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Abstract: The efficiency of a power system is reduced when voltage drops and losses occur along the
distribution lines. While the voltage profile across the system buses can be improved by the injection
of reactive power, increased line flows and line losses could result due to uncontrolled injections.
Also, the determination of global optimal settings for all power-system components in large power
grids is difficult to achieve. This paper presents a novel approach to the application of game theory
as a method for the distributed control of reactive power and voltage in a power grid. The concept
of non-cooperative, extensive = form games is used to model the interaction among power-system
components that have the capacity to control reactive power flows in the system. A centralized
method of control is formulated using an IEEE 6-bus test system, which is further translated to a
method for distributed control using the New England 39-bus system. The determination of optimal
generator settings leads to an improvement in load-voltage compliance. Finally, renewable-energy
(reactive power) sources are integrated to further improve the voltage-compliance level.

Keywords: game theory; Nash equilibrium; backward induction; power systems; reactive power and
voltage control; distributed control

1. Introduction

A major problem experienced by rapidly expanding power systems is the cascade effect that
occurs as a result of faults, which calls for an effective coordination process to control such power
systems [1,2]. Based on different criteria that include geographical and organizational considerations,
large interconnected systems can be decoupled into areas whereby each area can be controlled
systematically [3].

Reactive power and voltage support in a power grid are important considerations in power-system
stability [4,5]. Voltage collapse is the effect of continuous deterioration of system voltage due to
increased loadings, heavy reactive power flows, insufficient reactive power, loss of generation, and
other significant events in the system [6–8]. Excessive injections of reactive power to improve system
voltage could lead to further increases in line loadings and overall line losses. By decoupling large
systems, the reactive power–voltage relationship can be better monitored.

The determination of optimal settings for power-system components in large power grids also
poses a major challenge [1,9,10] for system control, and hence the ability to decouple large systems
into smaller regions will provide a better means for control. Since a global solution of system settings
satisfying all constraints is difficult to achieve, the system is sectionalized in order to monitor and
determine these settings. The result is a better snapshot of the system voltage given individual
area controls.

Energies 2018, 11, 962; doi:10.3390/en11040962 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/4/962?type=check_update&version=1
http://www.mdpi.com/journal/energies
http://dx.doi.org/10.3390/en11040962


Energies 2018, 11, 962 2 of 22

Procurement of reactive power and control of voltage are issues that are crucial in power
systems [10], and several methods have been studied to address the problem of reactive power dispatch.
These range from classical methods of optimization, which include non-linear programming
(NLP), successive linear programming, mixed integer programming, Newton’s and quadratic
techniques [11,12] to evolutionary algorithms, which include artificial neural networks, micro-genetic
algorithm [12] and particle swarm optimization [13].

In this paper, a novel application of a game-theoretic (GT) technique is proposed to carry out a
method for distributed control in a power grid, using the New England 39-bus system. This work
begins by carrying out a means of centralized, systematic voltage and reactive power control in an
IEEE 6-bus system, and later evolves to distributed control in the 39-bus system, while optimizing
the settings of power-system components. This paper has been organized as follows: an overview
of game theory and a study of the reactive power contributions of power-system components are
presented in Sections 2 and 3, respectively; the centralized game model is discussed in Section 4.
The proposed game-theoretic equations and algorithms are introduced in Section 5. Expansion of
the work into distributed control game model is presented in Section 6, with the integration of
distributed renewable energy sources in Section 7. Simulation results and conclusions are presented in
Sections 8 and 9, respectively.

2. Game Theory Overview

Game theory is the study of complex and varied interactions that exist among independent,
rational-thinking players [14,15] i.e., the determination of an optimal solution in a multi-variable
system controlled by different entities. There are three aspects to each game: players (or agents),
actions, and payoff [14–16]. Players are the decision makers; actions are the choices available to
a player, and a payoff is that utility a player receives for taking an action arising from a chosen
strategy [16].

In layman’s terms, game theory revolves around the actions that players take knowing that
their decisions affect others [16]. Mathematical formulations can also be used to study these complex
interactions [14]. The rationality of a player is defined as its ability to select an optimal action after
taking into consideration its available preferences and the expectations about unknowns [15]. Over the
years, game theory has evolved from classical to modern and, finally, to new game theory [17].
This evolution hinged on the player’s sense of rationality: a player considers only itself as rational and
assumes others as irrational; followed by a rational player considering other players as rational entities;
and finally, players forming beliefs about other players’ actions based on a historical trend [17].

In most games, the goal is the attainment of a system equilibrium whereby all players have no
incentive to deviate from the strategies (that define their choice of actions) they have individually
chosen [14,17]. This scenario, known as, the ‘Nash equilibrium’ is largely credited to John Nash after
his contribution in 1951 [18].

Game theory has two broad classifications: Cooperative and non-cooperative games.
Cooperative games consider the coalitions that players could form in order to improve their distributed
utilities or payoffs. The non-cooperative game focuses on the individual player’s ability to improve its
payoff considering the actions of others. Non-cooperative games are further classified into strategic
and extensive form games. In the strategic form game, players carry out their actions simultaneously
without having knowledge of the previous actions of other players [14,15]. In an extensive form game,
players carry out actions in a defined sequence, in which case, players have a knowledge of some or all
(i.e., perfect or imperfect information) of the actions previously carried out by others.

2.1. Terminologies

1. Nash equilibrium: this captures a steady state of play of a game in which each player holds the
correct expectation about the other player’s behavior and acts rationally [15]. It states that all
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players are, individually, playing their best responses to the actions of others [14]. There is no
incentive for any player to deviate.

2. Subgame: given perfect information, extensive-form game G, the subgame of G at node h is the
restriction of G to the descendants of h [14]. The subgame is a part of the overall extensive game
tree, with the overall game tree being the largest subgame. Leyton-Brown and Shoham [14] state
requirements to be satisfied for a game to be called a subgame.

3. Backward induction: this is an important solution concept utilized in solving extensive
form games. By determining the equilibrium play of a lower subgame, further analysis can
be carried out until one arrives at the top or root of the tree. According to Shoham and Leyton, it
is based on the assumption that that subgame equilibrium will be played as one backs up the
tree. This concept is used to arrive at a final solution.

4. Subgame perfect equilibrium: these are all strategy profiles, S, such that for any subgame G’ of G,
the restriction of S to G’ is a Nash equilibrium of G’ [14]. The direct implication of this is that at
every point in history, a player’s strategy is always optimal. Hence, for every strategy profile
in history, a state of Nash equilibrium is always achieved. This notion eliminates several Nash
equilibria wherein players’ threats are not credible [15].

2.2. Mathematical Representations

1. Normal form game: a finite, n-person game is a tuple defined as:

G = 〈N, A, U〉 (1)

N = Set of n number of players, indexed by i.

A = A1 × . . . An, Ai set of actions available to player i.

U = (U1 . . . Un), Ui: A→R is a real-valued quantity (or payoff function) for player i.
2. Extensive form game: a perfect-information game is defined as:

G = 〈N, A, H, Z, χ, ρ, U〉 (2)

H = set of non-terminal choice nodes. (A choice node is that stage of a game where a player
makes a strategic decision on available options).

Z = set of terminal nodes, disjoint from H.

χ : H→2A is the action function, which assigns to each choice node a set of possible actions.

ρ : H→N is the player function, which assigns to each non-terminal node player i who chooses
an action at that node.

σ : H × A→H ∪ Z is the successor function mapping a choice node and an action to a new choice
node or terminal node.

3. Reactive Power Contributions of Power System Components

The reactive power contributions of each component (now known as a player) in the power
system [19,20] are stated in the sub-sections below:

3.1. Generator

At a generator bus gk, the reactive power injected is given by

Qgk = −
N

∑
n=1

∣∣∣VgkVnYgkn

∣∣∣ sin
(

θgkn + δn − δgk

)
(3)
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where

Qgk = reactive power injection into generator bus gk;

N = number of buses;
Vgk, Vn = voltages at buses gk and n;

Ygkn = admittance matrix entry between buses gk and n;

θgkn = phase angle of the admittance matrix entry between buses gk and n; and

δn, δgk = phase angles at buses n and gk.

3.2. Tap-Changing Transformer

The amount of complex powers flowing from buses n to k (Snk) and from k to n (Skn), respectively,
are given by:

Snk = Vn(Vn −Vk)
Ynk

t
+ Vn

2(t− 1)
Ynk

t
(4)

Skn = Vk(Vk −Vn)
Ykn

t
+ Vk

2(t− 1)
Ykn

t
(5)

where t = real part of transformer tap ratio; Ynk = Ynk is the admittance matrix entry for line connecting
bus n and k; Vk = voltage at bus k.

The corresponding reactive powers flowing across the transformer branch are given by:

Qnk = Snk sin δnk; Qkn = Skn sin δkn (6)

where δkn = phase angle between buses k and n.
Hence, the average amount of reactive power flowing across the transformer branch is given by:

Qt =
Qnk + Qkn

2
(7)

3.3. Shunt Reactive Compensator

The amount of reactive power injected, Qc, is in discrete steps based on the given step size. Within
its range of control (Qcmin–Qcmax), the compensator is able to support the system.

4. Centralized Game Model

In order to carry out distributed control, a game-theoretic scheme was first formulated to
implement centralized control [20]. The game definition for centralized control is stated in the
sub-sections below.

4.1. Objectives

This refers to the parameters that are meant to be optimized in the game. In our game model,
reactive power and voltage control are the two main objectives. Specifically, they are to ensure minimal
contribution of reactive power to the system during voltage control.

4.2. Players

Players in a game are agents or entities that perform a set of actions to achieve the aforementioned
objectives. In our game model, players are the generators, on-load tap changing transformers (OLTCs),
and reactive power shunt compensating devices.

4.3. Actions

The strategies employed by players in order to achieve the objectives of the game are called actions.
In our game model, this refers to the different possible settings that players can choose during voltage
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control. Specifically, the settings of the generator’s automatic voltage regulator (AVR), OLTC tap, and
reactive power injection from shunt compensators, are all considered to vary in discrete steps.

4.4. Payoffs

This refers to the incentives earned by players as a result of taking actions to meet the
desired objectives. In our game model, these are the average amounts of reactive power flowing along
the OLTC-connected branch, and reactive power injections from the generators and compensators.

4.5. Payoff Vector

A vector that shows the payoffs for all players for any action combination or strategy profile.

4.6. Power-Flow Equations

These are the power-flow equations for real and reactive power injections to be solved at bus k,
and are given by:

Pk =
N

∑
n=1
|VkVnYkn| cos(θkn + δn − δk) (8)

Qk = −
N

∑
n=1
|VkVnYkn| sin(θkn + δn − δk) (9)

4.7. Constraints

1. Equality constraints: this defines the amount of power being injected into a bus [11]:

Pgk + iQgk = (Pdk + Pk) + i(Qdk + Qk) (10)

where Pgk and Qgk are the real and reactive powers injected into bus k, respectively; Pdk and Qdk
are the real and reactive powers absorbed by the load connected at bus k, respectively; and Pk
and Qk are the real and reactive powers injected into the line at bus k, respectively.

2. Inequality constraints: these define the lower and upper limits of operation of the components
and system specifications [11]:

Generator reactive power :Qgmin ≤ Qg ≤ Qgmax

Generator AVR settings :Vgmin ≤ Vg ≤ Vgmax

OLTC settings :tknmin ≤ tkn ≤ tknmax
Var Compensators :Qshmin ≤ Qsh ≤ Qshmax
Load bus voltage :Vlmin ≤ Vl ≤ Vlmax

(11)

where Qg is the generator reactive power input; Vg is the AVR setting of the generator; tkn is
the transformer tap setting; Qsh is the value of the shunt reactive power compensator; and Vl
is the voltage at the load buses. These values are all defined within their operating lower and
upper limits.

4.8. Power-System Model

To formulate a method for centralized control, we consider an IEEE 6-bus test system model as
shown in Figure 1 [10]. The system line data, bus data and control elements’ operating limits have also
been taken from Sharma and Babu [10].
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Figure 1. IEEE 6-bus system.

4.9. Centralized Game-Theoretic Model

The non-cooperative form game model was chosen to reflect the hierarchical interactions of the
power-system components, and to propose a systematic method for reactive power control.

Hierarchy of control: an order of control was defined to develop the tree diagram arising from the
extensive form game. Based on actual practice in which generators have the smallest time constants,
the order considered was generator–OLTC–compensator. This implies that, upon request for control
action, the generator acts first, followed by the OLTC, and finally the compensator.

The resulting game tree, as applied to the IEEE 6-bus system, is illustrated in Figure 2, and it
shows the hierarchical nature of interaction among the players. The symbols indicate the different
components in the control flowchart: similar shapes indicate the same component type. For example,
both generators are represented as circles, with the shaded one indicating generator 1 and the clear
one generator 2.

Figure 2. Non-cooperative extensive form game model (with perfect information).
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4.10. Power Components’ Payoffs

Generators and compensators have reactive power injections
(
Qg1, Qg2

)
and (Qc1, Qc2)

respectively, which represent payoffs for these power components. The reactive powers flowing
across the OLTC-connected branches are considered to be their payoffs (i.e., Qt43, Qt65). Sn is the payoff
vector of players’ reactive power contributions for any nth chosen path. This is expressed as

Sn =
(
Qg1n, Qg2n, Qt43n, Qt65n, Qc4n, Qc6n

)
(12)

where:

Qg1n, Qg2n: nth possible reactive power injections by generators 1 and 2.
Qt43n, Qt65n: nth possible reactive power flowing along OLTC branches connected to terminal buses 4
(6) and 3 (5).
Qt43n, Qt65n: nth possible reactive power injections by compensators at buses 4 and 6.

5. Game-Theoretic Equations and Algorithms

5.1. Formulated Game-Theoretic Equation

The backward induction solution is an important concept used to determine the credible Nash
equilibrium of an extensive form game. It ensures that at every subgame, only the equilibrium path is
followed, resulting in an overall Nash equilibrium for the whole game [14,16]. This process begins
by observing the terminal nodes at the bottom of the tree. By stepping-up the tree, and following
only the equilibrium paths, it ensures that a final solution which best satisfies the Nash equilibrium
is reached. Applying the concept to this work, a game-theoretic equation that best represents the
step-up process of the backward induction was formulated. The underlying goal is to find the
optimal settings of power-system components, also known as players, that result in minimum reactive
power contributions.

It must be noted that due to the breadth of the extensive form game, we will consider a single
subgame for our discussion. We start at the bottom player node, i.e., player 6, where the set of terminal
node-reactive power contributions corresponding to all n paths for one subgame is represented as:

ZP6 =
{

S1, S2, . . . Sn
}

(13)

For every subtree at this player node, we evaluate the reactive power contribution from player
6, i.e., Qc6n, and choose the setting at the leaf node which minimizes this contribution to the system.
The other leaf nodes with higher reactive power contributions are removed from the game before
control is passed to player 5. The minimal reactive power contribution from player 6 is denoted by
Qc6x as shown below:

Qc6x = Min{Qc6n}
ZP5n = Sn6x =

(
Qg1n, Qg2n, Qt43n, Qt65n, Qc4n, Qc6x

)
ZP5 =

{
. . . , S(n−1)6x, Sn6x, S(n+1)6x, . . .

} (14)

where ZP5n is the surviving terminal node at the player node (player 5) for that subgame, and ZP5 is
the set of surviving terminal node payoffs at all subgames for the fifth player assignment.
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Now we traverse upward through the tree and consider every subtree at that player node
(player 5), for one subgame. The minimal reactive power contribution from player 5 is denoted by
Qc4x as shown below:

Qc4x = Min{Qc4n}
ZP4n = Sn5x =

(
Qg1n, Qg2n, Qt43n, Qt65n, Qc4x, Qc6x

)
ZP4 =

{
. . . , S(n−1)5x, Sn5x, S(n+1)5x, . . .

} (15)

where ZP4n is the surviving terminal node at the player node (player 4) for that subgame, and ZP4 is
the set of surviving terminal node payoffs at all subgames for the fourth player assignment.

This process continues until all surviving terminal nodes and subtrees are reached for the root
node at player 1. For the last stage of backward induction, this results in:

Qg1x = Min
{

Qg1n
}

Zxx = Sn1x =
(
Qg1x, Qg2x, Qt43x, Qt65x, Qc4x, Qc6x

)
(16)

where Zxx is the Nash equilibrium, and consists of the optimal reactive power contribution for all
six players. The corresponding settings of the power system components are the equilibrium settings
used to effect voltage and reactive power control in the system.

5.2. Formulated Game-Theoretic Algorithm

Two major stages are considered for this algorithm: data preparation and actual game play.

(1) Data preparation: this stage was carried out prior to actual game play. After the determination
of all the possible strategy profiles, the load voltage constraint was applied to filter out strategy
profiles that did not satisfy the load voltage tolerance definition. This ensured that only valid
profiles remained for game play activity. The data preparation process used to extract only the
feasible profiles is shown in Algorithm 1.

(2) Game play: this is the actual execution of backward induction beginning from the terminal node
of the game tree. This stage is carried out after the data preparation stage, and this game play
process is shown in Algorithm 2. By implementing steps (13)–(16), only profiles at every player
node that ensure least reactive power contribution by that player are selected.

Algorithm 1 Prior data preparation

Input: N-players (P1, . . . , PN) with (a, b, c . . .) number of actions respectively;
Define equality, inequality and load voltage constraints (10)–(11);
Define w load bus voltages i.e., VL,MON = {Vl1, . . . , Vlw};
Output: Vectors of load bus voltages and reactive power contributions

Invalidate combination settings with unacceptable voltages
1. For i = 1 : K (Total combinations—(a× b× c . . .))
2. Run power flow program;
3. Prune: If all w load bus voltages satisfy voltage limits in (11)
4. Save: i, VL,MON, component settings
5. Extract terminal nodes, Z←Reactive power payoff vectors
6. else Discard: i, VL,MON, component settings
7. Proceed to i + 1
8. End
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Algorithm 2 Reactive power game control (RPGC)

Input Vectors of load bus voltages and reactive power contributions
Define mini = 9999 (Arbitrary large value)
Output: Optimal component settings

# of players, N; Let players[P1,P2,P3,P4,P5, . . . PN] have [a,b,c, . . . ]] possible actions
For 1:N do
For i = 1:a do
4: if Z←P1 then
Goto (20)
end if
For j = 1:b do
if Z←P2 then
Goto (20)
8: end if
For k = 1:c do
if Z←P3 then
Goto (20)
end if
12: For l . . .
. . .
. . .
if Z←P6 then
20: if reactive power cost ≤ mini then
mini←reactive power cost
SGE{ijklmn}←mini
Assign SGE{ijklmn} as newly extracted terminal nodes, Z←P(N-1)
24: end if
end if
end for
. . .
. . .
. . .
End For
Repeat algorithm until the root of the tree at player P1 is reached.
SGE: Sub-game equilibrium

6. Distributed Game Model

6.1. Power System Model

The New England 39-bus system was used to study the method of distributed control using the
proposed game-theoretic algorithm. The one-line diagram and system data are presented in [21].

6.2. Decoupling

Due to the complex component interactions, it is not always possible to determine a global
solution that satisfies all constraints imposed on a larger system. Hence, the proposed centralized
game algorithm was extended with the objective of carrying out distributed control.

The steps that were carried out to implement distributed control are stated below:

(1) Decoupling of the system into independent control areas.
(2) Application of the GT algorithm to systematically control reactive power and voltage in each area.

This will result in optimal control settings of the power system components in each control area.
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(3) A system convergence test using the optimal settings derived from step 2.

The concept of the boundary buses [3,22] was used to sectionalize the power system. This is a bus
that interconnects two different areas and, through it, it is possible to model the influence of adjoining
areas to which a desired area is connected.

To decouple the system, a power flow for the New England 39-bus system was run for the
base case. The 39-bus system was decoupled along three boundaries as in Zima and Ernst [3], with
the addition of a fourth independent area. When solving load flow in each area, the largest rated
generator is taken as the slack bus. In each of the four independent areas, the power flows into
and out of each of the boundary buses were identified in order to determine the effective amount of
reactive power connected to the bus [23]. The decoupled New England system has been illustrated
in Figure 3. To determine the accuracy of the decoupling method used, the power-flow analysis is run
for each of the four areas. To verify the decoupling method used, the voltage profile obtained from
the superimposition of all four profiles from the independent areas is compared with the system-base
voltage profile prior to decoupling.

Figure 3. The decoupled New England 39-bus system.

6.3. Distributed Game-Theoretic Model

After successfully decoupling the system into individual control areas, the non-cooperative
extensive form game formulated in Section 4 was applied in each of the areas. In the 39-bus system,
only the generators were considered as players by maintaining all settings of the OLTCs to be constant.
This was done in order to monitor the generators’ reactive power injections. The definitions of players,
actions, payoffs and payoff vectors have been mentioned in the previous section. By executing the
same processes in the formulated game equations and algorithms of Section 5, the optimal settings of
system components in each area can be determined.
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The game play for area 1 is illustrated in Figure 4. Similar game plays for the other areas are
illustrated in [23]. Upon arriving at the optimal settings for each of the four independent areas, the
power flow was run for the complete system using these new settings to determine the new system
voltage profile.

Figure 4. Extensive form game model for Area 1.

7. Integration of Distributed, Renewable Energy Sources

System voltage profile could be improved by making use of distributed, local reactive sources.
This could help accelerate the proposals of the European Union and the United States to achieve the
renewable energy portfolio that has been targeted for 2020 and 2030, respectively [24].

In this paper, the placement and integration of renewable energies acting as reactive power
sources is considered in order to improve system voltage compliance. Proper planning and adequate
voltage analysis provides qualitative information on the state of system buses and will help operators
take corrective actions to avoid voltage collapse [25,26]. Voltage stability analysis could either be
static or dynamic [6,27]. While dynamic analysis is used to study system scenarios leading to voltage
collapse and coordination of protection and controls, static analysis is used to study system snapshots
at specified time frames [28]. Static voltage analysis is widely researched due to the slow variation of
system voltage until a maximum loading condition is reached [29].

In this paper, the use of the voltage-reactive power (V-Q) sensitivity index [27,30], as a method
for static analysis, is employed to identify vulnerable buses at which reactive support provided from
renewable energy sources will be placed.

7.1. Voltage-Reactive Power (V-Q) Sensitivity

This method of analysis provides information on the variation of the magnitude of bus voltage
due to a unit reactive power injection in that bus, and is also known as the reactive power sensitivity
index [30]. By developing the linearized steady-state equations for the system [27,31] as shown in
Equations (8) and (9), and solving using the Newton–Raphson technique, we obtain:[

∆P
∆Q

]
=

[
H N
M L

][
∆δ

∆V

]
J =

[
H N
M L

]
(17)

where ∆P, ∆Q = Vectors of real and reactive bus power injection changes; ∆δ, ∆V = vectors of bus
voltage angle and magnitude changes; J = Jacobian matrix consisting of sub-matrices H, N, M and L;
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H, N = sensitivity matrix of bus real power to changes in voltage angle and magnitude, respectively;
M, L = sensitivity matrix of bus reactive power to changes in voltage angle and magnitude, respectively.

For any n-bus system having np number of load buses, ng number of generator buses and one
slack bus,

n = np + ng + 1 (18)

The dimensions of the Jacobian and sub-matrices of Equation (17) are given as [32]:

J =
(
np + ng − 1

)
×
(
np + ng − 1

)
H = (n− 1)× (n− 1)

N = (n− 1)× np

M = np × (n− 1)
L = np × np

(19)

Reactive and real powers are less sensitive to changes in voltage angle and voltage magnitude,
respectively [27,30]. Hence, the sensitivity matrices N and M can be assumed to be negligible i.e.,[

∆P
∆Q

]
=

[
H N
M L

][
∆δ

∆V

]
N,M≈0

(20)

Further simplifications lead to:

∆Q = L∆VL =
∆Q
∆V

(21)

The elements of the Jacobian matrix, L, are the approximate reactive power sensitivities with the
diagonal elements considered as the sensitivities of each bus. By carrying out the partial differential of
the reactive power at each bus (k) with respect to its bus voltage, these diagonal entries can be obtained
as shown in the equation below:

∂Qk
∂|Vk|

= −2|Vk||Ykk| sin θkk − ∑
n 6=1
|Vn||Ykn| sin(θkn − δk + δk) (22)

Ykk is the summation of admittance between buses k and n;
The requirement for voltage stability is that its sensitivity index be positive and, the higher the

index, the less vulnerable the bus [6,27].

7.2. Game-Theoretic Formulation and Approach

The separate load flows are run for each of the individual areas of the New England system as
shown in Figure 3 using the optimal generator settings obtained from the distributed game control
studied in Section 6. By making use of Equation (22), the resulting bus voltage magnitudes and angles
are used as inputs to determine the sensitivities for each area bus. Comparing all the bus sensitivity
indices in each of the four areas, the weakest bus in each area is identified, and renewable energy
sources are integrated at these locations.

The proposed game-theoretic concept of Section 5 is applied to optimize all generator settings
that will lead to the systematic control of reactive power and voltage. The buses at which renewable
energy sources are connected are first considered to be generator buses in order to determine the
amounts of reactive powers required to keep their load buses at specific voltage levels, followed by the
determination of the optimal generator settings. Then, the renewable energy buses are changed to load
buses at which reactive powers are being injected. Considering the optimal generator settings, the
overall system load flow is run to observe the improved system voltage profile. Algorithm 3 illustrates
the calculation of the sensitivity indices and game approach.
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Algorithm 3 Renewable energy integration at weak buses (REIWB)

@ each control area,
1: Solve power flow equations to obtain initial, V, θ at all buses
2: RPVS matrix, L is computed from V, θ with emphasis on the diagonal elements, ∂Qi/∂Vi
To determine all ∂Qi/∂Vi entiries:
Initialize empty array of RPVS_Diag_Entries
For i = 1: Number of load buses
For r = 1: Number of buses
Initialize x = 0;
If r = i,
X = −2Vi|Yii|Sinθii
else
p = −|Yii|VrSin(θir + δr − δi)
x = X + p
end
end
RPVS = X + x
Update entries in RPVS_Diag_Entries
end
3: Find weakest bus from min(RPVS_Diag_Entries)
4: Place renewable energy (acting as reactive power source) at PV bus to maintain voltage at 1.0 p.u.
5: Execute game algorithm to obtain optimal generator settings.
6: Solve power flow with optimal settings.
7: Determine reactive power injection by renewable energy source.
Extract injected reactive power from renewable source in each area and update in overall system data.
8: Solve overall system power flow for new voltage profile; renewable energy buses are now PQ-buses.

8. Simulation Results

Based on the formulated game algorithm, the MATLAB program (R2016b, MathWorks, Natick,
MA, USA) was used to develop the game play and the Newton–Raphson technique required to run
the required load flow analysis [28].

Tables 1 and 2 and Figure 5 illustrate the equilibrium component settings, associated power flow
and the resulting voltage profile after the game algorithm was applied systematically to control reactive
power and voltage in the IEEE 6-bus system [20]. A total of 62,424 control combinations and possible
solutions were obtained for the different settings of the voltage-control devices. Each of these settings
constitute a strategy profile for the generators, tap-changing transformers, and compensators in the
system, resulting in voltage control. The backward induction algorithm was then applied to feasible
solutions i.e., only those combinations whose load voltages satisfied the required limits. The goal
of the backward induction process is to determine the optimal profile by sequentially retaining only
those profiles for which the reactive power contribution of a player is minimal at any subgame, while
eliminating the others.

Table 1. Equilibrium component settings.

Strategy Profiles 34,596 45,504

Voltage setting gen 2 (p.u.) 1.05 1.10
Tap setting of OLTC 4-3 0.9625 0.975
Tap setting of OLTC 6-5 1.0000 0.9625

Vars from compensator 4 (p.u.) 5.0 5.0
Vars from compensator 6 (p.u.) 5.5 5.5

Voltage setting gen 1 (p.u.) 1.05 1.10
Vars from gen 1 (MVAr) 20.93 41.91
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Table 2. Power flow results for equilibrium strategy.

Bus Volt (p.u.) Angle (deg) Pg (MW) Qg (MVAr) Qsh (p.u.)

1 1.050 0 94.736 20.929 0
2 1.150 −9.082 50.000 32.477 0
3 1.006 −13.369 0 0 0
4 0.980 −10.161 0 0 5.0
5 0.989 −11.418 0 0 0
6 0.982 −11.884 0 0 5.5

Figure 5. The 6-bus equilibrium voltage profile after game.

As the first player in the backward induction algorithm, compensator 6 (player 6) attempts to
maximize its payoff at each subgame. It achieves this by choosing the setting at the leaf node which
minimizes its reactive power contribution to the system. The other leaf nodes with higher reactive
power requirements are removed from the game before control is passed to compensator 4 (player 5).
Similarly, player 5 maximizes its payoff at each subgame. At the final decision node, the two remaining
strategy profiles are shown in Table 1.

Applying the backward induction algorithm for reactive power control i.e., Algorithm 2, several
strategy profiles are eliminated by players 2 to 5 (in reversed order) in a bid to minimize their individual
reactive power contributions. The two surviving profiles in the game are indexed 34,596 and 45,504,
from which the choice of the optimal profile is made by player 1 (generator 1). The voltage settings
of Generator 1, 1.05 or 1.1 p.u., from either of the two strategy profiles 34,596 and 45,504 satisfy the
voltage requirements at all load buses. However, as seen from Table 2, in order to maximize its payoff,
generator 1 injects a lower reactive power into the system (20.93 MVAr), thus choosing a voltage set
point of 1.05 p.u. instead of 1.1 p.u. Generator 1 utilizes a minimal amount of reactive power to provide
satisfactory voltage levels at all buses, while still ensuring a higher reactive power in its reserve.
Strategy profile 34,596 forms the Nash equilibrium strategy for the game.

It can be observed that system voltage profile was brought within the pre-defined, accepted
voltage tolerance limits. At the same time, the reactive power contribution of each component was
minimized based on the order of action.

The game-theoretic control was now adapted for distributed control in the 39-bus system. A load
flow was run for the base case. Based on the power flows into and out of the boundary bus, the
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influence of adjoining areas was modeled as an effective power flow into or out of the boundary bus.
This was carried out for all four control areas, and load flow analysis for each of these areas resulted in
the same voltage profile as earlier obtained from the base case. System data for each area was modified
to reflect the decoupled system [23].

The voltage profile for the base case is illustrated in Figure 6 and this shows voltage deviations
at a majority of the load buses (97%) in the system based on the 0.98–1.02 p.u. tolerance. Also, the
amount of reactive power lost in the system is −1423.997 VAr. This implies excessive reactive power
generation by the system largely due to overvoltage.

Figure 6. The base voltage profile for the 39-bus system.

Figure 7 illustrates the bus voltage profile for a given decoupled area 1. It is observed that the
resulting area bus voltage profile after decoupling is similar to that of the unified, base case. For all
other areas, the bus voltage profile remained the same. This confirmed the accuracy of the decoupling
method used.

The players were identified in each area, considering only generators; all OLTC tap settings
remained constant, hence were not participants in the game play. The actions considered for the
generators were the same as those proposed in the centralized control i.e., the fixed steps between the
AVR control ranges.

Upon application of the game-control algorithm in each area, it resulted in a set of optimal
control settings for each player in that area. The graph in Figure 8 displays the voltage profile, based
on the optimal generator settings, for an independent control area 1 after the application of the
game-control algorithm.

The post-game voltage profiles for the other areas are illustrated in [23]. An overall system
convergence test was run based on the optimal generator settings derived from each area.
These optimal generator settings for all four areas are shown in Table 3, and the resulting convergence
voltage profile for the system is illustrated in Figure 9. It can be observed that 75% of the load buses
satisfied the voltage tolerance earlier specified. Also, the optimal settings for most of the generators
showed that their AVR settings lie close to the lower limit of operation.
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Figure 7. Distributed control: base voltage for decoupled area 1.

Figure 8. Distributed control: post-game theoretic (GT) Area 1 voltage profile.

Table 3. Equilibrium generator settings for all areas.

Area Generator Bus Base Voltage (p.u.) Optimal Voltage (p.u.)

4 30 1.048 1.000
1 31 0.982 0.950
1 32 0.983 0.950
2 33 0.997 0.950
2 34 1.012 1.015
2 35 1.049 1.000
2 36 1.063 1.025
4 37 1.028 0.950
3 38 1.027 0.975
1 39 1.030 1.000
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Figure 9. The 39-bus system voltage profile after game-control algorithm was applied.

From this result, it can be inferred that more capacity for generator AVR control exists for
future contingencies. Finally, the reactive power lost from the system was reduced to −1113.466 VAr.
Even though this meant reactive power generation by the system, it can be observed that the amount
being generated is less than that generated in the base case of the system.

Table 4 shows the sensitivity indices calculated for all buses located in their respective areas.
Comparing the indices in each area, it can be observed that bus numbers 12, 20, 17 and 1 make up the
weakest area buses in the system. These buses were identified as the best locations for the placement of
the supporting renewable energy sources. Figure 10 illustrates the 39-bus system with the renewable
energy sources now integrated. The game-theoretic control was applied to each area in order to
determine the required amounts of reactive power injections needed to maintain all area renewable
energy buses at 1.0 p.u. These buses were considered as generator-types which regulate bus voltages.

Table 5 shows the reactive power support required at each of these four buses. A minimal
reactive power of 33 MVAr is required from bus 1 with a maximum of 178 MVAr required at bus 20.
The new optimal generator settings, considering the renewable energy sources, are presented in Table 6.
Based on these generator settings and the reactive powers required from the supporting renewable
energy buses, an overall system load flow was run. Figure 11 shows the resulting system voltage profile.

It was observed that 86% of the load buses complied with the voltage limits. This was an
improvement on the 75% compliance earlier obtained from the game-controlled system without
renewable-energy integration.

Figure 12 presents the voltage profile comparisons for all three cases (base, distributed alone,
and distributed with renewable energy integration). In Table 7, both optimal generator settings
for the system considering renewable-energy integration and without renewable energies (WR) are
compared. It can be observed that more generator AVR settings for the R-case lie closer to the
lower operating limits. This implies a lesser burden on generators for reactive power since the
renewable-energy sources largely act as reactive power compensators. The effective system generators’
reactive power contributions is a total of 51 MVAr, a drastic decrease from 295 MVAr initially supplied
when no renewable-energy source was used. This result is a further improvement on generator reserve
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reactive power to handle future contingencies. The use of generators, as quick and temporary sources
of reactive power [1], to keep the system stable, is further enhanced.

Table 4. V-Q sensitivity indices for all area buses.

Area Load Bus Sensitivity Index

1

4 307.4
5 805
6 1076.6
7 515.7
8 497
9 70
10 682.5
11 603.5
12 44.3
13 515.4
14 391.5

2

15 224.51
16 660.36
19 242.4
20 188.85
21 345.4
22 347.01
23 235.75
24 208.65

3

17 55.68
26 238.58
27 234.28
28 260.16
29 333.33

4

1 70.92
2 623.8
3 278.73
18 77.97
25 168.53

Table 5. Sensitivity indices for all buses’ reactive power injections from renewable energy sources.

Area Weak Bus Injected Reactive Power (VAr)

1 12 44.621
2 20 178.041
3 17 53.581
4 1 32.678

Table 6. Equilibrium generator settings for all areas with renewable energy.

Area Weak Bus Injected Reactive Power (VAr)

1 12 44.621
2 20 178.041
3 17 53.581
4 1 32.678
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Figure 10. The New England 39-bus system with renewable-energy sources.

Figure 11. System voltage profile with renewable-energy sources after game control.
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Figure 12. System voltage profiles for the base case, post-game without renewable (WR) and with
renewable (R) sources.

Table 7. Comparison of automatic voltage regulator (AVR) settings for all three cases.

Bus Base Post-Game (WR) Post-Game (R)

30 1.048 1.000 0.975
31 0.982 0.950 0.950
32 0.983 0.950 0.950
33 0.997 0.950 0.975
34 1.012 1.015 1.010
35 1.049 1.000 0.950
36 1.063 1.025 1.050
37 1.028 0.950 0.950
38 1.027 0.975 0.950
39 1.030 1.000 0.975

9. Conclusions

In this work, a novel application of the extensive form game theoretic model was carried out in a
power grid in order to control reactive power flow and voltage systematically. A centralized method
for control was developed and further translated to a method for distributed control.

As shown in the results for the centralized control, the ability to filter out all intolerable voltage
profile results before systematically controlling reactive power based on any defined hierarchical
interaction of components is essential to arrive at equilibrium component control settings. By ensuring
that components contribute minimally to reactive power when controlling system voltage, reserved
capacity for future contingencies is increased. Also, the amount of power flow in the line is reduced.

Scaling up this method to a larger system, a 39-bus network was decoupled into four different
areas using a boundary bus technique. The proposed game-control algorithm was applied at each
of the areas to determine optimal generator settings. The overall system load voltage compliance
was increased from 3% to 75%. Furthermore, the reactive power-voltage sensitivity method was
used to identify the weakest buses at which renewable energies (acting as reactive power sources)
were integrated. With a new set of optimal generator settings and renewable energies (reactive sources),
an improved 85% load-voltage compliance was observed.
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As shown in this work, game theory can be used as an effective tool for managing
power-system operations. The use of the proposed game-theoretic technique adapts well to
reactive-power conservation in the control of system voltage and the determination of optimal settings
of power-system components.
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Nomenclature

Qgin, Qcin nth possible reactive power injection by generator or compensator component labeled i
Qtijn nth possible reactive power flow along transformer branch i and j
Vgk Voltage at generator bus k
Qgk Reactive power injection at generator bus k
Vn Voltage at bus n
Snk Complex power flowing from bus n to k
Ynk Bus admittance entry between buses n and k
Qnk Transformer branch reactive power from n to k
tnk Transformer tap settings between buses n and k
Sn nth payoff vector comprising reactive power contributions for all players for any
ZPi For any subgame and ith player assignment, the set of all payoffs located at the leaf or terminal nodes
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