energies MoPY

Article

A Heuristic T-S Fuzzy Model for the Pumped-Storage
Generator-Motor Using Variable-Length Tree-Seed
Algorithm-Based Competitive Agglomeration

Jianzhong Zhou %*, Yang Zheng "**, Yanhe Xu 1"2(*, Han Liu '? and Diyi Chen 3

1 School of Hydropower and Information Engineering, Huazhong University of Science and Technology,

Wuhan 430074, China; xuyanhe2010@126.com (Y.X.); liuhan_703@163.com (H.L.)

Hubei Key Laboratory of Digital Valley Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China

Department of Electrical Engineering, Northwest A&F University, Yangling 712100, China;
hpts2016@126.com

*  Correspondence: jz.zhou@hust.edu.cn (J.Z.); zhengy1991@foxmail.com (Y.Z.); Tel.: +86-135-4587-5030 (Y.Z.)

check for
Received: 25 February 2018; Accepted: 9 April 2018; Published: 16 April 2018 updates

Abstract: With the fast development of artificial intelligence techniques, data-driven modeling
approaches are becoming hotspots in both academic research and engineering practice. This paper
proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic
behaviors of pumped storage generator motor (PSGM). In premise fuzzy partition of the proposed
T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration
(VISA-CA) algorithm is presented to determine the optimal number of clusters automatically
and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy
of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical
parameter controlled auto-regressive (CAR) model derived from a high-order transfer function of
PSGM considering the distributed components in the water diversion system of the power plant.
The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions
are validated by performing comparative studies with both practical data and the conventional
mechanistic model.

Keywords: T-S fuzzy model; pumped-storage generator-motor; tree-seed algorithm; competitive
agglomeration; F-test

1. Introduction

With the ever-increasing interconnection of intermittent renewable energy in modern power
systems, the pumped-storage power plant (PSPP) plays a significant role in maintaining the balance
of power supply and demand due to its flexible operations in both generation and pumping
directions [1]. As the core part of PSPP, pumped-storage generator-motor (PSGM) is known as
a hydraulic-mechanical-electrical coupling system with complicated nonlinear dynamic characteristics,
which makes it a tough and challenging work to precisely modelling its dynamic behaviors under
different operating conditions.

In traditional system modeling approaches of PSGM, the complete characteristic curves [2-5]
and the method of characteristics [6-9] are utilized together to precisely simulate the hydraulic
nonlinearities in pump-turbine and water diversion system under diverse operating conditions,
respectively. Differential equation and transfer function models is developed to mimic the dynamic
behaviors of water hammer effect in diversion tunnels and penstocks [10-14]. These methods would
more or less suffer from the deficiencies of heavy online computation burden or the modeling
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mismatch caused by system order simplification. Nowadays, due to the development of artificial
intelligence techniques, data-driven modeling methods including artificial neural network [15,16],
Bayesian inferring method [17], Gaussian mixture model [18], grey system theory [19] and T-S fuzzy
model [20,21] have become promising alternatives and been applied to hydraulic turbine unit or
PSGM. The most impressive features of these modern modeling methods can be summarized as
follows: (1) little a priori knowledge about the system plant is needed apart from the training data;
(2) the system can be modeled in an unique model structure with limited number of parameters; (3) the
training process of the model is completed or partially executed offline, so the input-output relationship
could be obtained by a well-trained model with light online computational cost. Considering the fact
that the exact analytical structure and parameters of the hydraulic turbine/pump remain unknown
due to the coupled hydraulic-mechanical nonlinearities [2,21], the T-S fuzzy model with fuzzy logic
rules in premise structure and linear consequence expression can be viewed as an effective approach
for PSGM modeling. In general, design of T-S fuzzy model can be divided into three parts, i.e.,
the model input/output determination, the antecedent fuzzy partition and the consequent parameters
identification. Firstly, the model input/output format is the fundamental of fuzzy modeling and
should be determined by analyzing the dynamic responses of the system. Secondly, the antecedent
structure partition is actually a fuzzy clustering problem composed of the determination of fuzzy
rules number (i.e., the number of clusters) and the exploration of the optimal cluster distribution.
Conventional fuzzy c-means (FCM) clustering [22], fuzzy c-means regression model (FCRM) [23] and
their modified versions [20,24] have been extensively studied. These mountain clustering-like methods
aim at searching for the optimal the cluster numbers and the corresponding fuzzy membership
functions in the steepest gradient descent direction. However, the gradient-based clustering methods
are known to be easily trapped in local minima. Moreover, another drawback is that a certain
predefined number of clusters is needed a priori. In order to obtain the global optimal partition
of the fuzzy space and avoid premature solutions, swarm intelligence optimizers with stronger
capability of global searching and escaping from local optimum, such as genetic algorithm (GA) [25],
particle swarm optimization (PSO) [26], artificial bee colony(ABC) [27] and differential evolution
(DE) [28,29], have been applied to the fuzzy partition of T-S fuzzy modeling in recent years. Thirdly,
least square (LS) method has been utilized in consequence parameters identification of T-S fuzzy
model for its excellent parameter estimation capability and computational efficiency. Granted,
there exists some swarm intelligence-based conclusion parameters identification methods [21,28],
but the relatively heavy computational burden and limited identification precision improvement for
linear consequent functions make LSM remain the first choice of consequent parameters identification
in T-S fuzzy modeling.

For the sake of overcoming the deficiency in predefining the number of clusters in both
clustering-based and heuristic optimization-based approaches, many efforts have been made to enable
fuzzy clustering methods to determine an appropriate rule number automatically in the past decades.
Inspired by FCM, competitive agglomeration (CA) algorithm, which is able to search for optimal fuzzy
partition by gradually eliminating redundant cluster centers along with iterations, was first proposed in
1997 [30] and developed to be applicable to relational data [31] and interval-value data [32]. In addition,
the heuristic optimization based approaches with automatic optimal fuzzy rule number selection
capability have also been proposed with some cluster validity indexes or specific encoding techniques.
For instance, an automatically extracting T-S fuzzy model using cooperative random learning PSO
was presented [33]. The structure and parameters of the fuzzy models are encoded into a particle
so that the optimal structure and parameters can be achieved simultaneously. Fuzzy classification
using real-coded variable-length GA was introduced in [34], where the lengths of the chromosomes
are variable with the crossover and mutation operations during the evolution processes. However,
the code lengths of the individuals in these methods are always long because of the incorporation of
both the antecedent structure flags and parameters, which increases the optimization complexity and
consequently weaken the overall optimization performances.
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Considering advantages of the automatic cluster number determination in CA algorithm and the
preponderant global optimization capability in swarm intelligent optimizers, a modified CA algorithm
coupled with a novel variable-length tree-seed algorithm (VISA) which we called variable-length
tree-seed algorithm based competitive agglomeration (VISA-CA) algorithm is presented in this paper.
In VISA-CA, a tree population is randomly generated in which the locations of cluster centers are
encoded into a tree, and fuzzy partition matrices are updated with the corresponding update equation
of the CA algorithm. The predefined cluster number is set to be a large value at the beginning and
the redundant clusters are discarded according to the cardinality of the clusters during the iterations,
which is the same with that of the basic CA algorithm. In order to handle the code length mismatch
problem caused by cluster reduction in the convergence process, a variable-length coding scheme,
which is inspired by the existing variable genetic algorithm (VGA) is introduced in which the seed
generation and tree update equations with two mother trees in different encoding lengths are deduced
on the basis of the tree update and seed generation mechanism of TSA. Then, the proposed VISA-CA
clustering method is used to the antecedent structure identification of T-S fuzzy modeling to take
the place of traditional clustering approaches or state-or-the-art heuristic optimization algorithms.
In order to determine the proper model input and output, a precise analytical model which takes
the complicated water diversion system of PSPP into consideration has been developed and been
discretized into CAR model to match the input and output format of the T-S fuzzy model. Moreover,
the well-known F-test is applied to the input parameter reduction. The effectiveness of the proposed T-S
fuzzy model for PSGM has been validated by comparing the output curves of the T-S fuzzy model with
the corresponding output data obtained from practical experiments under three different representative
operating conditions, i.e., the normal operational process in power generation conditions, the sudden
load rejection from rated condition and the transient process from pumping to power generation.
Furthermore, its superiority over the traditional mechanistic model of PSGM in simulation precision
has also been verified.

The rest of this paper is outlined as follows: the design process of the proposed VSTA-CA
algorithm is presented in Section 2. In Section 3, a VISA-CA-based T-S model is formed by
incorporating the VISA-CA algorithm in the antecedent structure identification of a T-S model to
enhance its fuzzy rule partition performance. Subsequently, Section 4 discusses the critical issues about
application of the proposed T-S fuzzy model to PSGM. Then, model validations are given with three
case studies in Section 5. Finally, conclusions are summarized in Section 6.

2. VTSA-CA Algorithm

2.1. CA Algorithm

The CA algorithm is an unsupervised fuzzy clustering method proposed to overcome the
uncertainty in predefining fuzzy rule number in traditional FCM. In CA algorithm, the initial fuzzy
rule number N (i.e., the cluster number) is set to be a sufficiently large positive integer (a rule of
thumb is that N,y = round(\/ﬁ), where 1 denotes the number of data samples). This means CA
algorithm start by partitioning the data set into many small clusters. Thus, the relatively large cluster
number would alleviate the randomness of the initialization of cluster centers in comparison with
FCM. During the gradient-based calculation iterations, redundant clusters are gradually discarded
with the cluster cardinality measurement where only the clusters with cardinalities bigger than the
threshold would survive. At last, an optimal fuzzy cluster distribution including the most appropriate
cluster number and corresponding fuzzy membership matrix are naturally obtained without specifying
a certain cluster number a priori.

The CA algorithm minimizes the following objective function [30]:

c n c n 2
](V, LI, X) = '21 421 (Llij)de (x] — Z)l’) — Z l Z uij] (1)
i=1j=

i=10j=1
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subject to:
C
Zu,-j =1, forjell2,---,n] (2)
i=1

where, V, U, X represent the matrices of the cluster centers, the fuzzy memberships and the data
sets, respectively. ¢ and n denote the number of clusters and the number of samples, respectively. x;,
v; and u;; represent the jth sample point, the ith cluster center and the membership of x; in cluster
i, respectively.

Minimizing the objective function in Equation (1) with Lagrange multipliers to handle the
subjection in Equation (2), we can obtain the update equation for the fuzzy membership of sample x;
in the ith cluster:

1/d%(x;,v; Ne  11/d2(x:,0;)]N;
uij: [/ (] 1)} + . e <Ni_2k1[/ (]UI)] 1) (3)
Ype g [1/d(xp0)] - 43(xg,0i) Ypo 1 [1/d%(xj,01)]
where, d(xj,v;) = ||Xj—0j|| is the Euclidean distance between the jth input sample and the ith

clustering center. N; denotes the cardinality of the cluster i, which can be calculated with Equation (4):
n
N; = ) wy 4
i=1

« denotes the scaling factor of sample compactness compared with the effect of the cluster cardinalities.
The value of scaling factor « is changed in every iteration, which can be calculated as Equation (5):

T O () d? (3, 0)

ZZNC: 1 (Z}l: 1 Mij)2

a(iter) = noexp(—iter/T) )

where, 79 denotes the initial weight, T represents the time constant of the exponential equation and iter
is the current number of iterations.

It can be clearly seen from Equation (3) that the update equation of the fuzzy membership is
formed by two terms. The first term is equivalent to the update equation of FCM, which represents
the compactness of the cluster centers and the sample points; while the second term is a bias term
depending on the difference between the cluster cardinality and the weighted average of cardinalities.
In addition, the scaling factor « in Equation (5) reflects the importance of the second term relative to
the first one. According to [30,35], the value of o decreases slowly in each iteration, which would help
CA algorithm find the optimal number of clusters at early stage of the iterations and then focus on
fuzzy partition refinement with the decrease of .

2.2. Variable-Length TSA

2.2.1. The Basic TSA

TSA is a newly developed swarm intelligence optimizer based on the relation between trees and
their seeds. Its evolving updating mechanism of the offspring agents and a control parameter called
search tendency (ST) that determines the global and local searching inclination ensure its exploration
and exploitation capability on multi-dimensional optimization problems [36].

In TSA, each tree of the population will generate a random number of seeds in every generation.
The distribution of the seeds is dependent on their mother tree and a certain another tree of this
generation. Whether seed locations are produced according to the best tree location or another random
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tree location closely relates to value of ST. The updating formulae for seed locations are given in
Equation (6):

{ Si,j = Ti,j + & (B] — Tr,j) rand < ST ©)
Sij = Tij+wij(Ti;—T,;) otherwise
where S, T, B represent seed, tree and the best tree, respectively. « is a scaling factor randomly selected
within the range [—1,1]. If the best fitness of all seeds of a tree in a generation is even better than that
of its mother tree, then substitutes the best seed’s location and fitness for those of the original tree.
Published experimental results have shown that TSA performs better than the state-of-the-art heuristic

optimizers on some multi-dimensional optimization problems [36,37].

2.2.2. The Variable-Length TSA

As discussed in the Introduction, the number of clusters c decreases during the iterations according
to cluster cardinalities because of the cluster elimination mechanism in CA algorithm. When TSA
is applied to optimize the cluster centers distribution, the aforementioned characteristic of the CA
algorithm would result in the different string lengths of trees in the population of TSA, so the basic
TSA with fixed string length for each tree is unable to handle the seed production operations. In order
to overcome this difficulty, a novel version of TSA, namely the variable-length tree-seed algorithm
(VTSA), is proposed. The idea of introducing variable coding length to TSA is inspired by the existing
variable-length version of genetic algorithm (GA) [34] and artificial bee colony algorithm (ABC) [27].
The main difference between TSA and VTSA lies in the updating mechanism of the seed locations.
Considering the string lengths difference between the two mother trees, the modified updating
formulae for generating seeds can be expressed as follows:

{ Sij = Tij+aijx (By—Tp) rand <ST @)
Si,j = Ti,j + &ij X (Ti,j - Tr,p) otherwise
where, the subscript k and p denotes the kth dimension of the best tree B and the pth dimension of the
randomly selected tree T, in Equation (7), which are determined in Equation (8A) and Equation (8B),

j if (Dim(B) > Dim(T;)) or
k = (Dim(B) < Dim(T})) & j < Dim(B) (8A)
round(rand x (Dim(B) — 1)) +1 otherwise

j if (Dim(T,) > Dim(T;)) or
p = (Dim(T,) < Dim(T})) & j < Dim(T}) (8B)
round(rand x (Dim(T,) —1))+1 otherwise

where, Dim(X) denotes the dimensionality of the tree X.

2.3. VTSA-CA Algorithm

Although the CA algorithm can overcome the hardship in determining the number of clusters,
there still exist many defects in it. For example, the random initialization of the fuzzy partition
at the beginning significantly affects the ultimate distribution of the cluster centers as well as the
cluster deletion process. Besides, the profile of optimal cluster number during the iterations is
monotonically decreasing in CA algorithm according to the cluster cardinalities, if the number of
clusters decreases rapidly in the first few iterations because of the unconscionable initial fuzzy
memberships partition, the solution with the optimal cluster number may be missed and cannot
be reached because of the irreversible searching process. For the sake of overcoming these deficiencies,
A novel VTSA-CA algorithm, which combines the merits of global optimum searching ability in VISA
and the automatically cluster number determination characteristic in CA, is proposed for preponderant
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fuzzy clustering performances in this paper. The detailed implementation procedure of VISA-CA is
given below:

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Step 9:

Step 10:

Suppose a nxd dimensional dataset, where n and d represent the number of data samples and
the dimension of each sample, respectively. As the rule of thumb, predefine the initial number
of clusters as ¢ = round(+/n), set the size of trees to be N, and then randomly initialize the

cxn dimensional fuzzy partition matrix U" = [u?;’
tree in the population, where m = 1,2,---,Nj, u}} denotes the fuzzy membership of the jth
sample to the ith cluster center in tree m and subjects to MZ-Z €[0,1]and Y5 _ 4 u?]? = L

i=12--,¢6j= 1,2,-~n} for each

Calculate the initial cluster centers according to Equation (9) with the initial fuzzy partition
and the data samples for each tree, respectively:

vik = 21 (“Z?)ijk/'zl (uf})? ©)
]:

ji=

where, k = 1,2,- - ,d and v}} denotes the kth dimension of i-th cluster center in tree m.

Set the number of evolutionary iterations iter = 1 and start the evolutionary optimization
iterations of VITSA-CA.

Update the fuzzy partition matrix of the data set using the update equation given in
Equation (3) for each tree in the population.

Repeat the following cluster elimination operations for each tree: calculate the cardinalities of
all the clusters by Equation (4). If there exists the clusters whose cardinalities are smaller than
the predefined cluster cardinality threshold ¢, then take these clusters as the redundant ones
and discard them.

Delete the rows in the fuzzy partition matrix that correspond to the eliminated clusters for
each tree.

Update the locations of cluster centers with the remaining part of the fuzzy memberships by
Equation (9) repeatedly for all trees and take them as the current solution of VISA-CA.
Define a cluster validity index (CVI) to evaluate the comprehensive compactness and concision
performances of the fuzzy partition (see Equation (10A)). Calculate the CVI and the fitness of
each tree in the population with the cluster centers, the data samples and the fuzzy partition
matrix using the following Equation (10). Set the tree with minimal fitness as the global
best tree in this iteration and record the cluster number of the global best tree as the current
number of clusters c. Then, Set the number of evolutionary iterations iter = iter + 1:

Z?:12?: 1“12"12(35]'/01‘) c
CVI = «- L +(1—a)— 10A
Z;‘l: 1d2<x]'/x) ( )Cmax ( )
. 1
fltness = m (10B)

If iter reaches the predefined maximum iteration, end the optimization algorithm, else, go to
Step 10.

If the optimal number of clusters c in the current iteration is equivalent to that in the last
iteration and the square root of sum of squares of errors of the fuzzy partition matrix between
the last two iterations (see Equation (11)) is smaller than the predefined variation threshold ¢,
end the algorithm, else, continue to Step 11:

||\U™ (iter) — U™ (iter — 1)|| < & (11)
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Step 11: Generate a random number of seeds for every tree referring to the seed production equations
in Equation (7). Then, obtain the fuzzy partition matrices of the seeds and calculate their
fitnesses. If the best fitness of the seeds is larger than that of its mother tree, replace the location
of the tree with that of the best seed, if not, remain the location of the tree. Then repeat this
operation for all trees in the population.

Step 12: Go back to Step 4.

The flow chart of VTSA-CA algorithm is depicted in Figure 1. Generally, the proposed VISA-CA
differs from traditional CA in the following aspects: (1) the VISA-CA takes the locations of all cluster
centers as a tree in the population, so the idea of swarm intelligence is inherited, which makes the novel
clustering method no longer a pure gradient-based clustering scheme (such as CA and FCM). (2) The
number of fuzzy partition solutions in VISA-CA is equivalent to the size of the tree population, so the
aforementioned possibility of being stuck in local optimum and the unexpected cluster reduction
caused by the initial cluster centers selection are greatly attenuated for its multi-agent searching
mechanism. (3) The optimal cluster number profile during the evolutionary process is not monotone
decreasing in VISA-CA due to the variable string length characteristic in seed production of each
tree in generations. Although the optimal cluster number corresponds to the current global optimal
solution, other solutions with different cluster numbers are also recorded. So in the following iterations,
the optimal cluster number is likely to increase, rather than monotone decreasing in CA. (4) In every
iteration of VISA-CA, a local optimization with gradient-based searching in CA algorithm is conducted
just once for all the trees in the population before producing the seeds, so the code strings of trees
are updated with the cluster cardinality calculation equation in Equation (4) and fuzzy membership
updating equation in Equation (3), the operation is to eliminate the redundant clusters and accelerate
the convergence of the whole optimization.

In order to testify the effectiveness and superiority of the proposed VISA-CA algorithm,
comparative experiments have been done with VISA-CA and several classic clustering methods
in the well-known Iris data sets obtained from Univeristy of California Irvine Machine Learning
Repository. The comparative clustering methods here are subtractive clustering (SC), FCM, FCRM
and CA. In these methods, SC and CA are able to search for the optimal cluster number adaptively,
while FCM or FCRM can only start the optimization procedures with a certain predefined cluster
number. In order to eliminate the influence of chance factors, we repeated the experiments 20 times for
each method.

Firstly, the stability of clustering is validated. The optimal numbers of clusters (c) and CVI
values of SC, CA and the proposed method are illustrated in Figure 2, respectively. It’s learnt that the
optimized c of the experiments conducted with CA varies within the range of [2,6] while the correct
number of clusters ¢ = 3 is obtained by all the experiments of SC and VISA-CA. From the optimal
CVIs of different values of ¢ in CA experiments given in Table 1, ¢ =3 owns the smallest value, thus to
have the best compactness and concision in fuzzy partition. In addition, it’s also seen that the CVIs
of SC here are much greater than those of VISA-CA. This phenomenon is caused by the clustering
mechanism of SC. SC can find the optimal number of clusters, but cannot find the proper cluster
distribution because its cluster centers are chosen among the samples in the data, which greatly differ
from the true centers. However, the proposed VISA-CA is free from this restriction and achieves stable
and excellent clustering performance.

With the optimal number of clusters being determined, the clustering precision is further
investigated by comparison with two state-of-art clustering algorithms, i.e., FCM and FCRM.
The comparison result is shown in Figure 3. It’s learnt that VISA-CA has the smallest CVI values in
most experiments and it performs better in getting rid of local minimum in the clustering processes.
Although FCM and FCRM are able to find the optimal clustering distribution in some of the
experiments, their CVI curves fluctuate, indicating its instability in the fuzzy clustering. The instability
comes from the randomness in fuzzy membership initialization in FCM and FCRM. And VTSA-CA is
more stable for its heuristic and evolutionary optimization characteristic rooted in TSA.
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Figure 1. Flow chart of VTSA-CA algorithm.
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Figure 2. Optimization results of 20 experiments of Iris data sets.

Table 1. Optimal cluster numbers and the corresponding CVI optimized by CA.

Optimal ¢~ Value of CVI Locations of Cluster Centers

v = (5.0209, 3.3732, 1.5653, 0.2851)
vy = (5.0209, 3.3732, 1.5653, 0.2851)

vq = (5.0036, 3.4030, 1.4850, 0.2516)
c=3 0.063019 vy = (5.8897, 2.7614, 4.3650, 1.3978)
v3 = (6.7758, 3.0526, 5.6478, 2.0540)

vy = (6.2560, 2.8862, 4.9138, 1.6960)
vy = (7.0072, 3.1043, 5.8971, 2.1183)
v3 = (5.0000, 3.4070, 1.4722, 0.2454)
vy = (5.6387, 2.6562, 4.0253, 1.2421)

vy = (5.5853, 2.6169, 3.9494, 1.2122)
vy = (6.5256, 3.0376, 5.4476, 2.0845)
c=5 0.086057 v3 = (7.4382, 3.0797, 6.2781, 2.0529)
v4 = (6.1908, 2.8780, 4.7102, 1.5573)
Vs = (4.9981, 3.4060, 1.4701, 0.2440)

vy = (5.2554, 3.6803, 1.5062, 0.2794)
vy = (7.4489, 3.0757, 6.2910, 2.0536)
v3 = (4.7574, 3.1440, 1.4423, 0.2037)
va = (5.6131, 2.6331, 3.9972, 1.2274)
vs = (6.2006, 2.8751, 4.7358, 1.5719)
Ve = (6.5366, 3.0433, 5.4633, 2.0950)

c=2 0.066664

c=4 0.073146

c=6 0.100100
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Figure 3. Clustering precision comparison of Iris data sets.

Then, the exploration capability and the convergence of different algorithms are tested.
The iteration curves of optimal cluster number of different algorithms are illustrated in Figure 4.
In this figure, we can find that the iteration of SC stops at the third iteration, where the optimal cluster
number is reached. The convergence rate of VISA-CA (seven iterations to find the optimal c) is faster
than that of CA (10 iterations to find the optimal c). FCM and FCRM need to know the cluster number
in advance and cannot determine the optimal cluster number.

16 T T T T T T T T
--------- CA
14 i —6—SC B
_____ —%—FCM
FCRM
12 ——— VTSA-CA|]

10

Number of clusters
[o:]

41
L b - RS TEES SUEE 2P |
2 / _
¢ ;
0 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18
Iterations

Figure 4. The iteration curves of optimal cluster number in different algorithms.

The four dimensions of the optimal cluster centers optimized by VISA-CA are illustrated in
Figure 5. It can be seen that the centers are able to well partition the data samples. And three centers
are respectively located at (5.0036, 3.4030, 1.4850, 0.2516), (5.8897, 2.7614, 4.3650, 1.3978), (6.7758, 3.0526,
5.6478, 2.0540), which is very close to the real cluster centers given as (5.00, 3.42, 1.46, 0.24), (5.93, 2.77,
4.26,1.32), (6.58,2.97, 5.55, 2.02).
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Figure 5. The optimized cluster centers of IRIS data sets. (a) Length of petals-length of sepals plane;
(b) Width of petals-width of sepals plane.

In this paper, VISA-CA algorithm is utilized to the premise identification of the T-S fuzzy model.
3. VTSA-CA Based T-S Fuzzy Model

3.1. T-S Fuzzy Model

The well-known T-S fuzzy model was proposed by Takagi and Sugeno in 1985 [38] to describe
complicated nonlinear systems with its distinctive linear combination form consisted of system inputs.
The T-S fuzzy model for a MISO nonlinear system can be described by the IF-THEN fuzzy rules below:

Rule i: IF xq is Al-1 and ... and xy;, is AlN’, THEN

Yi = ajp+apxy+ - +ainxN (12)

where i = 1,2,---,c, ¢ denotes the number of fuzzy rules; x1,xp,- -+ ,xy, are the elements of
multi-dimensional inputs; Nj is the number of inputs and y; is the output of the i-th fuzzy rule.
The overall output y of the T-S fuzzy model is given in Equation (13):

c Ny
X\ I wij ) v
i=1\j=1

y = —— (13)
Y IT i
i=1j=1
where y; denotes the output of the i-th fuzzy rule and p;; = y(A{:) represents the degree of

membership function.
The output vector Y of the T-S fuzzy model can be expressed in Equation (14):

C
yj = '21 wij(aio + anxj + apXp + - -+ + aigxja)
i =
T

(14)
where y; denotes the output of the j-th training sample; u;; is the grade of membership function to

the i-th fuzzy rules of the j-th training sample; a; (k=1,2, ... ,d) represents the conclusion parameter
respect to the i-th clustering center and d, n are the dimension of the system inputs and number of
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training samples, respectively. According to Equation (14), there exists ¢ x (d+1) conclusion parameters
for the fuzzy system.

In order to avoid the singular precision problem caused by the inversion of high-dimensional
matrix, recursive least square algorithm (RLS) [39] is utilized instead of the batch least square (BLS)
algorithm to identify the conclusion parameters of the T-S fuzzy model.

Define a ¢ x (d+1) dimensional data vector ¢(k):

@(k) = [uik - Mok Xkapiak =~ Xkaplck * Xkabik * - Xabok] (15)
and a ¢ X (d+1) dimensional conclusion parameters vector:
0(k) = [a10- - ac0 ary -+ act arg -+~ agg)" (16)
Then the recursive formulae of RLS are stated in Equation (17):

0(k) = 0(k—1) +K(k)[y(k) — T (k)6 (k —1)]
Ek) = Lﬁl’(g (17)

=

= TreT(OP(k-1)p(k)
P(k) = [I—K(k)g"(k)]P(k—1)

where ¢(k) is the k-th input data vector, 6(k) represents the conclusion parameters vector to be
identified. P(k) = (([)E(l)k)_l = [p 1 Pr1+ (p(k)(pT(k)]_l, o = [pL 4 (p(k)]T is the total input data
matrix and K(k) = P(k)¢(k).

The initial values of P and 6 are usually set as P(0) = BIand 8(0) = #, where g € [10%, 10°] and
1 is a sufficiently small positive real vector. By applying the recursive formulae in Equation (17)
repeatedly with the training samples, the conclusion parameters of the T-S fuzzy model can
be identified.

3.2. The Incorporation of VISA-CA to T-S Fuzzy Model

The main task of identifying premise parameters of T-S fuzzy model can be viewed as a fuzzy
clustering problem of the system input. In this paper, VISA-CA algorithm is proposed to take
place of the state-of the-art clustering methods such as SC, FCM, FCRM and CA. Although these
classic algorithms have been widely used in the existing literature on T-S fuzzy model, VISA-CA
algorithm has been designed and applied to search for the most appropriate fuzzy partition for its
remarkable rule number determination property and the comprehensive local exploitation and global
exploration capability.

In VTSA-CA based T-S fuzzy model, each tree or seed in the population of TSA can be coded as
a ¢ x d dimensional vector composed of all dimensions of cluster centers, as expressed in Equation (18):

X = [011 012 014 V21 V22 * = Vg ** Vel Ued * * * Ued) (18)

Another merit in VISA-CA is that the updating equation of fuzzy membership in Equation (3) is
directly borrowed from CA algorithm, where only cluster centers need to be coded as the decision
variables. Compared with other meta-heuristic optimization based T-S models that use Gaussian
function u;; = exp(—(xj —v;/ (7)2) in which both the cluster centers and widths are included to
calculate the fuzzy memberships, the dimensionality of the optimization problem is greatly reduced
and the computation burden is significantly released.
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4. CAR Model of PSGM based on Precise Modeling of Water Diversion System

4.1. The Preliminary Transfer Function Based Order Determination of CAR Model

The structural schematic of the PSPP is illustrated in Figure 6. The overall generating/pumping
system consists of the upper reservoir, long diversion pipeline, upstream surge tank, penstock, PSGM,
draft tube, tailrace surge tank, tailrace tunnel and lower reservoir.

5% L Upstream surge tank Power grid

Upper reservoir |": e L

Long diversion tunnel Generator-motor

Pump turbine lailrace

— L)

foe Lower reservoir

Penstock

Drall tube Tailrace tunncl

Figure 6. Structural schematic of pumped storage power plant.

As the core installation for energy conversion in PSPP, PSGM can be viewed as a hydraulic-
mechanical-electrical coupling system composed of the pump turbine and the synchronous
generator-motor. Because the relationship between water head and flow rate in the pump turbine
is directly affected by the water hammer effect in elastic water pipelines, the sophisticated dynamic
characteristics of the components in the water diversion system must be considered in precise modeling
of PSGM.

In order to express the precise analytical relation between water head and flow rate, the rigid
water-hammer theory [9,40] is applied to generate differential equations that describe head-flow
relations of the elements in the water diversion system. On the basis of accurate dynamic modeling of
the elements in PSPP, six differential equations of the long diversion pipeline, upstream surge tank,
pressure diversion pipe, draft tube, tailrace surge tank and tailrace tunnel are given in Equation (19):

’?2 = (hiz_hgl)/Tuﬁ
ha = (05— 1)/ T
g = (hy = hy)/Twn (19)
’?t = ( 22_ ;2)/Tw4
hso = (q; —495)/Tp
73 = ( ngh:;l)/TuB

where, g1, 42, g3 denote the relative flow rate deviations of pump turbine, diversion tunnel and tailrace
tunnel, respectively; h, = 1+4+hy, hly = 1+hg, hly = 1+hy by = 14+hy by = 1+hy,
1 = 14 hy represent the relative water heads of upper reservoir, upstream surge tank, tailrace
surge tank, tailrace tunnel, lower reservoir, volute water inlet and volute water outlet, respectively;
Tw1, Tw2, Tws, Twa are the water inertia time constants of pressure diversion pipe, diversion tunnel,
tailrace tunnel and draft tube, respectively.
The relative working head of the pump turbine h; = hy — hyp, thus the transfer function of the
relative water head and flow rate of the pump turbine can be deduced from Equation (20):

hi(s) a5s° + a3s® + aqs
= = — 2
Gh (S) qt (S) ﬂ4S4 + 01252 +1 ( 0)
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where a1 = Ty1 + Tup + Tug + Twa, a2 = le T2 + TjZTw3r a3 = le Tw2(Tw1 + Tws + Tws) +
TjZTw3<Tw1 + Twz + Tws), a5 = le TjZTwZTw3r as = ag(Typ1 + Twa)-

The block diagram of the PSGM is illustrated in Figure 7. It is seen that the torque m; and flow
rate g; of the pump turbine could be expressed with six parameters closely related to the operating
condition, as given in Equation (21):

{ m(s) = ey-y(s) +ex-n(s)+ey-h(s) 1)
qi(s) = eqy-y(s) +egx - n(s) +eqn - he(s)

where y and 7 denote the relative guide vane opening and rotation speed of the pump turbine,
respectively. e, ey, ey, are the first-order partial derivative of torque with respect to guide vane, rotor
speed and water head, respectively; and ey, e;x, egy are the first-order partial derivative of flux with
respect to guide vane, rotor speed and water head, respectively.

> €A‘,
eq/:
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Yy +1 9 h o Mmoo - 1 n
e‘“, ;i (lh(S) eh @ ® i /T
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Figure 7. Block diagram of pumped-storage generator-motor.

The transfer function of the synchronous generator-motor is simplified as a first-order

inertia equation:
1
n(s) _ 22)
mt(s) — mgo(s) Tas + en

From Equation (20) to Equation (22), the transfer function of the relative guide vane opening y
and relative rotation speed 1 can be obtained as Equation (23):

7’1(5) — e 1+ eGh (S) _ bSS5 =+ b4s4 + b3S3 + bzsz -+ bls + ey (23)
y(S) Y (1 _ ethh (S)) (Tus + en) C656 + C5S5 + C4S4 + C3S3 + 6252 +c1s+ey
where, e, = eg—ey, e = ej—yyeh — e, by = —eyeay, by = eyar, b3 = —eyeas, by = eyay,
bs = —eyeds, 1 = T, + enegply, C2 = Taeqhal +enay, c3 = Tpar + enegps, C4 = Tueqhag, + enay,

cs = Taas +enegpas, c = Taeqha5.

System models are usually discretized in engineering practice according to sampling intervals of
computer system. A discrete-time CAR model [41] in which the input vector is made up of a certain
combination of the historical system inputs and outputs at past few sampling instants, is naturally
obtained by applying z-transform to the continuous transfer function Equation (23). Here, the CAR
model of PSGM is given in Equation (24):

nk) = 3 EDnlk— )+ 5 &Gk — ) 4

i=1 j=0

where, the first term on the right side of Equation (24) is the autoregressive part and second
term is the controlled part of CAR. n, and n;, denote the order of numerator and denominator
the z-transform of Equation (23), respectively; ¢,, ¢, represent the corresponding coefficient of
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the rotation speed and guide vane opening in the sequence, respectively. Therefore, the vector
n(k—1)n(k—2)---n(k—ng) y(k) y(k—1)---y(k —np+1)] and n(k) are preliminarily selected as
the input and output of the CAR model of PSGM, where n, = 5and n, = 6 are naturally obtained
according to Equations (23) and (24).

4.2. Parameter Reductio