuming, and expensive [17]. Recently, the big data technology analysis,
artificial neural networks [4,18,19], support vector machine [11,20–22], and machine learning
algorithms, such as the heuristic intelligent optimization algorithm [23–25], have been proposed
to overcome the problem in solar radiation forecasting. A practical method for solar irradiance forecast
using ANN is presented in literature [4,18,19]. The proposed Multilayer Perceptron (MLP) model
makes it possible to forecast the solar irradiance on a basis of 24 h using the present values of the mean
daily solar irradiance and air temperature [4,18,19]. Benmouiza et al. presented a hybrid k-means
and nonlinear autoregressive neural network model [19]. Taking the advantage of both methods,
the combination of unsupervised k-means clustering algorithm and ANN can provide better forecasting
results. In addition, in literature [11,20–22], SVM is applied to the solar irradiance prediction issue.
Particularly, a novel short-term Empirical Mode Decomposition-Grey Relational Analysis-Modified
Particle Swarm Optimization-Least Squares Support Vector Machine (EMD-GRA-MPSO-LSSVM) load
forecasting model is proposed in reference [22]. The model input includes the load, temperature,
relative humidity, wind force, and etc. This method provides good results. However, there are
too many parameters included in this hybrid model, and the training process is very complicated.
In literature [23–25], several heuristic intelligent optimization algorithms are proposed. These methods
adopt several machine learning methodologies. A Hidden Markov Model (HMM) and SVM regression
are integrated in [25] for solar irradiance forecasting. These machine learning based forecasting
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algorithms can precisely predict solar irradiance. However, the prediction length is only within the
future 5–30 min.

Forecasting depends on a reliable dataset; however, solar radiance in nature functions as a
seemingly random process, wherein the intensity of the radiation (power per unit area) varies in space
and time. Volant et al. (2017) [23] provided an overview of solar radiation forecasting methods based on
machine learning. They categorized various forecasting techniques into four classes: (1) classification
and data preparation, (2) supervised learning, (3) unsupervised learning, and (4) ensemble learning.
The other review papers [26,27] categorized forecasting techniques in a similar manner.

At present, mainstream research is mainly focused on short-term prediction using short-term
solar radiation data. However, with more and more photovoltaic installed capacity connected on-grid,
medium-term solar radiation forecasting is required to provide the utility company with a longer
preparation time to plan for electrical equipment maintenance. At the same time, photovoltaic power
plants also have to carry out regular equipment maintenance. In summary, these are the benefits
of medium-term solar radiation forecasting. In addition, as artificial intelligence (AI) technology
progresses, AI can have a longer forecast time scale for solar radiation forecasting. Therefore,
AI forecasting is also one of the research topic for the future [28,29].

In this study, we developed several machine learning models to overcome the difficulties in solar
radiation forecasting. A high-precision deep convolutional neural network model, named the SolarNet,
was designed for this same purpose. These models are able to determine whether power generation
estimates are reasonable for use in the system diagnostics to reduce the downtime, increase the
efficiency, and shorten the investment recovery period.

The major contributions of this paper are as follows: (1) a high-precision deep convolutional neural
network model is designed to solve the problem of solar radiation forecasting, (2) the performances of
several machine learning methods in solar radiation forecasting are compared, and (3) the feasibility of
the SolarNet in solar radiation forecasting is demonstrated.

The remainder of the paper is organized as follows. The architecture of the energy management
scheme is introduced in Section 2. In Section 3, the concepts of the neural networks are described.
The design structure of the proposed SolarNet is introduced in Section 4. The experimental results and
their comparison are presented in Section 5. Finally, the conclusions are given in Section 6.

2. Overview of Energy Management Schemes

Nowadays, the development of the renewable energy technology is an important issue in the
world. Due to its clean and inexhaustible characteristics, the growth of the renewable energies
over the past decade was rapid. It is noteworthy that PV systems are most prevalent solutions in
the renewable energy field [30]. However, power generated by a PV system depends on weather
conditions, especially in a solar radiation case. The uncertainties of the weather may cause difficulties
in power dispatching. In order to solve this problem, an energy management scheme of a solar
radiation forecasting model is presented in this paper.

The architecture of the energy management scheme is illustrated in Figure 1. In Figure 1, the solid
arrow denotes the power flow, and the dotted arrow denotes the data/control flow. It can be divided
into three major parts. The first part on the left side of Figure 1 represents renewable energy generation
(e.g., PV plant, wind farm, etc.). The second part represents the energy management system (EMS),
which includes the output signal of the front-end prediction model for power dispatching, the battery
state of charge (SOC), and the block that limits the energy storage system to the EMS. The second part
is mainly composed of EMS and its control signal. If generated energy reaches the limit of the energy
storage system, the remaining power can be fed to the grid.

The renewable sources act as a power system input, which the corresponding power system
uses to generate the output power. On the other hand, the pyranometer and anemometer sensors
detect the time series renewable source data and record it. Furthermore, according to the previous
renewable source record, the forecasting model predicts the future solar radiation and wind speed.
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These forecasting results are then considered by the energy management system. The energy
management system is a crucial part for the operation of the renewable power systems [31] because it
handles all the renewable energy generating situations for an important power dispatching process.
Therefore, precise forecasting of the future renewable source state is very important and necessary to
predicting energy production and power dispatching. It has an important contribution to the power
grid stability.

Figure 1. The architecture of the energy management scheme [32].

However, solar energy forecasting is still a big challenge. The maturity of energy forecasting is
presented in Figure 2 [31,32], where the horizontal axis denotes the point forecasting (deterministic
forecasting), and the vertical axis represents the probabilistic forecasting. The maturities of the
related energy techniques—such as solar power forecasting (SPF), long term load forecasting (LTLF),
electricity price forecasting (EPF), wind power forecasting (WPF), and short-term load forecasting
(STLF)—are shown in Figure 2 [31,32]. Wind power forecasting occupies the highest position in
the presented maturity diagram. Wind power forecasting is similar to weather forecasting, so its
forecasting accuracy is as accurate as the one of weather forecasts. Up to now, due to the cloud move
uncertainties and immature solar energy forecasting techniques, the difficulty level of SPF is much
higher than of other forecasting techniques. However, the investigation of solar energy forecasting
will flourish due to the increasing penetration of solar energy over the next decade [33]. In conclusion,
the development of the SPF technique is absolutely important and urgent. Therefore, the goal of this
study is to develop a high-precision solar forecasting model for the power dispatching process in the
energy management system.

Figure 2. Maturity of energy forecasting [33,34].
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3. Neural Networks

In this section, several key concepts associated with the neural networks [35,36] are described,
including 1D convolution, pooling layers, and dropout technology.

3.1. 1D Convolution

The convolutional neural network (CNN) is a powerful tool widely used in image classification.
The CNNs use weight sharing, so they require fewer parameters than the conventional multilayer
perceptron (MLP) networks, which makes CNNs converge far faster than the conventional neural
network models. An example of calculations involved in a 1D convolution operation is presented
in Figure 3. In this example, the kernel size is 3, which means that the weights (w1, w2, w3) are
shared by every stride of the input layer (i1, i2, . . . , i6), and the output values are c1, c2, . . . , and c6.
The input values in the kernel window are multiplied by the weights (w1, w2, w3). These values are
then summarized and used as the feature map values. In the presented example, the feature c3 is
obtained by c3 = w1 × i2+w2 × i3+w3 × i4.

Figure 3. Calculations involved in a 1D convolution operation.

3.2. Pooling Layer

The pooling layer is crucial to the CNN. Pooling methods can be regarded as down-sampling
operations aimed at reducing the number of parameters while retaining the most important features
in order to speed up the next calculation step. The pooling operation is also meant to overcome the
overfitting problem. Although numerous pooling methods can be used in CNNs, max pooling is the
most common approach. The 1D max pooling operation is illustrated in Figure 4. The length of the
feature map before pooling is 6, and the pooling size is 2. Therefore, the output value is reduced to 3,
and the max values are selected as feature values for the next layer.

Figure 4. 1D max pooling operation.

3.3. Dropout Technology

The serious overfitting problem during training can be mostly overcome using dropout
technology [37]. Figure 5 presents two multilayered feedforward networks, i.e., a standard neural
network (on the left) and a dropout neural network (on the right). The circles in Figure 5 denote the
neurons, and the overlapping lines represent the weights. The bottom neurons denote the input layer,
and the top neurons denote the output layer. All the input information is fed to the input layer and
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passed through the hidden layer (the middle neurons) to the output layer. The training of a neural
network is performed by the backpropagation algorithm. During the training, the weights are tuned,
and the neural network model is fitted according to the training data. The structure of the dropout
neural network is almost the same.

The dropout neural network also consists of the input layer, hidden layer, and output layer.
The dropout method involves the random selection of neurons and disabling of selected neurons
during training such that the output values of randomly disabled neurons are zero. As shown on the
right side of Figure 5, there are three disabled neurons in the first layer and two disabled neurons in
the second layer, whose output values are temporarily set to zero. As indicated by the gray circles
and dotted lines in Figure 5, the connections from disabled neurons are also temporarily removed.
Even though some neurons are temporarily disabled, the neural network can still work well. Based on
the simple random selection method of the “dead neurons,” the overfitting problem can be solved
effectively [37].

Figure 5. An illustration of standard and dropout neural networks.

4. Proposed SolarNet Structure

The proposed CNN-based SolarNet model is presented in Figure 6. The input data consist of solar
radiation values over the previous 14 days, whereas the output values are the forecasting results over
the next 14 days. The SolarNet includes three 1D convolution layers (Conv1, Conv2, and Conv3) and
three pooling layers (Pool1, Pool2, and Pool3). The conventional activation function is a sigmoidal
function defined by (1). However, the rectified linear unit (ReLU) is employed here as an activation
function of the convolution and output layers to reduce the chance of gradient vanishing. The ReLU
function is described by (2).

sigmoid(x) =
1

1 + e−x (1)

ReLU(x) = max(0, x) (2)

Figure 6. The structure of the proposed SolarNet model.
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The number of filters in Conv1, Conv2, and Conv3 is 16, 32, and 64, respectively, which means
that the “thickness” of Conv1, Conv2, and Conv3 is 16, 32, and 64, respectively. We set the kernel sizes
of Conv1, Conv2, and Conv3 to 9, 5, and 5, respectively. The pooling size of each pooling layer is 2,
and the “length” of the feature map is reduced by pooling operations. After processing using three
convolution layers and three pooling layers, the feature map of Pool3 is flattened into a 1D feature
map denoting the final feature extraction result. The last layer of the SolarNet model is fully connected.
To prevent overfitting during training, we apply the dropout technique to the flatten layer with the
dropout rate of 0.15. During the training process, the order of the training data is shuffled between
each epoch, and the batch size is set to 32. The final output is the forecasting results for the next
14 days.

The architecture of the solar radiation forecasting system including three types of processes is
illustrated in Figure 7. The black arrows in Figure 7 indicate data processing, the red arrows indicate
the training processes, and the blue arrows indicate the testing processes. First of all, the solar radiation
data are preprocessed (i.e., scaled to [0, 1]) and then split into the training dataset and testing dataset.
Training data are used for training of the SolarNet model which represents the weights updated
using the backpropagation algorithm. After training, the testing data is fed to the SolarNet to obtain
forecasting results. The forecasting performance of the proposed system is determined by comparing
these forecasting results with the ground truth of testing data.

Figure 7. The architecture of solar radiation forecasting system.

The input data of the proposed CNN model are the information on solar radiation over previous
14 days, and the output data of the model are the information on solar radiation over the next
14 days. As shown in Figure 7, the data are separated into training data and testing data. The training
data are used for model training, and the testing data are utilized for the evaluation of the model
performance. The training data includes a large number of training pairs consisting of input data and
the corresponding output data. Hence, every pair has information on solar radiation over a period of
28 days, where the first 14 days are used as a CNN model input, and the next 14 days are used to define
the desired output. As already mentioned, the training pairs are used to train the CNN model to fit the
given input and output data by adjusting the weights’ values. After the training process, the model can
predict the solar radiation level over the next 14 days. Also, after the training process, if the training
data are fed to the model, the model gives the forecasting result with almost zero error. However,
solar radiation in the practice is unknown and can differ from the training data. Therefore, the testing
data, which has not been included in the model training, are used to evaluate model performance,
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i.e., the generalization ability. The structure of the testing data is the same as that of the training data.
Namely, the testing data also consists of data pairs where every pair has the information on the solar
radiation levels over 28 days. The data over the first 14 days are used as input data and the data over
the last 14 days are used as output data. The forecasting result is compared to the ground truth data
(i.e., the solar radiation in the next 14 days) to evaluate model performance.

5. Experimental Results

In this section, the test results are described in detail. The test results also include the comparison
of the SolarNet performance with the performances of a Support Vector Machine (SVM) [38],
Random Forest (RF) [39], Decision Tree (DT) [40], Multilayer Perceptron (MLP) [41], and Long Short
Term Memory (LSTM) networks [42].

5.1. Data Description

The data contained samples of solar radiance. These samples define the resolution of the
radiometer, which determines the predictability of the dataset. The solar radiation data were collected
by computer monitoring system of the PV sites in Tainan. We employed a radiometer (ISO 9060 Class
2) to capture at least one data record per minute and A/D signal converter to enable network storage
to the gateway. The data were sent on a daily basis via the Internet using the Internet File Transfer
Protocol (FTP) protocol from the network gateway to the back-end servers. The solar radiation dataset
for Tainan (Taiwan) in 2015 is presented in Figure 8. As shown in Figure 8, the weather characteristic
in Tainan (i.e., high uncertainty of the solar radiation) may still influence the forecasting results.

Figure 8. The solar radiation dataset for Tainan (Taiwan) in 2015.

5.2. Comparison Results

To obtain better insight into the proposed model performance, we compared its performances
with the performances of commonly used forecasting models. The mean absolute error (MAE) was
used to evaluate and compare the performances of SVM, random forest, decision tree, MLP, LSTM,
and the proposed SolarNet model. The value of MAE was calculated using Equation (3), where yn

denotes the measured value, ŷn denotes the estimated value, and N denotes the number of samples.

MAE =
1
N

N

∑
n=1
|yn − ŷn| (3)

The PV system instability impacts on the access to the grid, so it needs to predict PV power output
on the grid. Also, under the influence of many factors such as weather, clouds, humidity, and season,
the PV system shows very complicated nonlinear characteristics and it is difficult to predict solar
radiation intensity accurately. Moreover, the longer the forecast period is, the greater the forecast
error will be. The amount of solar radiation has the greatest impact on the PV system. Therefore,
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this paper presents a medium-term forecasting method commonly used in deep learning and analyzes
the theoretical basis and characteristics of different prediction methods.

The results are presented in Figures 9–14, wherein it can be seen that the proposed forecasting
model can deal with the nonlinear problems well and provides much better results in solar radiation
forecasting than the other tested methods. The training data covered a period of four months, and the
testing data covered a period of two months. We conducted 11 tests to obtain a comprehensive
evaluation of the performances of all tested methods. In the first test, the training data includes the
solar radiation data in the first four months, and the testing data covers the solar radiation data in the
fifth and sixth months. With respect to the second test, the selected range of training and testing data
are all shifted forward by half a month from the range of the first test. The rest of the data is shifted
along the same line of reasoning. Furthermore, the solar radiation dataset included data obtained over
the period of one year (2015). According to the climate characteristics of Taiwan, there are generally
four distinct seasons in Taiwan. Therefore, based on different seasonal conditions, the measured data
from one year can almost cover all the possible scenarios regarding solar radiation fluctuations. In this
experiment, all the training data and testing data are obtained from actual numbers, and there are no
simulated data included in the tests.

The comparison of the machine learning algorithms regarding the MAE values is presented
numerically in Table 1. Every method was subjected to every test using the testing data covering a
period of two months. As shown in Table 1, the SolarNet outperformed all other algorithms in tests
2, 4, 5, 8, 9, 10, and 11, and it obtained the lowest average MAE value. The test results show that the
random forest and LSTM methods achieved good results. However, even they failed to reach the
performance of the SolarNet.

Figure 9. Forecasting results of support vector machine: (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.
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Figure 10. Forecasting results of random forest: (a) Partial results A; (b) Partial results B; (c) Partial
results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.

Figure 11. Forecasting results of decision tree: (a) Partial results A; (b) Partial results B; (c) Partial
results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.
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Figure 12. Forecasting results of multilayer perceptron: (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.

Figure 13. Forecasting results of long short term memory network: (a) Partial results A; (b) Partial
results B; (c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.
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Figure 14. Forecasting results of the proposed SolarNet: (a) Partial results A; (b) Partial results B;
(c) Partial results C; (d) Partial results D; (e) Partial results E; (f) Partial results F.

Table 1. Experimental results in terms of Mean Absolute Error (MAE).

Test
Support Vector

Machine
(SVM)

Random
Forest
(RF)

Decision
Tree
(DT)

Multilayer
Perceptron

(MLP)

Long Short
Term Memory

(LSTM)
SolarNet

#1 140.2472 120.8082 147.1849 134.647 122.829 125.949
#2 108.7249 129.3671 156.0479 116.662 107.255 104.035
#3 133.4374 133.7141 172.3512 117.441 115.831 134.09
#4 134.8683 129.2832 158.2685 116.976 117.839 112.52
#5 164.1875 134.1216 144.1382 145.416 145.299 132.296
#6 181.2317 133.1271 142.6717 172.1990 159.5790 145.6360
#7 166.3924 129.9551 143.7967 161.8980 148.485 131.1760
#8 133.8187 119.0586 149.4838 131.8890 132.049 110.4330
#9 100.9875 88.65956 123.2007 111.4450 100.441 77.9005

#10 102.4227 106.0825 125.0525 105.8540 90.789 77.7337
#11 119.3462 104.1780 113.7968 99.9288 93.7216 83.1351

Average 135.0604 120.7595 143.2721 128.5778 121.2830 112.2640

As already mentioned, the solar radiation over the past 336 h (24 h× 14 days) was used as an input
of the forecasting model, and the predicted solar radiation over the next 336 h (24 h × 14 days) was an
output of the forecasting model. The SolarNet achieved the lowest MAE (average of 112.264) and the
best goodness of error among all models. The decision tree (DT) model achieved the highest MAE with
an average error of 143.2721. Based on the average MAE values, the forecasting accuracy in descending
order was as follows: SolarNet, RF, LSTM, MLP, SVM, and DT. The concept of random forest (RF) is
to use many DTs to decide the regression results. The RF is also one of the model ensemble methods.
The results show that the model based on the ensemble method is effective in solar radiation forecasting.
On the other hand, the LSTM represents one of the recurrent neural network models, and it considers
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the time sequence relationship of the input data. The LSTM achieved an acceptable result in the tests,
showing that the recurrent neural network model can handle solar radiation forecasting. However,
the MAE values of MLP, SVM, and DT are higher than those of SolarNet, RF, and LSTM. Consequently,
it can be concluded that these three traditional machine learning methods (MLP, SVM, and DT) still
cannot handle the complex time series forecasting with a high degree of volatility and irregularity.

The graphical comparison of forecasting results is presented in Figure 15, where the blue rectangle
shows the forecasting results in the peak area. The forecasting result of the decision tree is denoted
by a red curve. As seen in Figure 15, the difference between the ground truth and the decision tree
forecasting result is very large, which shows that a decision tree is not capable of handling the solar
forecasting. Even though the SVM and random forest provided better results, the forecasting results in
the peak areas are still unsatisfactory. On the other hand, the MLP, LSTM, and the proposed SolarNet
provided good performances. Namely, the trend of solar radiation was comprehensively learned and
forecasted by these three models.

The green rectangle in Figure 15 shows the forecasting results in the bottom area. In this case,
the forecasting results of the decision tree and random forest are still not good enough. Compared to
the other models, the forecasting error of the decision tree and random forest is too large, which may
cause the misjudgments during power dispatching. However, the pink curve, which denotes the
forecasting result of the SolarNet, is very fitting to the ground truth. The results show that the proposed
SolarNet has the ability to provide good forecasting performance, and the MAE of SolarNet is the
smallest one. Therefore, the feasibility of the proposed SolarNet model for an energy management
system is verified.

Figure 15. Comparison of forecasting results.

6. Conclusions

This paper presents a high-precision deep convolutional neural network model, called the
SolarNet, intended for solar radiation forecasting. The developed model uses the latest deep learning
technology to solve the important solar forecasting problem and improve the prediction accuracy.
The SolarNet uses the data over the previous 14 days collected from a pyranometer sensor to forecast
the solar radiation over the next 14 days with a very low MAE. The performance of the SolarNet
in solar radiation forecasting was validated and compared with the performances of SVM, RF, DT,
MLP, and LSTM. The SolarNet achieved good results in tests and demonstrated that it is feasible
for highly-accurate forecasting. The comparison results verified that, in medium-term forecasting,
the SolarNet forecasting model has good generalizability and robustness in providing high accuracy.
This study not only validates that the CNN model is effective and practical but also creates a new
research direction in the forecasting field.
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