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Abstract: In this paper, we design a controller for home energy management based on following
meta-heuristic algorithms: teaching learning-based optimization (TLBO), genetic algorithm (GA),
firefly algorithm (FA) and optimal stopping rule (OSR) theory. The principal goal of designing this
controller is to reduce the energy consumption of residential sectors while reducing consumer’s
electricity bill and maximizing user comfort. Additionally, we propose three hybrid schemes OSR-GA,
OSR-TLBO and OSR-FA, by combining the best features of existing algorithms. We have also
optimized the desired parameters: peak to average ratio, energy consumption, cost, and user comfort
(appliance waiting time) for 20, 50, 100 and 200 heterogeneous homes in two steps. In the first step,
we obtain the optimal scheduling of home appliances implementing our aforementioned hybrid
schemes for single and multiple homes while considering user preferences and threshold base
policy. In the second step, we formulate our problem through chance constrained optimization.
Simulation results show that proposed hybrid scheduling schemes outperformed for single and
multiple homes and they shift the consumer load demand exceeding a predefined threshold to
the hours where the electricity price is low thus following the threshold base policy. This helps
to reduce electricity cost while considering the comfort of a user by minimizing delay and peak
to average ratio. In addition, chance-constrained optimization is used to ensure the scheduling
of appliances while considering the uncertainties of a load hence smoothing the load curtailment.
The major focus is to keep the appliances power consumption within the power constraint, while
keeping power consumption below a pre-defined acceptable level. Moreover, the feasible regions
of appliances electricity consumption are calculated which show the relationship between cost and
energy consumption and cost and waiting time.

Keywords: smart grid; supply side management; demand response; demand side management;
real time pricing; chance constrained optimization

1. Introduction

With an exponential rise in energy demand, accompanied by the continuous decline in energy
generation, an ongoing up gradation is required in today’s energy infrastructure. Academia and
research communities have considered it to be the serious concern for addressing future energy
demands. The concept of smart electricity system has moved the conventional grid to the smart grid.
The smart grid (SG) impersonates a perception of the future electric generation system integrated
with advanced sensing technology, two-way communication at transmission and distribution level to
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efficiently supply smart electricity in a smart way. Reliability, cost saving, self-healing, self-optimization
and consumer friendly pollutant reduction are few of the many benefits of the smart grid. The smart
grid is motivated by several economic, social and environmental factors.

Demand-side management (DSM) is the modification of energy demand for the consumer in
response to variation in electricity prices. DSM follows three steps; planning, implementing and
monitoring activities of the utility particularly designed to give awareness to consumers to modify
their level of using electricity. In literature, there are different DSM strategies proposed such as load
shifting, valley filling, demand response, etc. By adopting these strategies consumers can shift their
load from on-peak to off-peak hours. Demand response and load management are the key functions of
DSM. Demand response is defined as changes in end-user electricity usage in response to the variation
in electricity prices over time. The demand response programs include price-based and incentive-based
demand response program. In incentive-based demand response, consumers are provided with some
financial benefits, if they follow the instructions provided by the utility. In price-based demand
response, consumers are offered with the time-varying pricing scheme. The consumer will adjust the
schedule according to the dynamic pricing scheme.

The dynamic scheme includes extreme day pricing (EDP), critical peak pricing (CPP), day-ahead
pricing (DAP), extreme day cpp (ED-CPP) and real time pricing (RTP) [1]. Both the consumer and
utility get the benefit of these programs. On the consumer side, consumers get incentives by shifting
their load to off-peak hours from on-peak hours in terms of reduction in expense of electricity bill.
On the other hand, peak load reduction helps to improve the utility stability and reliability. Further,
the advance monitoring infrastructure (AMI) along with the other devices has made it possible to get
the usage data. With this data, the energy management controller provides the energy consumption
schedule to the common user. A programmable logic controller (PLC) is then used to implement
the proposed algorithm in order to provide an optimized solution and it also provides an interface
between the controller, sensors, smart meter and the appliances. Moreover, PLCs provide modules
which process signals that require specific interfacing requirements.

The smart grid community is actively participating in highlighting the various demand response
problems. The research conducted in the US shows that about 42% of energy usage in the residential
sector are consumed by household appliances. In [2], the operating time for all appliances is known and
the appliance scheduling is considered for the assumed length of operational time. In [3], the authors
study scheduling problem with the known energy consumption habits of a user. In [2,3], the authors
considered a single home in order to find the energy optimization schedule. The authors consider
multiple consumers with known energy consumption of all appliances in order to find optimal starting
time of the appliances in [4]. In the proposed technique, the peak load is not reduced rather it is
shifted to off-peak hours from on-peak hours. In [5], the stochastic algorithm is used to solve the
distributed problem. In this paper, the energy consumption and length of operation is fixed along with
the assumption that each appliance has its own flexible starting time whereas in [6], the starting and
ending time of the appliance is considered along with the varied energy consumption. This problem
is resolved by game theory approach and in this problem, users get their electricity bills based on
their daily energy consumption schedule. In [7–10], non-integer linear programming (NILP), mixed
integer linear programming (MILP), mixed integer nonlinear programming (MINLP) and convex
programming are used for cost minimization and energy consumption scheduling. Moreover, these
techniques are a predefined set of instructions that work well for small data set but fail to handle
complex data set. Secondly, the computational cost of such algorithms is too high.

Along with this, we are exploiting different parameters of the meta-heuristic algorithm and
mathematical algorithm optimal stopping rule (OSR) in order to find an optimal schedule for home
appliances based on priority constraint. The opportunistic scheduling refers to the best starting
time of the appliances based on their priority. Each appliance has its own priority and length of
operational time. The appliance with high priority has high cost and lesser waiting time and vice
versa. We can clearly see the trade-off between peak to average ratio (PAR) and electricity cost.
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The simulations are conducted on a single home and multiple homes (comprised of 20, 50, 100 and
200 homes). There are three categories of appliances: shift able appliances, unshiftable appliances
and uninterrupted appliances. Non Shiftable appliances are considered as fixed or base classes
they consume fix power consumption in any case. Uninterrupted appliances once started cannot be
shifted to any other time slot. As scheduled, these appliances will not help us to achieve our desired
objective so we will only consider shift-able appliances. The major objective of our work is electricity
cost reduction and analyzing the impact of priority constraint waiting time and cost. Additionally,
the yearly cost saving for appliances is also taken into account. Based on above-aforementioned
objectives, the motives of our work are clearly highlighted and it shows that achieving our desired
objectives is significant for both consumers and utility. By applying chance-constrained optimization,
we remove the load uncertainty which helps to limit the power range of appliances.

The main motivation of our work is to tackle the major challenges faced by the conventional grid.
These challenges vary from country to country according to their energy needs and requirements.
In developing countries, energy needs are fulfilled by possible energy supply, or by providing direct
access to the utility. On the other hand, the underdeveloped countries still face the problems associated
with energy consumption management which disturbs the utility stability. Although in different
countries, these circumstances vary based on their situations. In proposed work, we provide the
cost-effective energy optimization solution for the residential home energy management in order to
attain multiple objectives such as minimum cost and maximum user comfort which incentivizes both
the utility as well as the regular consumer.

Generally, Demand response schemes work by shifting the load to off-peak hours from on-peak
hours which minimizes the overall energy usage. The former motivates the consumer with price based
and incentive-based schemes to restrain high peaks which help to maintain grid stability. However,
load shifting may reduce the electricity bills and ultimately may disturb the consumer’s comfort.
So, there is a trade-off between electricity cost and user comfort. Although the above-mentioned
research study has explored the various aspects of residential home energy management. However,
mostly their focus is on one of the objectives either on the cost minimization or the user comfort
maximization. In this paper, we take both objectives into consideration minimum cost as well
as maximum user comfort. Other than this, we proposed hybrid techniques population-based
metaheuristic approaches OSR-GA, OSR-TLBO and OSR-FA. These techniques have easy computation,
fast convergence and less operational time.

The major contributions of our work are:

• Proposed novel hybridization techniques: OSR-GA, OSR-TLBO and OSR-FA
• Simulation is done for the residential area which includes single home, 20, 50, 100 and 200 homes.
• Based on user-defined priority we calculate the yearly based cost minimization.
• We incorporate the threshold-based policy and chance constrained optimization (CCO) technique.
• Different performance parameters are tuned to find out the relation between cost and waiting

time and cost and PAR.
• The feasible region of the appliances is calculated to find the relation between cost and energy

consumption and cost and waiting time.

The paper is divided into six sections. The first section includes the introduction of the smart grid,
the background knowledge, its significance, and the motivation behind the study. The remaining paper
is composed in the following way. Section 2 covers the literature review where previous research in this
domain has been critically analyzed to explore the new findings in this domain. Later on, this section is
comprehended in the form of the table. Section 3 describes the system model. The problem description
and formulation is elaborated in Section 4. The proposed solution their description and algorithms
are organized in Section 5. The results of simulations and the performance comparison are shown in
Section 6. The feasible reason is presented in Section 7 and at the end; the whole summary and the
future work is concluded in Section 8. The schematic overview of this manuscript is given in Figure 1.
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2. Related Work

Previously, the problem of load scheduling was solved by MILP, LP, NILP and ILP. For example,
a real scenario-based case study of price-maker is studied to attain maximum profit. To solve this
problem, MILP is presented. Herman et al. [11] linear programming is used to reduce the electricity
bills. Above mentioned techniques have some drawbacks concluded here first they cannot deal with a
large number of home appliances, second, the exhaustive search cannot reach the optimal solution,
third increase complexity and above of all, most of these schemes use day ahead pricing or fixed prices.

Today the world is more dependent on the smart grid, so energy management is one of the
serious concerns of today’s world. In [12], LP solves the scheduling problem of home appliances to
minimize energy cost. The above-mentioned schemes are supposed to be precise and computationally
efficient but they are not capable of handling complex scenarios as well as their computational time is
comparatively more. Secondly, Integration of renewable energy resources (RESs) is increasing day by
day which can cause uncertainty that cannot be handled by stochastic techniques. In [13], shuffled
frog leaping (SFL) and teaching and learning-based optimization (TLBO) and algorithms are proposed
for solving the appliance scheduling problem. Different pricing schemes are used to test the same
scenario. This research has been conducted in Tehran city of Iran. The simulation result shows that
these optimization techniques performed well for cost reduction.

In [14], Yi et al. have proposed OSR for home appliances scheduling using RTP. The scheduling is
performed in centralized and distributive fashion. The OSR is compared with linear programming
and the simulation results demonstrated that OSR performed better in terms of cost and waiting time.
The limitation of this work is ignoring PAR, which plays an important part in load balancing.

In [15], OSR technique has been used in real time environment to maximize user comfort. The main
objective of this work was to maximize user comfort. There are three different categories of users, such
as active, passive and semi-autonomous. The performance of three algorithms are compared first come
first serve, priority enables early deadline first and modified first come first serve. The simulation
results show that priority enables early deadline first performed well as it considers the desired
objection of user comfort while considering a reduction in energy cost.

In [16], authors present home energy management controller based on heuristic techniques;
genetic algorithm (GA), binary particle swarm optimization (BPSO) and ant colony optimization
(ACO). Time of use (TOU) and inclined block rates are used as a pricing scheme. In this work,
appliances are categorized and users include active and passive users. The main objectives to achieve
is cost reduction, PAR and user comfort. Among these three controllers, GA-based energy management
controller performed well.

In [17], the concept of demand-side management has been given that how efficiently it helps for
load shifting from on-peak hours to off-peak hours. Authors consider three major sectors residential,
commercial and industrial. Several types of controllable devices are handled to solve an optimization
problem using the heuristic-based evolutionary algorithm. Results proved that reasonable cost saving
has been achieved while considering PAR.

In [18], the problem is highlighted to manage load without paying extra money. Beforehand,
to manage load threshold limit is applied to each home, if the consumer cross that limits additional
charges is applied to their bill. To avoid this problem, there is a need to propose efficient load balancing
technique which can manage load with cost minimization while reducing the waiting time of electrical
appliances. In this paper, the multi-objective optimization technique is used for load balancing.
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The result reveals that the proposed techniques minimize the electricity bill and reduce the waiting
time of appliances. In [19] is to efficiently maximize the energy demand while reducing electricity cost.
The appliances are assigned different priorities. The appliance with high priority can complete its task
first and appliance with low priority can wait. The waiting time for an appliance is considered as the
delay which can be computed by delay computation function. The objective of this paper is to reduce
the appliance waiting time and to reduce cost of energy consumption.

A day ahead scheduling model for microgrid has been proposed in [20]. It presents a microgrid
day-ahead scheduling using power flow constraints. The main objectives are the minimization of
total generation and operational cost of wind turbine units (WT), photovoltaic cells (PV), battery
storage systems and diesel generators. In this paper, differential evolution (HSDE) approach and
hybrid harmony search have been proposed. The transmission network is employed to show the
effectiveness and validity of the proposed technique. IEEE test is considered to check the validity of
proposed algorithm. The obtained result is compared with other hybrid techniques. it shows that
for the optimal day-ahead scheduling, the proposed technique performs well under both faulty and
normal conditions.

Authors in [21], a differential evolution (HSDE) approach with hybrid harmony search algorithm is
proposed to optimize the scheduling problem. It includes the solar PV arrays, wind energy generators,
electric vehicle (EVs) and battery storage system. EV plays both roles as load demand and storage
device. Wind and PVs are discontinuous in nature; hence, to maintain the stability of microgrid, battery
storage and EVs are also incorporated. Simulation results show that proposed technique minimizes
the total investment cost. It is tested for two scenarios scheduling of microgrid with the storage system
and EVs and without storage system and EVs. It consumed 7.83% less cost in the first case in which
scheduling of microgrid is done with the storage system and EVs. The limitation of this work is that
they ignored pollutant emissions.

The paper presents hybrid WT and PV [22], dependent on loss of load probability (LLP) using
the iterative genetic algorithm. It is divided into three major chunks. First is PV arrays optimization,
batteries and wind turbine, second is the tilt angle usage and third is inverter size optimization. First
of all, it aims to consume PV and wind turbine as they do not have any fuel cost. Later on, if more
energy is required then it prefers other energy resources like a diesel generator, micro turbines and
fuel cells. The tilt angle of PV arrays is optimized in a way to capture maximum solar energy. Finally,
optimization of inverter size is also proposed in this system. Simulation results show that proposed
technique performed well in comparison with other techniques.

Authors in [23], hybrid artificial bee colony (ABC) optimization technique is used for modeling
and management of microgrid. The main objectives of the proposed algorithm are minimizing fuel cost,
minimizing operational cost, minimizing maintenance cost. Then, the results of different techniques
are verified under different load demands. Results show that hybrid ABC is more effective than
conventional ABC as it manages load demand at minimum cost.

The adaptive modified particle swarm algorithm (AMPSO) in [24] is used to solve different
operation management problems for the microgrid. The objective functions are the minimization of
operational cost and pollutant emission. For further improvement in the optimization process, a chaotic
local search and a fuzzy self-adaptive structure-based hybrid PSO are applied to generate effective
results. The major disadvantage of this system is that the overall operational cost is too high. In [25],
genetic teaching learning-based optimization (G-TLBO) is proposed. There are two main performance
criteria for this paper one is fuel cost and the other one is less execution time. The simulation results
show that the proposed algorithm performed more effectively than conventional algorithms in terms
of fuel cost and execution time.

In paper [26], three cases are discussed one is traditional home, second is smart home and the
third is smart homes with renewable energy resources. Evolutionary algorithms are additionally
proposed which are cuckoo search and binary particle swarm algorithm. Simulation results show that
proposed schemes optimally schedule home appliances while fulfilling the desired objectives which are
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electricity bill and PAR reductions. Integration of RESs with DSM based on RTP scheme is discussed
here. The main goal of this paper is user comfort maximization while considering priority constraints.
The appliances [27] are categorized into elastic, inelastic and regular appliances. It implements GA
to control household appliances to solve electricity cost problem while considering user comfort
maximization and PAR. Furthermore, energy demands are fulfilled by local energy provider where the
major objective is fuel cost reduction of generators.

The integration of renewable energy resources (RESs) with home energy management system and
energy storage system (ESS) is proposed. The multiple knapsack problem is first proposed to solve the
residential problem in [28], and further solved by using the heuristic techniques; bacterial foraging
optimization (BFO), genetic algorithm (GA), wind-driven optimization (WDO), binary particle swarm
optimization (BPSO) and hybrid GA-PSO (HGPO) algorithms. The simulation results show that the
integration of RES and ESS reduces the electricity bill and PAR.

The problem of electricity bills reduction is addressed in [1]. In this paper, home energy management
controller is proposed based on heuristic techniques such as bacterial foraging optimization algorithm
(BFOA), GA, BPSO, and wind-driven optimization (WDO). Moreover, a hybrid of GA and BPSO
is proposed in this paper. The simulation results show that the controller efficiently reduces the
electricity cost and PAR reduction. Among all above-mentioned techniques, GA-based home controller
performed better in both cost reduction and PAR minimization.

In paper [29], the load management technique is introduced in which artificial neural network
(ANN) is used to forecast the daily load. The simulations are done in Matlab and the short term
forecasted load forecast information helps to take the decision which ultimately results in load
reduction. This information is further passed to feeder agent which is the part of multi agent system.
The feeder agent after receiving the information about load generation capacity from DGA and load
reduction from DRA combine the information and passes it to LMA. The LMA after receiving the
data about load reduction and the prices decide to dispatch between the feeders based on three main
factors: the FA bidding, the grid bidding and the forecasted load. The simulation result shows that the
proposed solution is autonomous and applicable for large scale distribution.

In [30], the scheduling of controllable appliances has been formulated by applying online learning
algorithm based on actor-critic which is more robust than actor only method to find user’s Markov
perfect equilibrium (MPE). The simulated result illuminates that the average PAR is reduced up to
13% and the cost is reduced up to 28%. The paper aims at minimizing average cost using real time
pricing scheme. This work is further extensible to a deregulated market where consumers can purchase
electricity from different utility companies.

In [31], the author introduced the modified cost function for load management. This technique
is applied to reduce peak load. To evaluate its convergence and accuracy it is compared with
PSO. The main objective is cost minimization and user satisfaction maximization while considering
generation capacity as a constraint. There is a tradeoff between cost minimization and user satisfaction.

In [32], the authors optimize appliance scheduling by using MILP in the first step and Monte Carlo
simulation is next step. Four different types of pricing schemes are applied to set of three appliances.
The main objective is to design a framework for residential sector to reduce cost while considering
user preferences. In the first step, they find the optimum schedule for appliances and In second step,
they model the user behavior for random hours. This scheduling problem is season independent and
the result shows that the electricity cost reduction is about 10% of the operational cost. On large scale,
the proposed technique will give more significant results. The monitory benefits are calculated by load
manager, such as ALM.

In [33], the decentralized optimal power flow (OPF) algorithm is proposed for managing
transmission and distribution of electric power. The proposed algorithm is based on analytical
target cascading (ATC) and improves the performance of transmission and distribution layers.
The transmission system operator (TCO) and distribution system operator (DCO) are two automatic
systems which work together without disturbing the privacy of each other. The performance is
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evaluated on 6 bus and IEEE-118 bus to find it convergence and accuracy. The results obtained are
promising and better than the existing approaches.

In [34], the authors proposed the decentralized framework while considering the operational
constraints of the utility. In this system, each entity responds to the pricing signal to modify the
generation profile. The challenges that we address are protecting the privacy of customers by hiding
the information of each entity and considering it as the local optimization problem. The performance
of proposed technique is evaluated through IEEE 14-bus and the purpose of this simulation is the cost
reduction in suppliers and consumers as well as congestion in transmission lines. This work can be
further extended by taking in account the real-time trading market rather than day ahead decentralized
algorithm this will actually help in the real world. In this paper, two types of approaches are formulated:
The first one is the centralized approach which minimizes the cost and maximizes the comfort but
the drawback is it requires private information about each entity. In the decentralized approach,
the privacy of utility and suppliers are maintained where each entity get the control signal in response
each entity gets the information about their load and generation capacity. When the centralized
algorithm is compared with the decentralized approach, decentralized approach performed well.

The field of machine learning can also be integrated with the concept of smart grid domain.
In paper [35], they have applied the concept of machine learning such as feature extraction, support
vector machine, decision trees in order to get pattern recognition of power quality disturbances in
the electrical system. The signal processing is done by Huang transform and classification is done by
SVM, whereas for detection and classification decision tree is used in power grid. The simulations are
done in Matlab and the dataset is taken from the real-world environment from the PQube. SVM and
decision tree are simulated in parallel and according to simulations, the decision tree performed well.

In reference [36], The data analysis techniques applied to smart home helps to take visualization
of smart energy usage. In this paper, the authors introduced the policies to give the awareness about
the energy consumption to the common consumer. They applied the concept of machine learning in
which they applied the set of unsupervised machine learning techniques on individual household
appliances in order to show the specific usage pattern of each household appliance. It contributes to
consumer’s energy usage behavior and helps to support precise usage forecasting.

In reference [37], Integration of data mining with smart grid makes more efficient and reliable
power grid. In this paper, an intelligent data mining model is presented which helps to predict
temporal energy consumption pattern. The appliance pattern decides that which hour of the day is
better for appliance usage. For energy usage forecasting they used data clustering and classification.
The proposed data model is compared with SVM and multi-layer perceptron.

In [38], the author presented a brief analysis aimed at determining forecasting load for an individual
household. The findings of forecasted electricity usage can provide smartness to smart meters. The load
forecasting approach for a household is proposed to find a short-term forecasted load for one day.
The sequence mining techniques and segmentation are used to drive power consumption influence on
household usage. Different techniques for forecasting are compared and results are deduced for the
input sample.

The integration of microgrid with the traditional grid aims at a friendly environment. The use
of renewable energy resources reduces carbon emission hence resulting in the green environment.
In [39], the distributed generators are taken into account while considering the uncertainties in load
and RESs. The authors proposed NSGA-II to minimize total power cost, buying and selling of power,
maintenance cost and emission of distributed generators with interlinked microgrid. The efficiency of
the proposed model is comparing with other heuristic approaches such as ICA and PSO. Simulated
result shows that NSGA-11 performed better than the ICA and PSO.

Considering the concept of cloud computing and fog computing in smart grid is the emerging
part of smart grid domain in [40]. Fog computing concept in smart grid helps to increase the scalability,
awareness of energy utilization and low latency. In this work, the authors designed the framework
termed as FOCAN. FOCAN stands for Fog Computing Architecture Network. This framework is
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further classified in communication and computation structure. The main objective of FOCAN is
energy consumption minimization, improvement in intra fog communication and wired/wireless
communication by the overall focan framework. There are three basic types of communications primary,
secondary and inter-primary. FOCAN allows effective communication and transmission in small regions
hence providing the energy aware fog supported system.

Since the above-mentioned techniques for optimization of load scheduling are not feasible for
residential DR, we propose the scheduling of home appliances based on RTP signal using heuristic
algorithms. We assume that there are three appliances: cloth dryer, dishwasher and refrigerator.
Each appliance has its own characteristics like duty cycles, power consumption rate and waiting time.
We run these appliances on different priorities and evaluate their results of average cost and delay
for every month. The trade-off can be seen between cost and waiting time. Table 1 describes some
relevant techniques to the proposed work along with their objectives and limitations.

Table 1. Summarized Related Work.

Reference Technique Objective Limitation

Price maker Self-Scheduling
in a Pool-Based EM [41] MILP Cost minimization Extensive computation

Optimization of
DR programs [13] TLBO and SFL Cost minimization

Delay, user comfort and
PAR are ignored

Real-Time opportunistic
Scheduling [14] OSR Minimize cost and waiting time PAR neglected

Priority and delay
constrained DSM [15]

FCFS, MFCFS,
PEEDF, and OSR

cost minimization and energy
consumption through RESs

Individual appliance
scheduling is ignored

Energy management
controllers with
RESs (16) [16]

ACO, BPSO and GA PAR reduction and cost
User comfort and

privacy issues

DSM in smart grid [17] EA Minimize Cost and PAR User comfort is ignored

Multiobjective optimization
technique for DSM [18] MOEA Cost and delay PAR is not considered

Smart grid cost
optimization using GA [19] GA Minimize cost Consider inelastic load

A day-ahead scheduling
model for the optimal

operation in Microgrid [20]
HSA and DE

Total generation cost and
operational cost minimization,

introduced power flow constraints,
consider transmission line losses

Ignore uncertainty of
PV and WT

Hybrid deferential evolution
with harmony search

algorithm [21]
DEHS

Cost minimization, uncertainty of
WT and PV is modeled

Pollutant emissions are
not considered

Optimization of hybrid
PV and WT [22]

Hybrid itrative
and GA

Minimize system cost, tilt angel
optimization Improve inverter
efficiency, Optimal size ratio of

PV, WT, storage battery and
inverter has been achieved

Transmission losses
not considered

Hybrid artificial bee colony
(ABC) approach [23] Hybrid ABC

Fuel and maintenance cost
minimization, selection of best
power generator under various

load demands

Uncertainty of PV
and WT

Adaptive modified particle
swarm optimization

algorithm [24]

AMPSO and
Hybrid PSO

Operational cost minimization
and reduce pollutant emissions,

RESs integration
Increase operational cost

Genetic teaching learning-based
optimization (G-TLBO) [25] GA and TLBO

Minimize fuel cost and less execution
time, good for large energy

structure Great energy saving

Reactive line losses
are neglected

3. System Model

In smart grid, cost minimization, user comfort maximization and PAR reduction are the main
objectives to achieve regardless of the energy consumption pattern. In smart home (SH), appliances
are scheduled to achieve the minimum cost schedule of each appliance. In SH, there are different smart
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appliances like advanced metering infrastructure, smart meter (SH), home area network (HAN), smart
appliances (SA), energy consumption pattern (ECA), RTP signals and energy management controller
(EMC) which controls the on/off status of each appliance and ensure the decision taken for energy
consumption. The central scheduler executes the job for appliances and makes the decision whether
appliances should be on or off at that particular time slot. We assume there is a system model with
multiple homes where each user has different life style, i.e., they use appliances with different power
ratings and length of operation time. The conceptual diagram of the smart home is demonstrated
in Figure 2.

Figure 2. Proposed System Model.

3.1. HAN

HAN is a network deployed within the home that connects person smart devices, such as
computers, telephones, video games, SM, back-haul communication network, data centers, home
security system and all those appliances that require Wifi. HAN supports wired and wireless
technology like Zigbee, Wifi, WiMax, etc. Typically, HAN comprises of a broadband Internet connection
that connects multiple devices via a third party wired or wireless modem. SM is located between
HAN and main grid which forwards the accumulated load demand to the main grid via an Internet.
The main grid provides pricing signal (i.e., ToU, RTP) based on load demand which later on used for
load scheduling.

3.2. AMI

AMI is an assimilation of numerous technologies such as HAN, distributed computing, smart
metering and sensors which makes it more digital and informative for both user and system operator.
The system incorporating these technologies leads to a smart decision making and user-friendly system.

3.3. EMC

EMC used to monitor the appliances and their energy consumption rating. It contains all
the information about appliances, power rating, priorities, threshold, and length of operation and
based upon these parameters and the inducted algorithm HEMC take a decision and provide
low-cost schedule pattern for the appliances. In this paper, OSR and FA are considered as an
optimization algorithm.
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3.4. SA

We divide a day into time slots, denoted as T and consider that there is a set of different appliances,
denoted as {A1, A2, A3, . . ., An}. Each appliance has its own energy profile. Energy profile of each
appliance is shown in a Figure 3. Each time slot is considered is set as 1 h which is denoted by the
parameter τ. In this paper, we are concerned with shift-able appliances. We assume electricity price
of every hour is different and it remains the same throughout the specific time slot. We assume
that appliances are categorized into three main categories. Non-shiftable appliances, shiftable and
non-interruptible appliances. In this paper, we are primarily concerned with Shiftable appliances.
Let assume we have three main appliances cloth dryer, dishwasher, and refrigerator.

The appliances which take more time to accomplish their task can take more than one-time
slot. The dishwasher completes its task in three stages such as main wash, final rinse, and heated
dry. The cloth dryer has less than an hour duty cycle. It accomplishes its task in only one cycle.
The refrigerator has two main stages ice-making and defrost, and only defrost stage of the refrigerator
can be scheduled for electricity cost reduction.
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Figure 3. Energy Profile of Appliances.

3.5. PLC

PLC helps to implement the optimization algorithm provided for it and it provides the
visualization through the graphical interface between appliances, SM, and the EMC.

3.6. RTP

Electricity cost is calculated according to the price signal provided by the regulatory authority.
For this purpose, different pricing signals can be used which include TOU, IBR, CPP, DAP, RTP, etc.
TOU or DAP is predictable and known before the scheduling period, however, RTP changes every next
hour. This is the reason scheduling based on RTP is more realistic and gives accurate results for load
shifting to off-peak hours from on-peak hours. RTP is considered as more realistic as it is updating the
prices of every next hour. In RTP, prices of every next hour vary while it remains the same throughout
the specific time slot.

3.7. ECP

ECP of appliances is the essential part of load scheduling mechanism as it provides detail information
on energy usage of all appliances. There are three shift-able appliances, cloth dryer, dishwasher, and
refrigerator. Figure 3 demonstrates energy profile of appliances for 24 h. We assume that the RTP price
is fixed in a month, however, changes constantly for the remaining months. The appliance time slot is
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fixed as 1 h and the electricity price is assumed to be fixed in that particular time slot to remain same
during the one-time slot and the appliances duty cycles are less than τ. The energy profile shows that
18–24, 8–18 and 2–8 h are on-peak, shoulder peak and off-peak hours, respectively.

4. Problem Formulation

The scheduling problem for an appliance is formulated as an optimization problem using chance
constrained optimization (CCO) problem. The problem formulation of three appliances in terms of
electricity cost, PAR and waiting time is discussed below. The objective function of the proposed
solution is where εT stands for electricity cost:

minimize(
24

∑
t=1

(
n

∑
ap=1

εT + εW)) (1)

4.1. Cost

The cost is calculated from the given equation where Prhour is power and Pap
r is electricity price:

εT =
T

∑
hour=1

(
n

∑
ap=1

(Prhour × Pap
r × χ(τ))) (2)

4.2. Load

Load can be computed by the equation below where εt stands for load and χ(τ) indicates the on
off status of appliances:

εt =
T

∑
τ=1

n

∑
ap=1

Pap
r × χ(τ) (3)

4.3. PAR

PAR highlights the load peaks and helps to balance the load. It can be formulated by equation below:

PAR =
max(ετ

n)
1
T ∑T

τ=1 ∑An
n (ετ

n)
∀T = 24 (4)

4.4. Threshold

P is the electricity price uniformly distributed over [ρo, ρp] where ρo is the lower limit and ρp is the
maximum limit. The appliances are turned on once their electricity price is lesser than the threshold.
This equation is taken from [15].

Z =

√
2(ρp − ρo)µτ

ε
+ ρo (5)

4.5. Waiting Time

Delay or the appliance waiting time is considered to be the appliance average waiting time. It can
be computed by given equation where t’s starting time of appliance and ’tr’ is requested time:

εW = tr− t’s (6)

4.6. CCO Problem

In this subsection, we seek to determine the feasibility of the proposed solution. To do so, we
formulate a CCO problem to map with the home scheduling problem. It defines upper and lower
bound limits for power as a power constraint and appliance capacity cannot exceed the maximum
load limit of an appliance.

Px,min ≤ Px ≤ Px,max (7)



Energies 2018, 11, 888 12 of 30

where Px,min and Px,max are the minimum and maximum power, respectively.

Pload ≤ Pload,max (8)

where Pload is less than maximum power limit Pload,max.

5. Proposed Solution

5.1. Hybrid Schemes

Mathematics programming techniques, including optimal stopping rule and stochastic
metaheuristic approaches, are two different streams for combination purpose. Previously, numerous
researchers are conducted and it has been noticed that there is a huge potential in building hybrids of
mathematical programming such LP, MILP and OSR to the metaheuristic techniques. In fact, different
problems can be solved practically in a much better way by exploiting little modification in already
existing algorithms. The vital issue is how to combine both techniques in order to achieve maximum
benefits. Many hybrid schemes are proposed in past few years. In this paper, we propose different
hybrid techniques of OST-GA, OSR-TLBO and OSR-FA. In this concern, there are two basic categories:
Collaborative combination, in which both algorithms exchange information, but they are not part of
each other. These algorithms work sequentially or parallel. In integrative, one technique is embedded
component of another technique. In this paper, we will propose an integrative combination.

5.1.1. Hybrid OSR-GA

We proposed a hybrid technique by combining the OSR and GA. The main aspects of designing a
hybrid technique are exploration and exploitation. There must be a balance between local search and
global search. We propose a hybrid technique by combining OSR and GA. In case of GA, it has a good
convergence rate and performs better in exploration mode while OSR performs better in exploitation
mode. In OSR, based on the known information, a decision is taken on when to take the action in
order to minimize the cost or maximize the reward. Initially, the hybrid technique works same like
the genetic algorithm. At Initial stages, GA steps are followed, such as population generation; we
generate a random population of chromosomes. Each of the chromosomes is the candidate solution to
the problem. In our case, each bit of chromosomes shows the on/off status of appliances. A fitness
function based on the objective function is taken from OSR. For an random appliance, we consider two
cost: the electricity cost and the waiting time cost. Our objective is to achieve the minimum cost of the
home appliances. This minimization problem can be formulated by optimal stopping rule. The best
fitted solution is chosen and recorded as best fit value. Based on the current best solution, a new
stream of a population is generated based on crossover and mutation. In GA, the two main genetic
control parameters are crossover and mutation. In the crossover, a pair of the parent is selected for
each new solution to be produced. In mutation, a single bit of chromosome is replaced which is used to
maintain genetic diversity from one generation of a population to the next. These processes ultimately
result in the next generation population of chromosomes that is different from the initial generation.
It encourages population diversity and helps to prevent premature convergence. The parameters’ list
for GA is given in Table 2. Steps of the OSR-GA are mentioned in the Algorithm 1.

Table 2. GA parameters and values.

Parameter Value

Population Size 50
Selection Tournament Selection

Elite Count 2
Crossover 0.9
Mutation 0.1

Stopping Criteria Max. Generation
Max. Generation 100
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Algorithm 1: OSR-GA Algorithm.
Initialize all parameters (population size, number of appliances, selection method, time slots,
crossover rate pc, mutation rate pm, termination criteria );

for t = 1:ε T do
At time interval t, arbitrary initialize the ON/OFF pattern of smart appliances ;
for iter = 1:Max.iter do

Calculate the objective function according to OSR;
if appliance i has turned ON then

For each appliance i, calculate the threshold Z using Equation (5) ;
end
if current price P(t) < Z && ET(t) ≤ Q then

Turned ON the appliance i
end
if pc ≤ 0.9 then

Select crossover point from both parents.;
Reproduce the offspring by implementing crossover operation;

end
if pm ≤ 0.1 then

Rrandom individual selection from population.;
Invert a bit randomly for a selected individual.;
Evaluate the population fitness based on Equation (1).;

end
Return optimum solution;

end
end

5.1.2. Hybrid OSR-TLBO

We proposed a hybrid technique by combining the OSR and TLBO. In case of TLBO, it performs
better in exploitation mode. TLBO finds the best solution into local search space, while OSR performs
better in decision making on random variables in order to minimize expected cost or to expected
reward. The best part of TLBO is that among all optimization algorithms it does not rely on any
algorithm-specific parameters. So by combining these two algorithms, we can find the optimal
solution. Initially, the hybrid technique work like TLBO, such as population generation, learner
phase, and teacher phase is same as TLBO. After updating population from teaching and learning
phase, fitness function of OSR is applied. This process continues until we find the optimal solution.
The proposed technique has better convergence rate and less execution time. List of parameters for
TLBO is given in Table 3. Algorithm 2 describes the steps of hybrid OSR-TLBO.

Table 3. TLBO parameters and values.

Parameter Value

Population Size 24
App 3
Hour 24
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Algorithm 2: OSR-FA.

Initialize system parameters (nPop, MaxIt, T);
Initialize algorithm parameters (ξa, ηa, D, I);
For all appliances D ε APP do ;
for t = 1→ T do

for it = 1→ MaxIt do
Pop = rand(nPop, D);

end
for j = 1→ ℘ do

Select an individual xr such that r 6= i ;
end
if Pop(i, j) > 0.5 then

Pop =1
else
Pop = 0

end
for i = 1→ nPop do

end
Compute the light intensity as objective function using Equation (9);
Find the firefly with the best light intensity as (Ix >= Ix−1);
for x = 1→ nPop− 1 do

for y = x + 1→ nPop do

end
if Ix >= Iy then

Move x firefly towards j firefly based on attraction ξa

else
Move firefly x randomly

end
end
for j = 1→ Pop do

for k = 1→ ℘ do

end
if X(i, j) > 0.5 then

X = 1
else
X = 0

end
end
Evaluate new population based on fitness function;
if appliance i is turned ON then

For each appliance i, calculate the threshold Z using Equation (5);
end
if current price P(t) < Z && ET(t) ≤ Q then

Turned ON the appliance i.;
end
If found the best solution then;
Update the solution;

end

5.1.3. Hybrid OSR-FA

We proposed a hybrid technique by combing OSR and FA. FA is inspired by the behavior of
fireflies. In FA, the two fundamental functions are to attract matting partner and to attract potential
prey. After determining the light intensity and calculating the attractiveness of fireflies the best
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solution is to find out the fitness of all fireflies from the objective function taken from OSR. This process
continues till we find the optimal solution. OSR is a threshold-based policy which depends on the
priority of appliances and the threshold. We use simulations to show the properties of OSR. We assume
the electricity price is uniformly distributed between [0.01, 0.02] $/KWH. Then the threshold is given
by Equation (5). It is observed that intuitively if an appliance is less sensitive to the waiting time,
it will wait for the time slot with lower electricity price. Set of parameters for FA are listed in Table 4.
The working of hybrid OSR-FA is explained in the Algorithm 3.

I = Ioexp(−ηυ2) (9)

Algorithm 3: OSR-TLBO.

Initialize population size, number of subjects, termination criteria;
Calculate fitness as objective function ;
for t = 1:ε T do

while termination criteria is not met do
if appliance i has turned ON then

For each appliance i, calculate the threshold Z using Equation (5) ;
end
if current price P(t) < Z && ET(t) ≤ Q then

Turn ON the appliance ;
end
Teacher phase;
Select the best individual as a teacher xg

Teacher from pop;
Calculate the mean value (xn) of each subject;
for i = 1 to popsize do

for j = 1:D do
TF = round(1 + rand(0, 1));
xnew

k = xold
k + randi(xg

Teacher − TF × xn);
Calculate fitness value of new individual f (xnew

k );
if f (xnew

k ) < f (xold
k ) then

xold
k = xnew

k ;
end

end
end
Learner phase;
if f (xk) < f (xr) then

xnew
k = xold

k + randi(xr − xk)

else
xnew

k = xold
k + randi(xk − xr)

end
for i = 1 to popsize do

for j = 1:D do
Select a random individual xr such that r 6= k ;

end
if f (xk) < f (xr) then

xnew
k = xold

k + randi(xr − xk)

else
xnew

k = xold
k + randi(xk − xr)

end
end
Return the optimum solution;

end
end
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Table 4. FA parameters and values.

Parameter Value

Population Size 24
App 3

Max It 10
Varmin 10
Varmax 10
Gamma 1

Beta 2
Alpha 0.2

6. Simulation Results

We design the system for a residential area, where we consider 1, 20, 50, 100 and 200 homes
with different living style (i.e., set of three appliances with different length of operation time and
power ratings). Furthermore, the three main shiftable appliances are cloth dryer, dishwasher and
refrigerator. The initial parameters are given in Table 5 and the energy consumption profile is shown in
Figure 3. All these appliances are plotted on two different priorities. The priority is consumer defined
variable and has a direct impact on the cost and waiting time. The higher priority depicts that the
consumer is ready to compromise on cost and lower priority shows that consumer can wait for certain
timeslots when the electricity price is low. To avoid randomness in simulation results, we have taken
10 iterations of the whole population and considered the mean of population generation.

In this section, we present the simulation results and analyze the performance of our proposed
hybrid algorithms OSR-GA, OSR-TLBO and OSR-FA in RTP environment. We assume the duty cycle
of the appliances is 1 h. RTP signal is uniformly distributed between [0.01, 0.02] $/KWH. We assume
the RTP remains constant during a month and change with fixed constant for the other months.
The detailed comparison is given below.

Table 5. Parameters of Appliances.

Appliances Average Power (kW) LOT (hours) Priority (µ)

Clothdryer 3.0 0.75 [0.01, 0.12]
Dishwasher 0.8 1.75 [0.001, 0.017]
Refrigerator 0.089 24 [0.0033, 0.0089]

6.1. Cloth dryer Hybrid OSR-GA

The starting operation of cloth dryer is mostly after breakfast and dinner, which coincides the
on-peak hours as shown in Figure 3. Cloth dryer has only one main cycle. Let, Pcd represents the
power rating of cloth dryer and equation below shows the total energy consumption of cloth dryer
and it is shown in Figure 4d.

εcd =
T

∑
τ=1

Pcd × χ(τ) (10)

Figure 4a,c show the performance of cloth dryer in terms of cost and waiting time. The simulations
for cloth dryer (OSR-GA) are summed up in Table 6. The unscheduled cost acquired by cloth dryer
is $232.79. When the priority is set to be low i.e., 0.001 OSR, GA and OSR-GA have reduced the cost
by 70%, 60% and 70%, respectively with an average delay of 6.5706, 7.5156 and 6.5 h, respectively.
Similarly, when the priority of the cloth dryer is high, i.e., 0.12, OSR, GA and OSR-GA have reduced
the cost by 35%, 34% and 35%, respectively. The average delay incurred for priority 0.12 is 3.5833,
3.0455 and 5.0223 h, respectively. OSR-GA performed well as compare to other techniques in terms
of waiting time and cost. On the other side, PAR of OSR-GA is optimum in comparison with other
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algorithms. In Figure 4a, we can clearly observe the significant increase in electricity price for the
months 5–9 which interprets that consumers have to pay more for the aforesaid months.

Figure 5a,b show the performance of dishwasher (OSR-GA) in terms of cost and waiting time.
The simulations for the dishwasher (OSR-GA) are summed up in Table 7. The unscheduled cost
acquired by the dishwasher is $232.79. When the priority is low i.e., 0.001 OSR, GA and OSR-GA
have reduced the cost by 62%, 54% and 63%, respectively with an average delay of 5.0223, 4.6429
and 5.0223 h, respectively. Similarly, when the priority of the dishwasher is high i.e., 0.017, OSR,
GA and OSR-GA have reduced the cost by 14%, 41% and 14%, respectively. The average delay
incurred for priority 0.017 is 0.5, 1.2 and 0.22 h, respectively. OSR-GA performed well as compare to
other techniques in terms of waiting time and cost. On the other side, PAR of OSR-GA is optimum
in comparison with other algorithms. In Figure 5a, we can clearly observe the significant increase
in electricity price for the months 5–9 which interprets that consumers have to pay more for the
aforesaid months.

Figure 6a,b show the performance of refrigerator (OSR-GA) in terms of cost and waiting time.
The simulations for refrigerator (OSR-GA) are summed up in Table 8. The unscheduled cost acquired
by the refrigerator is $72.2305. When the priority is low i.e., 0.0033 OSR, GA and OSR-GA have reduced
the cost by 17%, 8% and 17%, respectively with an average delay of 7.3125, 11.7500 and 7.3125 h,
respectively. Similarly, when the priority of the refrigerator is high i.e., 0.017, OSR, GA and OSR-GA
have reduced the cost by 13%, 4% and 13%, respectively. The average delay incurred for priority
0.0088 is 6.9, 5.5 and 5.1 h, respectively. OSR-GA performed well as compare to other techniques in
terms of waiting time and cost. On the other side, PAR of OSR-GA is optimum in comparison with
other algorithms. In Figure 6a we can clearly observe the significant increase in electricity price for the
months 4–10 which interprets that consumers have to pay more for the aforesaid months.

The simulation results of multiple homes (considering 20, 50, 100 and 200) for cloth dryer are
summed up in Table 9 in terms of cost, waiting time and energy consumption.

Table 6. Cloth Dryer Simulation Statistics.

Hybrid Technique Priority Average Cost/Month Reduction in Cost (%) Average Delay in
Hours/Day

OSR-GA

OSR 0.01 29.7400 70.25 6.5706
0.12 64.5000 35.50 3.5833

GA 0.01 40.1200 60 7.5156
0.12 65.4600 34 3.4091

OSR-GA 0.01 29.7418 70.2582 6.5706
0.12 64.4998 35.5002 5.0223

OSR-TLBO

OSR 0.01 29.7400 70.25 6.5706
0.12 64.5000 35.50 3.5833

TLBO 0.01 73 16 3.0
0.12 83 3.35 2.4091

OSR-TLBO 0.01 58 21 6.5
0.12 68 11 2.6

OSR-FA

OSR 0.01 29.7400 70.25 6.5706
0.12 64.5000 35.50 3.5833

FA 0.01 53.8949 46.1050 7.3205
0.12 55.3693 44.1913 5.2242

OSR-FA 0.01 29.7418 70.2582 2.6875
0.12 1.6030 98.3970 2.5875
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Table 7. Dishwasher Simulation Statistics.

Hybrid Technique Priority Average Cost/Month Reduction in Cost (%) Average Delay in Hours/Day

OSR-GA

OSR 0.001 37.8458 62.1542 5.0223
0.017 85.7143 14.2857 0.5555

GA 0.001 45.2012 54 4.6429
0.017 58.1443 41 1.2188

OSR-GA 0.001 36.7558 63.2442 5.0223
0.017 85.7143 14.2857 0.22

OSR-TLBO

OSR 0.001 37.8458 62.1542 5.0223
0.017 85.7143 14.2857 0.5555

TLBO 0.001 27.2866 92 2.7500
0.017 71.3850 28 1.6250

OSR-TLBO 0.001 58.7037 31.2963 5.0223
0.017 68.0152 20.9848 1.2500

OSR-FA

OSR 0.001 37.8458 62.1542 5.0223
0.017 85.7143 14.2857 0.5555

FA 0.001 52.9677 47.03 4.7857
0.017 53.5672 46 4.6696

OSR-FA 0.001 6.66 92 1.25
0.017 37 62 0.5

Table 8. Refrigerator Simulation Statistics.

Hybrid Technique Priority Average Cost/Month Reduction in Cost (%) Average Delay in Hours/Day

OSR-GA

OSR 0.0033 82.4841 17 7.3125
0.0089 86.4284 13 6.9167

GA 0.0033 91.7838 8 11.7500
0.0089 95.8347 4 5.5000

OSR-GA 0.0033 82.4841 17.5159 7.3125
0.0089 86.7690 13.2310 5.1875

OSR-TLBO

OSR 0.0033 82.4841 17 7.3125
0.0089 86.4284 13 6.9167

TLBO 0.0033 88.2937 11 4.5000
0.0089 98.0157 1 1

OSR-TLBO 0.0033 75.0477 24.9523 7.3125
0.0089 80.7619 19.2381 5.1875

OSR-FA

OSR 0.0033 82.4841 17 7.3125
0.0089 86.4284 13 6.9167

FA 0.0033 86.6 13 9.2500
0.0089 96.6 11 8.9500

OSR-FA 0.0033 2.209 92 5.18
0.0089 82.4841 17.5159 4.28

Table 9. Cloth Dryer Simulation Statistics.

Hybrid Homes Cost Waiting Time E.C (Kwh)

OSR-GA

1 69.52 6.57 3.00
20 1380.21 130 60.00
50 3354.23 325 150.00
100 6854.33 650 300.00
200 13,738.92 1300 600.00

OSR-FA

1 69 2.68 3.00
20 1378.33 53.6 60.00
50 3344.22 130 150.00
100 6820.11 260 300
200 13,287.13 500 600

OSR-TLBO

1 71.95 6.5 3.00
20 1402.22 139 60.00
50 3512.43 300 150.00
100 7100.03 650 300
200 14,149.87 1300 600
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Figure 4. Hybrid Plots for Cloth Dryer (OSR-GA). (a) Monthly Cost of Cloth Dryer (OSR-GA), (b) Total
Cost of Cloth Dryer (OSR-GA), (c) Waiting Time of Cloth Dryer (OSR-GA), (d) Energy Consumption of
Cloth Dryer (OSR-GA), (e) PAR of Cloth Dryer (OSR-GA).
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Figure 5. Hybrid Plots for Dish Washer (OSR-GA). (a) Monthly Cost of Dish Washer (OSR-GA),
(b) Waiting Time of Dish Washer (OSR-GA), (c) Total Cost of Dish Washer (OSR-GA), (d) Energy
Consumption of Dish Washer (OSR-GA), (e) PAR of Dish Washer (OSR-GA).
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Figure 6. Hybrid Plots for Refrigerator (OSR-GA). (a) Monthly Cost of Refrigerator (OSR-GA),
(b) Waiting Time of Refrigerator (OSR-GA), (c) Total Cost of Dish Washer (OSR-GA), (d) Energy
Consumption of Refrigerator (OSR-GA), (e) PAR of Refrigerator (OSR-GA).

6.2. Dishwasher

The dishwasher is as flexible as cloth dryer and mostly after breakfast and dinner, It shows spikes,
coinciding with the on-peak hours which can be shown in Figure 3. A dishwasher has three stages;
main wash, final rinse and heated dry. The dishwasher total energy consumption is represented by the
following equation.

εdw =
T

∑
τ=1

Pdw × χ(τ) (11)

One day electricity cost for dish washer is calculated by:

ζD
dw =

T

∑
τ=1

Pdw × χ(τ)× ρ(τ) (12)

Figure 7a,c illustrate the monthly cost and average waiting time for each month. The result of the
simulation is summarized in Table 6. The yearly unscheduled load cost of the cloth dryer (OSR-TLBO)
is $232.79. The yearly unscheduled load cost of the cloth dryer is $224.6. When priority is low 0.001
OSR, TLBO and OSR-TLBO have reduced the cost by 70%, 16% and 21% having an average daily delay
of 6.5, 3.0 and 6.5 h, respectively. Similarly, when priority is high i.e., 0.12 OSR, TLBO and OSR-TLBO
have reduced the cost by 35%, 3.35% and 11% having an average daily delay of 3.5, 12.4, and 2.6 h,
respectively.

Figure 8a,c illustrate the monthly cost and average waiting time for each month. The result of the
simulation is summarized in Table 7. The yearly unscheduled load cost of the dishwasher (OSR-TLBO)
is $232.79. The yearly unscheduled load cost of the dishwasher is $232.7986. When priority is low
0.001 OSR, TLBO and OSR-TLBO have reduced the cost by 62%, 92% and 31% having an average daily
delay of 5.0223, 1.7500 and 5.0223 h, respectively. Similarly, when priority is high i.e., 0.017 OSR, TLBO



Energies 2018, 11, 888 21 of 30

and OSR-TLBO have reduced the cost by 14%, 28% and 31% having an average daily delay of 0.5555,
1.2188, and 1.2500 h, respectively.

Figure 9a,b illustrate the monthly cost and average waiting time for each month. The result of the
simulation is summarized in Table 8. The yearly unscheduled load cost of the refrigerator (OSR-TLBO)
is $72.2305. The yearly unscheduled load cost of the refrigerator is $72.2305. When priority is low
0.0033 OSR, TLBO and OSR-TLBO have reduced the cost by 17%, 11% and 24% having an average
daily delay of 7.3125, 4.5000 and 7.3125 h, respectively. Similarly, when priority is high i.e., 0.0088 OSR,
TLBO and OSR-TLBO have reduced the cost by 13%, 1% and 19% having an average daily delay of
6.916, 1 and 5.1875 h, respectively.

The simulation results of multiple homes (considering 20, 50, 100 and 200) for dishwasher are
summed up in Table 10 in terms of cost, waiting time and energy consumption.

Table 10. Dishwasher Simulation Statistics.

Hybrid Homes Cost Waiting Time E.C (Kwh)

OSR-GA

1 88.1046 5.0223 0.8352
20 1700 100 16
50 4000 260 40
100 7500 560 80
200 16,600 900 160

OSR-TLBO

1 159.9413 5.02 1.4
20 2990 100 28
50 8000 260 70
100 16,950.11 302.5 140
200 30,900 611.5 280

OSR-FA

1 88.1046 1.2500 1.4
20 1750 26 28.00
50 3500 63.22 70.00
100 8500 122 140
200 17,500 240.55 280
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Figure 7. Hybrid Plots for Cloth Dryer (OSR-TLBO). (a) Monthly Cost of Cloth Dryer (OSR-TLBO),
(b) Total Cost of Cloth Dryer (OSR-TLBO), (c) Waiting Time of Cloth Dryer (OSR-TLBO), (d) Energy
Consumption of Cloth Dryer (OSR-TLBO), (e) PAR of Cloth Dryer (OSR-TLBO).
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Figure 8. Hybrid Plots for Dish Washer (OSR-TLBO). (a) Monthly Cost of Dish Washer (OSR-TLBO),
(b) Total Cost of Dish Washer (OSR-TLBO), (c) Waiting Time of Dish Washer (OSR-TLBO), (d) Energy
Consumption of Dish Washer (OSR-TLBO), (e) PAR of Dish Washer (OSR-TLBO).
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Figure 9. Hybrid Plots for Refrigerator (OSR-TLBO). (a) Monthly Cost of Refrigerator (OSR-TLBO),
(b) Waiting Time of Refrigerator (OSR-TLBO), (c) Total Cost of Dish Washer (OSR-TLBO), (d) Energy
Consumption of Refrigerator (OSR-TLBO), (e) PAR of Refrigerator (OSR-TLBO).
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6.3. Refrigerator

The refrigerator is operated 24 h in a day. There are two states of refrigerator: Icing state and
defrost state. We schedule the defrost stage of the refrigerator. In order to obtain the required objectives,
we use four techniques to see the effects on average waiting time and cost. The execution cost and
waiting time of cloth dryer (OSR-FA) are shown in Figure 10a,c. The summary of the cloth dryer is
summed up in Table 8. Simulation results demonstrated that, When the priority of the cloth dryer
is low 0.01 OSR, FA and OSR-FA have reduced the cost by 70%, 46% and 70%, respectively with an
average delay of 6.5, 7.3 and 2.6 h, respectively. Similarly, when we set the priority of the cloth dryer is
set to the higher value 0.12, all schemes have reduced cost by 35%, 44% and 98% with a delay of 3, 5.2,
and 2.58 h, respectively. OSR and GA performed better than OSR-FA in terms of cost and waiting time.
It is noticed that FA has maximum PAR reduction among others.

The execution cost and waiting time of dishwasher (OSR-FA) are illustrated in Figure 11a,c.
The summary of the dishwasher is summed up in Table 8. Simulation results demonstrated that, When
the priority of the dishwasher is low 0.01 OSR, FA and OSR-FA have reduced the cost by 62%, 47%
and 92%, respectively with an average delay of 5.0, 4.7 and 1.25 h, respectively. Similarly, when we set
the priority of the dishwasher is set to the higher value 0.017, all schemes have reduced cost by 14%,
46% and 62% with a delay of 30.5, 4.5, and 0.5 h, respectively.

The execution cost and waiting time of refrigerator are illustrated in Figure 12a,c. The summary
of the refrigerator is summed up in Table 8. Simulation results demonstrated that, When the priority
of the refrigerator is low 0.0033 TLBO, GA, FA and OSR-FA have reduced the cost by 17%, 13% and
92%, respectively with the average delay of 7.3125, 9.2500 and 5.18 h, respectively. Similarly, when we
set the priority of the refrigerator to 0.0089, all schemes have reduced cost by 13%, 11% and 17% with
a delay of 6.9, 8.9500 and 4.2 h, respectively. OSR-FA and GA performed better than FA in terms of
cost and waiting time. It is noticed that FA has maximum PAR reduction among others. It is observed
that cost reduction in the refrigerator is significantly less as compared to cloth dryer and dishwasher
reduction in cost the defrost state of refrigerator is only considered in the scheduling.

The simulation results of multiple homes (considering 20, 50, 100 and 200) for refrigerator are
summed up in Table 11 in terms of cost, waiting time and energy consumption.

εre f =
T

∑
τ=1

Pre f × χ(τ) (13)

ζD
re f =

T

∑
τ=1

Pre f × χ(τ)× ρ(τ) (14)

Table 11. Refrigerator Simulation Statistics.

Hybrid Homes Cost Waiting Time E.C (Kwh)

OSR-GA

1 59.57 7.3125 2.1
20 1000 146 42
50 3300 365 105
100 6550 720 210
200 10,500 1400.5 420

OSR-FA

1 69 5.18 2.1
20 1378.33 102.6 42.00
50 3344.22 255 105
100 5920.11 510 210
200 11,287.13 1023 420

OSR-TLBO

1 54.20 7.3 2.1
20 1702.22 1430 42
50 2800.43 360 105
100 6100.03 720 210
200 12,149.87 1460 420
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Figure 10. Hybrid Plots for Cloth Dryer (OSR-FA). (a) Monthly Cost of Cloth Dryer (OSR-FA), (b) Total
Cost of Cloth Dryer (OSR-FA), (c) Waiting Time of Cloth Dryer (OSR-FA), (d) Energy Consumption of
Cloth Dryer (OSR-FA), (e) PAR of Cloth Dryer (OSR-FA).
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Figure 11. Hybrid Plots for Dish Washer (OSR-FA). (a) Monthly Cost of Dish Washer (OSR-FA), (b) Total
Cost of Dish Washer (OSR-FA), (c) Waiting Time of Dish Washer (OSR-FA), (d) Energy Consumption of
Dish Washer (OSR-FA), (e) PAR of Dish Washer (OSR-FA).
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Figure 12. Hybrid Plots for Refrigerator (OSR-FA). (a) Monthly Cost of Refrigerator (OSR-FA), (b) Total
Cost of Refrigerator (OSR-FA), (c) Waiting Time of Refrigerator (OSR-FA), (d) Energy Consumption of
Refrigerator (OSR-FA), (e) PAR of Refrigerator (OSR-FA).

7. Feasible Region

A feasible region is the search area which contains all the possible solutions that satisfy the
problem constraints. In the current scenario, the objective function relies on the two important factors
where cost is the independent factor and electricity consumption is the dependent factor. Both these
factors depend upon the electricity price provided by the utility of every particular hour and the
corresponding load consumed by the appliances. Figure 13 shows that load can be reduced directly by
shifting the load to off-peak hours from on-peak hours.
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Figure 13. Cont. (a) Energy Consumption and Cost of Cloth Dryer, (b) Energy Consumption and Cost
of Dish Washer, (c) Energy Consumption and Cost of Refrigerator.

The highlighted region shows the area which satisfies our objective function. Pictorial
representation of possible solution points is represented in Figure 13a. The points P1 (0.0195, 0.00142),
P2 (0.0195, 0.0035), P5 (0.075, 0.0103), P6 (0.5, 0.0103) and P4 (0.5, 0.0041) shows the minimum energy
consumption and cost. The point P1 shows the minimum possible load coincides the minimum cost.
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The point P2 shows the maximum electricity cost at the minimum load of appliances. If all appliances
are turned On in any specific time slot of max-min prices, resulting in P3 (0.5, 0.0680). Moreover,
the points P6 (0.5, 0.0103) and P4 (0.5, 0.0041) represents the bounding limits at maximum load with a
min-max price. The connecting line P5 shows that consumer can reduce their load by shifting the load
to off-peak hours to on-peak hours. The point P3 is not considered in the feasible region as it crosses
the threshold constraint. The following are the possible cases of electricity cost are:

1. Min load and Min price
2. Min load and Max price
3. Max load and Min price
4. Max load and Max price

Moreover, the optimum schedule cost should remain less than the unscheduled cost. Now we
calculate the FR for cost and waiting time relationship of cloth dryer, which is depicted in Figure 14a.
The point P1 shows that when there is no delay in case of unscheduled load scenario the optimum cost
is $240.00. The point (P1, P2, P5, and P4) is the feasible region and beyond this limit will create high
PAR value.

The FR of the dishwasher is shown in Figure 13b which shows the hourly relationship between
cost and energy consumption. Moreover, optimum cost per hour of an unscheduled load is $0.0122.
The surrounded region (P1, P2, P4, P5, P6) is the feasible region which illustrates the solution lies
within the range of highlighted area and beyond this region, it creates the high peak which is not
suitable for consumers and the utility.

FR of dishwasher depicting cost and waiting time relationship is given in Figure 14b. The point
P1 shows that when there is no delay in the case of unscheduled scenario the optimum cost is $198.00.
It has been observed that the optimum delay occurs at 4.79 h. PAR will be created beyond this limit.
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Figure 14. Cont. (a) Energy Consumption and Cost of Cloth Dryer, (b) Energy Consumption and Cost
of Dish Washer, (c) Energy Consumption and Cost of Refrigerator.

The FR of a refrigerator showing cost and energy consumption relationship is shown in Figure 13c.
The optimum cost per hour of the unscheduled load is $0.0217.

8. Conclusions and Future Work

In this paper, the impact of tuning the aforesaid techniques parameters is analyzed in the
perspective of cost and waiting time. We have taken three numerous kinds of smart home appliances
having different priorities. Additionally, the duty cycle is assumed to solve the problem of cost
minimization while considering the waiting time. Price threshold policy and priority of appliances
are incorporated to precisely explain the performance parameters of proposed algorithms. OSR-GA,
OSR-TLBO, and OSR-FA are the proposed techniques which are compared on the basis of waiting
time and cost. The simulations are done in Matlab and the results verify that proposed algorithms
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outperform other algorithms when cost and waiting time is considered. We test our proposed scheme
on single smart home as well as multiple smart homes (considering 20, 50, 100, 200 smart homes).
It is observed that there exists a trade-off among the performance parameters based on optimization
algorithms. The simulation shows that our proposed scheme facilitates the residential customer to
participate in DR program.

This work can be further expanded by applying the same scenario on multiple homes with
the integration of renewable energy resources and decentralized energy sources in the smart grid.
Furthermore, it can be applied to different pricing schemes and we can analyze the performance of
scheduler on pricing schemes such as TOU, RTP and CPP, etc. Additionally, these hybrid approaches
can be further utilized in different scenarios such as different OTIS with the combination of more
number of appliances. Ultimately, the purpose of this work is to evaluate the performance of a small
prototype which can be further implemented in the real world scenario. This work can be further
enhanced by applying the concept of Fog computing or cloud computing in the same scenario which
will improve its scalability
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Nomenclature

Prhour Power rating
εT Electricity cost
εW Waiting time
Pap

r Electricity price at time interval t
Ein Appliances power consumption
ρin Power rating of interruptible appliances
T Time slot
εt Per day total scheduled load
χ(τ) ON/OFF status of appliances
Z Threshold
ρo′ Minimum price limit
ρp Maximum price limit
µ Priority
tr Initialization time of an appliance
t
′
s Requested timeslot of an appliance

τ Timeslot
Px,min Minimum power
Px,max Maximum power
Pload,max Maximum power limit
xg

Teacher Best learner in teaching phase
Xn Mean value
randi Random number
D No of appliances
xnew

k Updated value of pop
xold

k Old value of pop
I Light intensity
ξa Attraction
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Abbreviations
SG Smart grid
SM Smart meter
DSM Demand side management
DR Demand response
RTP Real time pricing
PAR Peak to average ratio
TOU Time-of-use
DAP Day-ahead-pricing
CPP Critical-peak pricing
RTP Real-time pricing
EDP Extreme-day pricing
ED-CPP Extreme-day cpp
MILP Mixed integer linear programming
MINLP Mixed integer non-linear programming
NILP Non-integer linear programming
GA Genetic algorithm
OTI Operational time interval
LOT Length of operational time
HEM Home energy management
EMC Energy management controller
HAN Home area network
TLBO Teaching learning based optimization
SFL Shuffled frog leaping
BPSO Binary particle swarm optimization
ACO Ant colony optimization
OSR Optimal stopping rule
FA Firefly Algorithm
CCO Chance constrained optimization
MG Microgrid
AMI Advance metering infrastructure
SA Smart appliances
PLC Programmable logic controller
ECP Energy consumption pattern
FCFS First come first serve
DE Differential evolution
Pc Crossover rate
Pm Mutation rate
Q Total available power
ET Power consumption
TF Teaching factor
DGA Demand generation agent

References

1. Javaid, N.; Naseem, M.; Rasheed, M.B.; Mahmood, D.; Khan, S.A.; Alrajeh, N.; Iqbal, Z. A new heuristically
optimized Home Energy Management controller for smart grid. Sustain. Cities Soc. 2017, 34, 211–227.

2. Mohsenian-Rad, A.H.; Leon-Garcia, A. Optimal residential load control with price prediction in real-time
electricity pricing environments. IEEE Trans. Smart Grid 2010, 1, 120–133.

3. Pedrasa, M.A.A.; Spooner, T.D.; MacGill, I.F. Coordinated scheduling of residential distributed energy
resources to optimize smart home energy services. IEEE Trans. Smart Grid 2010, 1, 134–143.

4. Chen, C.; Kishore, S.; Snyder, L.V. An innovative RTP-based residential power scheduling scheme for smart
grids. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 5956–5959.



Energies 2018, 11, 888 29 of 30

5. Caron, S.; Kesidis, G. Incentive-based energy consumption scheduling algorithms for the smart
grid. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications
(SmartGridComm), Gaithersburg, MD, USA, 4–6 October 2010; pp. 391–396.

6. Mohsenian-Rad, A.H.; Wong, V.W.; Jatskevich, J.; Schober, R. Optimal and autonomous incentive-based
energy consumption scheduling algorithm for smart grid. In Proceedings of the Innovative Smart Grid
Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–6.

7. Molderink, A.; Bakker, V.; Bosman, M.G.; Hurink, J.L.; Smit, G.J. Domestic energy management methodology
for optimizing efficiency in smart grids. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest,
Romania, 28 June–2 July 2009; pp. 1–7.

8. Sousa, T.; Morais, H.; Vale, Z.; Faria, P.; Soares, J. Intelligent energy resource management considering
vehicle-to-grid: A simulated annealing approach. IEEE Trans. Smart Grid 2012, 3, 535–542.

9. Canizes, B.; Soares, J.; Morais, H.; Vale, Z. Modified discrete PSO to increase the delivered energy probability
in distribution energy systems. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence
Applications In Smart Grid (CIASG), Singapore, 16–19 April 2013; pp. 146–153.

10. Tsui, K.M.; Chan, S.C. Demand response optimization for smart home scheduling under real-time pricing.
IEEE Trans. Smart Grid 2012, 3, 1812–1821.

11. Pretorius, H.M.; Delport, G.J. Scheduling of cogeneration facilities operating under the real-time pricing
agreement. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE’98), Pretoria,
South Africa, 7–10 July 1998; Volume 2, pp. 390–395.

12. Derin, O.; Ferrante, A. Scheduling energy consumption with local renewable micro-generation and dynamic
electricity prices. In Proceedings of the First Workshop on Green and Smart Embedded System Technology:
Infrastructures, Methods, and Tools, Stockholm, Sweden, 12 April 2010.

13. Derakhshan, G.; Shayanfar, H.A.; Kazemi, A. The optimization of demand response programs in smart grids.
Energy Policy 2016, 94, 295–306.

14. Yi, P.; Dong, X.; Iwayemi, A.; Zhou, C.; Li, S. Real-time opportunistic scheduling for residential demand
response. IEEE Trans. Smart Grid 2013, 4, 227–234.

15. Rasheed, M.B.; Javaid, N.; Ahmad, A.; Awais, M.; Khan, Z.A.; Qasim, U.; Alrajeh, N. Priority and delay
constrained demand side management in real-time price environment with renewable energy source. Int. J.
Energy Res. 2016, 40, 2002–2021.

16. Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.A.; Khan, Z.A.; Alrajeh, N.; Qasim, U. Exploiting heuristic
algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build.
2016, 129, 452–470.

17. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic
optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252.

18. Muralitharan, K.; Sakthivel, R.; Shi, Y. Multiobjective optimization technique for demand side management
with load balancing approach in smart grid. Neurocomputing 2016, 177, 110–119.

19. Mary, G.A.; Rajarajeswari, R. Smart Grid Cost Optimization Using Genetic Algorithm. Int. J. Res. Eng. Technol.
2014, 3, 282–287.

20. Zhang, J.; Wu, Y.; Guo, Y.; Wang, B.; Wang, H.; Liu, H. A hybrid harmony search algorithm with differential
evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints.
Appl. Energy 2016, 183, 791–804.

21. Reddy, S.S.; Park, J.Y.; Jung, C.M. Optimal operation of microgrid using hybrid differential evolution and
harmony search algorithm. Front. Energy 2016, 10, 355–362.

22. Khatib, T.; Mohamed, A.; Sopian, K. Optimization of a PV/wind micro-grid for rural housing electrification
using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy Build. 2012,
47, 321–331.

23. Roy, K.; Mandal, K.K. Hybrid optimization algorithm for modeling and management of micro grid connected
system. Front. Energy 2014, 8, 305–314.

24. Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R.A. Multi-objective operation management of a
renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 2011,
36, 6490–6507.

25. Güçyetmez, M.; Çam, E. A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO)
technique for optimizing of power flow in wind-thermal power systems. Electr. Eng. 2016, 98, 145–157.



Energies 2018, 11, 888 30 of 30

26. Javaid, N.; Ullah, I.; Akbar, M.; Iqbal, Z.; Khan, F.A.; Alrajeh, N.; Alabed, M.S. An intelligent load management
system with renewable energy integration for smart homes. IEEE Access 2017, 5, 13587–13600.

27. Rasheed, M.B.; Javaid, N.; Awais, M.; Khan, Z.A.; Qasim, U.; Alrajeh, N.; Iqbal, Z.; Javaid, Q. Real time
information based energy management using customer preferences and dynamic pricing in smart homes.
Energies 2016, 9, 542.

28. Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Azim Niaz, I.
An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources.
Energies 2017, 10, 549.

29. Amini, M.H.; Nabi, B.; Haghifam, M.R. Load management using multi-agent systems in smart distribution
network. In Proceedings of the 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, BC,
Canada, 21–25 July 2013; pp. 1–5.

30. Bahrami, S.; Wong, V.W.; Huang, J. An online learning algorithm for demand response in smart grid.
IEEE Trans. Smart Grid 2017, PP, 1, doi:10.1109/TSG.2017.2667599.

31. Bahrami, S.; Parniani, M.; Vafaeimehr, A. A modified approach for residential load scheduling using smart
meters. In Proceedings of the 2012 3rd IEEE PES International Conference and Exhibition on Innovative
Smart Grid Technologies (ISGT Europe), Berlin, Germany, 14–17 October 2012; pp. 1–8.
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