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Abstract: In recent decades, growing concerns about global warming and climate change effects have
led to specific directives, especially in Europe, promoting the use of primary energy-saving techniques
and renewable energy systems. The increasingly stringent requirements for carbon dioxide reduction
have led to a more widespread adoption of distributed energy systems. In particular, besides
renewable energy systems for power generation, one of the most effective techniques used to face
the energy-saving challenges has been the adoption of polygeneration plants for combined heating,
cooling, and electricity generation. This technique offers the possibility to achieve a considerable
enhancement in energy and cost savings as well as a simultaneous reduction of greenhouse gas
emissions. However, the use of small-scale polygeneration systems does not ensure the achievement
of mandatory, but sometimes conflicting, aims without the proper sizing and operation of the plant.
This paper is focused on a methodology based on vector optimization algorithms and developed by
the authors for the identification of optimal polygeneration plant solutions. To this aim, a specific
calculation algorithm for the study of cogeneration systems has also been developed. This paper
provides, after a detailed description of the proposed methodology, some specific applications to the
study of combined heat and power (CHP) and organic Rankine cycle (ORC) plants, thus highlighting
the potential of the proposed techniques and the main results achieved.

Keywords: vector optimization; evolutionary genetic algorithm; robust design optimization; combined
heat and power; ORC systems

1. Introduction

In recent decades, the world energy consumption has continuously increased, especially
because of the strong economic growth of non-OECD (Organisation for Economic Co-operation
and Development) countries [1,2]. Fossil fuels have mostly been used to cope with this increased
energy demand, leading to considerable concerns about climate change. Therefore, an increasing
use of renewable energy sources and a more efficient exploitation of primary energy sources are
indispensable to reduce carbon dioxide emissions and limit global warming effects, as suggested by
the chart in Figure 1 [3]. In this figure, the first column represents the world’s total primary energy
supply in 2011. The second bar represents the outlook of the primary energy supply at 2050 in the
current energy scenario, for which the average global temperature rise is projected to be 6 ◦C. The third
column represents the outlook at 2050 in the 450 Scenario, for which the average global temperature
increase should be limited to 2 ◦C. The figure highlights how the share of renewable energy sources
should reach about 40%, while the primary energy consumption should decrease about 25% compared
to the 6 ◦C Scenario (i.e., the energy efficiency should increase by about 25%) to limit the average
temperature rise.
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Due to improvements in energy efficiency and to an increasing use of low-carbon energy
and renewable energy sources, energy-related CO2 emissions stalled in 2015, as reported in [4].
However, with the development of innovative technologies in the future [5] in addition to traditional
engines [6–11], increasing exploitation of energy sources and increasing share of renewable energies in
final energy consumption will still be fundamental if we are to cope with the challenges due to the world
energy balance and recognized by the Paris Agreement on climate change. In particular, the World
Energy Outlook of 2016 (WEO-2016) highlighted how a key player in further emissions reductions is
recognized to be the wider use of renewable energy sources in the power sector. The WEO-2016 also
highlighted how in the industrial sector alone, an additional investment of about 300 billion dollars
could reduce the 2040 global electricity demand by about 5%, thus avoiding investments of about
450 billion dollars in power generation.

Figure 1. World total primary energy supply detailed by fuel [3].

In this scenario, a key role for primary energy saving and greenhouse gas emission reduction could
be played by polygeneration systems [12–19]. These are mainly cogeneration systems delivering useful
electric (or mechanical) and heat output making use of a single primary energy source (often referred
to as combined heat and power (CHP) or combined cooling, heat, and power (CCHP) systems) or
more complex integrated energy systems providing heat and power from a combination of renewable
and non-renewable power plants and equipment (e.g., solar PV systems, wind turbines, biomass
boilers, and CHP systems). More precisely, as stated by Serra et al. in [12] and Song et al. in [20],
polygeneration could be defined as the combined supply of two or more energy services and/or
manufactured products with the aim of maximizing the exploitation of the energy source that supplies
the plant. Examples of polygeneration systems are cogeneration and trigeneration plants, dual-purpose
power, and desalination plants [12]. In particular, combined heat and power generation can allow for
considerable decreases in primary energy consumption, CO2 emissions, and costs [21–26].

The strategic role of polygeneration systems in the achievement of the Paris Agreement goals
involves leading the transition from centralized energy generation to mature, distributed, small- and
medium-scale energy generation. However, due to the decrease in thermal efficiency and the increase
in specific investment costs with the reduction in plant size, the actual utilization of the thermal
energy provided by a cogeneration plant is essential to optimize energetic and economic performance
(for example, fuel utilization factor, net present value, and CO2 emission). Figure 2 clearly shows
this concept applied to a CHP plant based on the internal combustion engine. In particular, it shows
the primary energy saving (PES) as a function of the plant’s electrical efficiency (i.e., engine size if
ON/OFF operation is assumed) for ηeREF = 0.46, ηb = 0.9, and the different ratios of the available
nominal thermal power actually exploited by the final user.
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Figure 2. Primary energy saving (PES) as function of the combined heat and power (CHP) plant’s
electrical efficiency for different ratios of the nominal thermal power actually exploited (the chart is
representative of CHP plants adopting a reciprocating internal combustion engine).

As for the possible energy subsystem of polygeneration plants, an increasingly important role is
played by organic Rankine cycle (ORC) plants [27] thanks to the possibility of exploiting low-enthalpy
heat sources. ORC plants convert waste heat into electrical energy. However, they often integrate
complex polygeneration plants to improve the energetic performance or to adjust the electricity to the
thermal energy output ratio of the whole system, as demonstrated in [28–30]. In this context, unlike
centralized power plants [31,32], ORC technology encourages distributed power generation [33,34].
However, the efficiency and cost optimization of ORC plants is a key issue, due to their high specific
investment cost and low thermal efficiency [35]. Therefore, the goal of this research work is to
highlight the key role that advanced mathematical methods could have for the optimal configuration
of polygeneration plants, also focusing on the optimization of ORC plants given their increasing use
within complex polygeneration systems. In particular, evolutionary genetic optimization algorithms
could be useful in identifying optimal solutions, even when conflicting goals are pursued. For this
purpose, and with reference to the load profiles of an Italian hospital facility, in the first part of this
research, the energetic and economic advantages achievable with the use of optimized cogeneration
plants ensuring electricity, sanitary hot water, and space heating are addressed. Vector optimization
techniques were adopted by coupling an evaluation algorithm developed by the authors with an
evolutionary optimization algorithm.

The calculation algorithm includes variable energy demands, variability for the specific
investment costs, revenue from selling the exceeding electrical energy to the grid taking into
consideration different time periods, different pricing periods based on an Italian three-tier tariff;
nominal efficiencies depending on CHP engine size, and all of the main elements of complexity
discussed in research activities already published [36,37]. Moreover, the methodology includes other
topics that have not yet been addressed, enabling the design of a CHP plant when energetic, economic,
or legislative scenarios change. In fact, many research works have ignored uncertainties that could
affect the expected results, as stated in [38]. In [39], the development of an operation optimization
model for CHP plants is addressed, and the energy prices are forecasted. However, most of the studies
have assumed fixed values for tariffs and other quantities, while these values are variable during
the plant’s life span. Furthermore, most of the developed methodologies do not identify technical
solutions actually available in the market, as stated in [40].

Therefore, the following two key problems were analyzed in this article:

• the instability of the results due to mismatches between the marketed CHP engines and those
provided by the calculation procedure;
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• the instability of the results due to variations in the reference energetic and electricity
tariff scenarios.

In this study, firstly, optimal energetic and economic solutions (i.e., engine number and size) were
found. Subsequently, a multi-objective robust design optimization approach was used to find the most
stable plant solutions. Although robust design techniques have been rarely adopted within the field
of energy systems [41], this research proposes a novel and valid application of such techniques to
polygeneration plants. Robust optimization is a methodology addressing uncertainty in the input data
of an optimization problem; further details can be found in [42–44].

Lastly, a vector optimization problem concerning an ORC plant supplied by biomass [45] was
solved. Objectives of the optimization problem were the maximization of the global electric efficiency
and the minimization of the overall heat exchangers area, which could be related to the cost of the
plant and its size. Most of the research works on ORC power plants focus on the thermodynamic
optimization and fluid selection [46–48]. However, few studies address the vector optimization of an
ORC plant according to specific thermodynamic and economic objective functions, which is a more
reasonable approach than single-objective optimization [49].

2. The Proposed Methodology

2.1. The Vector Optimization Approach for CHP System Optimization

Starting from data concerning thermal and electric power required by the reference hospital
facility [1], the energetic and economic performance of the plant were calculated over the plant’s life
span, which is estimated to be 10 years. In particular, the heat demand curve represented in Figure 3
was obtained by reordering the annual thermal load to ensure its contemporaneity with the duration
curve of the electrical load reported in the same figure. A vector optimization process was performed
to find the optimized modular plant configurations. Similar methodologies were already adopted
in [50–53]. Vector optimization [54–57] can be useful to conduct predictive investigations on a high
number of plant solutions, also highlighting eventual tradeoffs between energetic and economic results.
The vector optimization problem is generally formalized as follows [58]:

minF(x) = min(F1(x), F2(x), . . . , Fk(x)) (1)

where x ∈ X, Fi : Rn → R , i = 1, . . . , k, and k ≥ 2, where F1(x), F2(x), . . . , Fk(x) are conflicting
functions, Rk is the objectives space, and Rn is the decision variable space. For this reason, vector
x ∈ Rn is a decision variable, while y = F(x) ∈ Rk is a vector of objectives. Table 1 shows decision
variables and objective functions of the problem. The optimal solutions are identified from the notion
of partial ordering. The minimum problem of Equation (1) is based on the Pareto dominance concept
and usually provides a set of optimal solutions.

The authors developed a specific evaluation algorithm. This algorithm, which will be described
in detail in the evaluation algorithm, was coded and coupled to the genetic algorithm MOGA II,
according to the logic scheme shown in Figure 4.

Table 1. Decision variables and objective functions of the optimization problem. SPB: simple
payback period.

DECISION VARIABLES OBJECTIVE FUNCTIONS

VARIABLE RANGE OBJECTIVE TARGET
Electric CHP power 150–1000 kW PES maximize
CHP engine number 1–9 SPB minimize
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Figure 3. Annual duration curve of the electrical load and contemporary thermal load profiles of the
analyzed hospital facility.

Figure 4. Workflow of the multi-objective optimization process.

Although each evolutionary algorithm proposes a different approach, each of them simulates
the evolution of populations through the application of the genetic operators of selection, mutation,
and crossover. Genetic algorithms are iteratively executed on a set of coded chromosomes, called
the population. Each genetic operator is applied to the current individual according to predefined
probabilities. MOGA II is a version of MOGA improved by Poloni [59,60].

However, several inputs to the algorithm can be characterized by uncertain values or can vary
during the plant’s life span. Therefore, vector optimization problems were also solved to evaluate the
stability of the results to mismatches between calculated and marketed solutions. Possible variations in
the energetic and tariff scenarios have also been considered. In particular, a robust design methodology
was used. For this reason, some specific decision variables or economic and energetic input quantities
to the proposed evaluation algorithm were redefined using a probability distribution. The vector
optimization processes were then performed. A stable solution is characterized by a lower sensitivity to
fluctuations of unknown variables. However, the most stable solutions may not include the solutions on



Energies 2018, 11, 821 6 of 21

the Pareto Front. The discrete formulation for the MORDO (multi-objective robust design optimization)
problem can be written as [61]

minF(x, σ)

p(xj) : P(xj) = ∑
j
j=1 p(xj) ∈ [0, 1]

max Fmean, where Fmean = F = ∑
q
j=1

Fj
q

min σ2
F, where : σ2

F = ∑
q
j=1

(Fj−Fmean)
2

q−1 ; xj ∈ R and F : R→ R.

(2)

In Equation (2), σ represents the stochastic description of the variable x, p(xj) represents the
probability density function, and P(xj) represents the cumulative distribution function. The mean
value and the variance for the random variable x can be calculated as follows:

x =
q

∑
j=1

xj

q
(3)

σ2 =
q

∑
j=1

(xj − x)2

q− 1
. (4)

The uniform and the normal distributions were adopted in this study. More details concerning
these probability density functions can be found in [36].

The Evaluation Algorithm

Cogeneration plants based only on natural gas internal combustion engines (ICEs) were
considered because of the dominance of ICEs in small- and medium-scale applications. The main
input variables to the developed algorithm are as follows:

- annual electrical (Pe) and thermal load (Pt) of the user;
- nominal electrical power of the CHP gas engine (Penom) and their number (NCHP);
- reference efficiency for thermo-electric power generation (ηere f );

- average boiler efficiency (ηb);
- CHP plant maintenance costs for kWh of generated electrical energy (M);
- fuel lower heating value (HVL);
- electrical energy price based on a three-tier time-of-use (TOU) tariff, not including VAT (Cuere f ,Fi);

- electricity taxation Iue;
- electrical energy selling price in the billing periods Fi (Pue,Fi);
- the selling price of energy efficiency certificates (EECs) for cogeneration plants to be recognized

as highly efficient (PEEC);
- natural gas tariff, not including VAT (T);
- natural gas taxation (Ium);
- peak demand charge (Cuepeak);

- discount rate (a);
- lifetime of the plant (n).

The annual electrical (Pe) and thermal loads (Pt) of the user were determined via hourly average
values, providing the possibility to simulate the hourly operation of the entire CHP-user system over
an entire year. Further details are discussed in [1].

Total PES (TPES) and simple payback period (SPB) are the main output of the evaluation algorithm,
which depend on the specific operation strategies adopted for the CHP engines. An ON/OFF operation
was imposed to each cogeneration plant (i.e., the electrical power delivered by the plant depends on
the engine size). The engines are switched ON when their operation results in a positive contribution
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to the PES. Otherwise, when no energetic advantage is achieved, the engines are switched OFF. In
particular, according to the management strategy adopted, any hour of the year that is characterized
by positive values of the primary energy saving index is included in the operating range of the CHP
plant. Variations in the nominal electrical (ηenom) and thermal (ηtnom) efficiency with the engine size
were imposed, according to the curves represented in Figure 5. The efficiency curves in Figure 5
are based on the rated values of some cogeneration natural gas engines currently on the market.
Figure 5. also depicts the regression curve adopted to evaluate the specific investment cost of each
single cogeneration unit (CuCHP) as a function of its size. The nominal thermal power of the CHP
engine is then evaluated as follows:

Ptnom = (Penom/ηenom)·ηtnom. (5)

To calculate the operating costs of the entire CHP-user system, the electrical load profile has been
characterized according to a three-tier Italian tariff [1].

Figure 5. Variation in the nominal efficiencies and specific investment cost with the cogeneration
plant size.

Analyses are based on the estimation of the hourly average thermal power actually exploited
(PtCHP), as calculated from thermodynamic considerations. This estimation is then used to define
the operating range of the cogeneration system through an hourly primary energy calculation that is
performed as follows by assuming the CHP plant is ON over the whole year:

TPES(t) =
Ep,RS(t)− Ep,PS(t)

Ep,RS(t)
·100 (6)

where
Ep,RS(t) = Epb,RS(t) + Epe,RS(t) + Eeexc(t)/ηere f (7)

Ep,PS(t) = Epb,PS(t) + EpCHP(t) + Epeint(t). (8)

The TPES(t) in Equation (6) compares the primary energy consumption that characterizes
the interaction among the cogeneration system, the user, the electrical grid, and the auxiliary
boilers in the analyzed energy system to the primary energy consumption, which characterizes
the separate production of the same amount of energy. Therefore, TPES(t) also considers the thermal
energy provided by auxiliary boilers and the electrical energy imported from the grid. Moreover,
when considering the separate production, the electrical energy provided by the cogeneration system
and exceeding the user load demand must be considered as generated with the average efficiency of
thermoelectric power generation (ηere f = 0.46 in Italy).
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Once the vector including the number of CHP engines that are switched ON hourly (N(t)),
and thus the actual CHP engine number (NCHP), has been redefined according to the adopted
operating strategy, it is possible to evaluate the hourly average electric (PeCHP(t)) and thermal
(PtCHP(t)) power provided by the CHP plant. Moreover, to perform detailed energetic and economic
analyses, the electric loads of the user (Pe(t)), the CHP electric power (PeCHP(t)), and therefore
the rate of PeCHP(t) self-consumed by the user (Pesel f (t)) have been characterized according to the
considered TOU tariff, allowing for the definition of vectors Pe,Fi, PeCHP,Fi, and Pesel f ,Fi. The individual
contributions in Equations (6) and (7) are calculated through the following equations:

Epb,PS(t) = (Ptb,PS(t)·∆t)/ηb (9)

EpCHP(t) = (PeCHP(t)·∆t)/ηenom (10)

Epeint(t) = (Peint(t)·∆t)/ηere f (11)

Epb,RS(t) = (Pt(t)·∆t)/ηb (12)

Epe,RS(t) = (Pe(t)·∆t)/ηere f (13)

given that the following definitions are assumed:

Ptb,PS(t) = Pt(t)− PtCHP(t) (14)

PeCHP(t) = N(t)·Penom (15)

Ptnom(t) = N(t)·Ptnom (16)

Peexc(t) = PeCHP(t)− Pesel f (t). (17)

Once the self-consumed electrical power (Pesel f (t)) is determined, the electrical power imported
from the grid Peint(t) is given by:

Peint(t) = Pe(t)− Pesel f (t) (18)

where Pe(t) is the average power requested from the final user. Once Peint(t) has been evaluated
with Equation (18), Peexc,Fi(t) and Peint,Fi(t) can be recalculated before the energetic balance of the
whole reference year is performed, and the resulting TPES can finally be determined according to the
following equation:

TPES =

1−
EPCHP + Eeint

ηere f ·pgrid
+ Etint

ηb

Ee
ηere f ·pgrid

+ Et
ηb

+ Eeexc
ηere f ·pgrid

 (19)

where pgrid accounts for transmission and transformation losses on the electrical grid.
The TPES in Equation (19) is the total primary energy savings, which considers all energy

flows between user, cogeneration system, and the grid. Finally, detailed economic analyses can be
performed, and the ability to comply with the conditions required to be recognized as a high-efficiency
cogeneration plant can be verified. Further details are reported in [36].

2.2. The Multi-Objective Approach for ORC System Optimization

The optimization approach described in this paragraph involves the coupling of the thermodynamic
model of the ORC system with the evolutionary algorithm MOGA II. Starting from the assigned values
of the input parameters and the ORC system model deeply discussed in [35], the optimization process
enabled the identification of a set of Pareto dominant solutions for the specific system configuration
and application. With reference to the general scheme of the optimization process represented above
in Figure 4, analyses were conducted by selecting the following two objective functions:
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global electric efficiency (to be maximized) : ηel =
Pel
.

Qeva

(20)

total area of the heat exchangers (to be minimized) : Atot = Aeva + Acond + Areg. (21)

Although there is a shortage of reliable cost data for ORC plants already installed [62], the energetic
and economic optimization of these plants is a fundamental issue to be addressed. Therefore,
to overcome this limitation, the plant investment cost was related to the total exchange area of
the heat exchangers as defined in Equation (21). The total heat transfer area was then set as the
objective function (to be minimized) to indirectly optimize the economic performance of the ORC.
Actually, it should be noted that the investment cost of these systems is dominated by the cost of the
heat exchangers rather than that of the pump and turbine [63]. Wang et al. [63], instead, considered
the ratio between the net power output and the total heat transfer area as a single objective function to
achieve both thermodynamic and economic optimization. Important information about the cost for
ORC plants is reported in [64]. At any rate, if the type and technological level of the heat exchanger
are defined through a fixed value of the surface/volume ratio, and the cost of the heat exchanger
is proportional to its mass, then the ORC investment cost increases proportionally to the overall
exchange area. This indirect approach to the cost estimation also enables more general results that are
independent of the technology maturity level, which characterizes each specific application.

The following parameters were selected as decision variables of the optimization problem:
minimum and maximum pressure (pmin and pmax) of the thermodynamic cycle, regenerator efficiency
(εreg), superheating at the evaporator outlet (∆Tsuper), and sub-cooling at the condenser outlet (∆Tsub).
The range of definition for the pressure in the decision variable space (Table 2) was limited according
to the thermodynamic restrictions imposed by the hot and cool sources. More details are reported
in [35].

Table 2. Range of definition for the decision variables.

Decision Variable Range of Definition

pmin (10÷ 50) [kPa]
pmax (600÷ 950) [kPa]
εreg (0.55÷ 0.85)

∆Tsuper (0÷ 15) [◦C]
∆Tsub (0÷ 10)

The overall heat exchangers area and the global electric efficiency were evaluated via a 0D model
of the ORC system, which became the calculation algorithm coupled with the optimization algorithm
MOGA II according to the scheme shown in Figure 4.

3. Analyses and Results

3.1. CHP Plant Configuration Optimization

Figure 6 shows, on the objective function plane, the distribution of the calculated solutions
obtained through the maximization of the TPES and the minimization of the payback period (SPB).
Specifically, the bubble chart includes, for each numerical solution, details concerning the number
CHP engine adopted and the electrical power output provided by each CHP engine (i.e., CHP engine
size). The Pareto optimal front was also depicted, highlighting how solutions that maximize the total
energy savings are characterized by an increased payback period. Moreover, this result is in agreement
with other analyses available in the literature [59,65].
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Figure 6. Bubble chart with details concerning CHP engine number and size.

It should also be noted that low TPES increases can be achieved with a high worsening of the
payback period. Dominant solutions show primary energy saving exceeding 16.5%, payback periods
of 2.9–4.6 years, and the adoption of one to three CHP engines with sizes in the range of 260 to
570 kW for each engine. In particular, the plant solution ensuring the minimum payback period
is characterized by one CHP engine providing 554 kW of electric power while the maximum PES
solution (highlighted by a black circle in Figure 6.) consists of three CHP engines providing about
350 kW of electric power. This solution allows for a TPES of over 17% and a SPB of just over 4.5 years.
Figure 6. also shows how modular plants consisting of two or three CHP engines ensure a reasonable
compromise between energetic and economic objectives. Figure 7 shows how, unlike heuristic or
random techniques, the statistical genetic optimization algorithm MOGA II provides fast convergence
toward global optimum solutions starting from the initial set of solutions belonging to the DoE (Design
of Experiment). Specifically, solutions in the objective functions space are labeled according to their
iteration number, while DoE solutions are depicted with green circles. After DoE methods were
performed and solution number 67 identified, it should be noted that only three subsequent iterations
were required by MOGA II to find a solution reasonably close to the Pareto dominant solutions
(i.e., close to the minimum SPB solution).

Finally, Figure 8 shows the electric power delivered by the CHP plant and the electrical load
demand of the user with reference to the minimum SPB solution (i.e., one CHP engine providing
554 kW of electric power output) and a specific day of the year. Figure 9 shows the difference between
the thermal power provided by the same system configuration and the thermal power required by
the user.

To estimate the robustness of the results to the possible unavailability on the market of CHP
systems whose sizes are quite close to the calculated optimal plants, a second vector optimization
problem was solved. The cogeneration engine size was defined through a stochastic decision variable
described by a uniform distribution. A set of 25 sample solutions was adopted to describe this
distribution. The sample designs are spread over an interval of 60 kW. Moreover, they were centered
around the mean value currently evaluated by the optimization algorithm. Figure 10 shows, in the
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σF/F (SPB) − σF/F (TPES) plane, the obtained dominant solutions, where σF is the standard deviation
of the quantity under consideration, and F is its mean value.

Figure 7. MOGA II’s fast convergence toward Pareto dominant solutions.

Figure 8. The electric power required by the user and that provided by the CHP plant.

Figure 9. The thermal power provided by the CHP plant and that required by the user.
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Figure 10. Pareto dominant solutions obtained through the first robust design analysis.

Figure 10 shows that the standard deviation accounts for up to 7% of its mean value for the payback
period. The ratio σF/F for the TPES is always under 3%. Solutions were also ranked according to the
arcs of circumference, defined as equal-stability curves, and are represented in Figure 10. The most
stable solution is highlighted in red and its main characteristics are summarized in Table 3. It should
be noted that this Pareto solution obtained through the robust design approach becomes a dominated
solution if a deterministic approach is adopted for the optimization process, as demonstrated in
Figure 6, where this solution is highlighted with a red circle. Figure 10 also shows that the most
stable solutions include the best energetic performance solution obtained through the deterministic
approach (i.e., three CHP engines—354 kW of electric power highlighted in Figure 6). In this last
configuration, the uncertainties related to the actual commercial availability of the CHP engine size
under consideration have a greater effect on the economic sensitivity, while the ratio σF/F for the TPES
is around 1%, showing high energetic stability.

Table 3. The main characteristics of the most stable solution.

The Most Stable Solution

CHP engine
number

Electrical
power (mean) TPES min TPES mean TPES max SPB min SPB mean SPB max

[-] [kW] [%] [%] [%] [years] [years] [years]
1 482.19 14.32 14.87 15.23 2.91 2.98 3.05

Figure 11 demonstrates that the results, achievable when a deterministic definition of the decision
variables is adopted, may lead to an overestimation of the objective functions if they are compared to
the values achievable through the MORDO.

In fact, the red circle highlights the maximum TPES solution (three engines with 354 kW of electric
power output) represented in Figure 6. The blue crosses represent 25 sample solutions that belong to a
single statistical distribution for the CHP engine size (i.e., the same robust design solution) whose mean
value is just 354 kW, which characterizes the maximum TPES solution represented in red. Figure 11
shows that the SPB can range from 4.3 to 5.3 years, while the TPES could vary in the range 16.7–17.1
when the robust design approach is adopted. These energetic and economic fluctuations are due to the
uncertainties related to the actual commercial availability of the considered engine size. To estimate the
performance fluctuations due to eventual variations in the energetic and economic scenarios, a further
MORDO problem was solved. Specifically, the selling price of the electricity in the three price periods,
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the efficiency of the Italian thermoelectric generation, and the selling price of the EECs granted in Italy
to high-efficiency CHP plants were represented through normal probability distributions (Table 4).

Figure 11. Deterministic and probabilistic approaches to vector optimization.

Table 4. Probabilistic decision variables adopted in the second MORDO problem.

Input Decision Variable Range Unit Distribution Standard Dev.

Selling price in time period F1 0.10–0.14 €/kWh Normal 0.003
Selling price in time period F2 0.076–0.116 €/kWh Normal 0.003
Selling price in time period F3 0.045–0.085 €/kWh Normal 0.003

Reference efficiency 43.5–48.5 % Normal 1
Selling price for the EEC 90–110 €/certificate Normal 3

Figure 12 summarizes, in the σF/F (SPB) − σF/F (TPES) plane, the expected energetic and
economic stability for the dominant solutions.

Figure 12. Pareto dominant solutions obtained through the second robust design analysis.
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The standard deviation for the payback period is always lower than 3.5% of its mean value. This
percentage, that provides an estimation of the variations of the objective functions during the plant’s
life span, assumes values up to 7% for the total primary energy saving. The most stable solution is
highlighted with a red circle in Figure 12, and its characteristics are summarized in Table 5.

Table 5. Main characteristics of the most stable energetic and economic solution.

The Most Stable Solution

CHP
number

Electrical
power (mean) TPES min TPES mean TPES max SPB min SPB mean SPB Max

[-] [kW] [%] [%] [%] [years] [years] [years]
3 331 17.12 17.69 19.25 4.45 4.58 4.79

This plant configuration is somehow similar to the best TPES solution represented in Figure 6.
For this reason, further analysis will be conducted in future works to investigate if the maximum
energy-saving solutions belonging to the Pareto frontier and calculated with a deterministic approach
to the definition of the decision variables generally lead to more stable economic and energetic results,
in comparison to the other dominant solutions.

3.2. ORC System Optimization

The vector optimization process generated over 3500 different solutions. Figure 13 shows, among
Pareto dominant solutions, a clear tradeoff between the two objectives functions. Therefore, an increase
in the global electric efficiency (due to the improvement of the thermal efficiency) was associated with
an increased overall heat exchange area, and thus with an increase in the investment cost, as also
confirmed in [65]. The increase of the electrical efficiency is mainly correlated with increased values of
the degree of regeneration, as highlighted in Figure 14.

Pareto optimal solutions are characterized by electric efficiencies between 14.1 and 18.9% and
an overall heat exchangers area from 446 to 1079 m2. Solutions characterized by higher values of the
global electric efficiency show higher values of the regenerator efficiency εreg and higher values of the
thermal power recovered by the regenerator.

Figure 15 shows, for the same Pareto dominant solutions, the history chart for the minimum and
maximum pressures of the thermodynamic cycle. Minimum pressure values are concentrated in a
small range between 12.7 (Solution 6) and 20.7 kPa (Solution 0), whose saturation temperatures are
88.1 ◦C and 100.9 ◦C, respectively.

Figure 13. Pareto optimal front and clustering of the calculated solutions. In this figure, the comma is
used as a symbol to separate the integer part from the fractional part of a number.
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Figure 14. Pareto history chart of the degree of regeneration.

Figure 15. History chart for the minimum and maximum pressures of the thermodynamic cycle.

Almost all of the optimal solutions show a superheating phase (Figure 16) that is mostly under 5 ◦C,
except for the solutions identified by the numbers 13, 15, 21, and 36. However, due to the negligible
superheating phase, the maximum temperature of the thermodynamic cycle mainly coincides with the
saturation temperature at the maximum cycle pressure for all of the Pareto solutions. Figure 16 also
shows that the sub-cooling phase can be neglected.

Figure 16. History chart of the superheating and sub-cooling temperatures.
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Table 6 summarizes some important details concerning three specific solutions belonging to the
three zones highlighted in Figure 13.

Table 6. Characteristics of three solutions belonging to the three zones identified in Figure 13.

Solution–Zone
Decision Variables Objective Functions

pmin [kPa] pmax [kPa] εreg ∆Tsuper [◦C] ∆Tsub [◦C] Atot [m2] ηel

Solution 0–Zone 1 20.70 661.05 0.55 1.60 0.70 446.52 0.141
Solution 20–Zone 2 16.26 687.71 0.64 7.19 0.16 570.78 0.158
Solution 41–Zone 3 16.04 771.18 0.74 0.00 0.00 727.00 0.172

Finally, with reference to Solution 0 and Solution 41, Figure 17 provides more detailed information
for comparison. It should be noted that Solution 41 is characterized by a higher heat recovery through
the regenerator. This higher thermal power is due to an increased heat exchange area for the regenerator,
which was indirectly related to an increased investment cost in this study. These conditions enable the
increase of the electric efficiency of the ORC power plant.

Figure 17. Scheme of the studied ORC power plant with details of the thermodynamic conditions for
Solution 0 and Solution 41. (a) Solution 0@Zone 1; (b) Solution 41@Zone 31.

4. Conclusions

The increasingly stringent requirements for carbon dioxide reduction have led to a more
widespread adoption of distributed energy systems. One of the most effective techniques employed to
face the energy-saving challenges is the adoption of polygeneraton systems. These plants can provide
a relevant increase in overall efficiency and cost savings. For this reason, a simultaneous reduction
of greenhouse gas emissions can be also achieved. However, the use of small-scale polygeneration
systems does not ensure the achievement of mandatory, but sometimes conflicting, aims without
the proper sizing and operation of the plant. Advanced mathematical techniques such as vector
optimization based on evolutionary genetic algorithms and the robust design approach could play
a key role in identifying optimal solutions. After a detailed description of these techniques, some
specific applications to the study of CHP and ORC systems were presented in this research paper to
highlight the potential of these methods and the main results achieved. In particular, the stability of
the results to possible mismatches between the cogeneration engine size actually marketed and that
calculated was evaluated. Then, the robustness of the achievable results to the eventual variation in
the reference energetic scenario and electricity tariffs was also analyzed.

Finally, a vector optimization technique was adopted to simultaneously optimize the electric
efficiency and the plant investment cost of a specific ORC system. The genetic optimization algorithm
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MOGA II and an indirect approach to the evaluation of the plant cost were adopted. This study clearly
highlighted how vector optimization techniques based on evolutionary genetic algorithms and the
robust design approach provide effective mathematical tools that can support and promote original
investigations concerning polygeneration and energy systems in general. In particular, the insertion of
robust design procedures in the vector optimization methodology proposed by the authors enables
the minimization of the effects of uncertainties on the expected results provided by the energy system
under investigation.

Author Contributions: Both authors played an equal role in the development of the methodology and its
applications, the analyses of the results, and the writing of the manuscript in the present research work.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a discount rate
A area [m2]
Atot total area for the heat exchange [m2]
Ee,sel f hourly electrical energy delivered by the CHP plant and self-consumed by the user [kWh]
EP primary energy [kWh]
Ee yearly electrical energy supplied by the CHP plant [kWh]
Ee,exc yearly electrical energy supplied by the CHP plant exceeding the user needs [kWh]
Ee,int yearly electrical energy integrated by the electrical grid [kWh]
EP,CHP yearly primary energy supplied to the CHP plant [kWh]
Et yearly thermal energy supplied by the CHP plant [kWh]
Et,int yearly thermal energy integrated by auxiliary boilers [kWh]
pgrid factor representative of transmission and transformation losses on the electrical grid [-]
PtCHP actual thermal power provided by the CHP plant [kW]
Ptnom nominal thermal power of a single CHP gas engine [kW]
PeCHP(t) average power output of the CHP during the tth time interval
Pe(t) average electrical load of the user during the tth time interval of the year
Peint(t) electrical power to be integrated from the electrical grid during the tth time interval
Penom nominal electrical power of each CHP gas engine [kW]
std dev standard deviation of the considered quantity
CHP combined heat and power
CCHP combined cooling, heat, and power
DoE design of experiment
EEC energy efficiency certificates
ICE internal combustion engine
MOGA multi-objective genetic algorithm
MORDO multi-objective robust design optimization
PES primary energy savings
PS proposed system (CHP)
PV photovoltaic
RDO robust design optimization
RS reference system (separate production of electrical and thermal energy demand)
SPB simple payback period
TPES total (or technical) primary energy savings
∆t duration of the time interval (1 h in this paper)
∆Tsub superheating at the evaporator outlet [◦C]
∆Tsuper subcooling at the condenser outlet [◦C]
εreg regenerator efficiency or degree of regeneration [-]
ηb average boiler efficiency [-]
ηenom nominal electrical efficiency of the CHP gas engine [-]
ηel global electric efficiency [-]
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ηe,re f reference efficiency for thermo-electric power generation [-]
ηeREF average efficiency of the Italian thermoelectric power generation [-]
ηt actual thermal efficiency of the cogeneration plant (ηt = PtCHP/PP,CHP) [-]
ηtnom nominal thermal efficiency of the cogeneration plant [-]
ηt,re f reference efficiency for thermal energy production [-]
cond condenser
eva evaporator
reg regenerator
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