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Abstract: A decision support tool has been developed to evaluate energy-saving intervention
investments for domestic buildings. Various potential interventions are considered, each affecting
energy consumption and savings, as well as the total financial cost of the investment. The decision
problem is formulated as a mixed-integer programming problem. The implemented methodologies
increase the efficiency and efficacy of the solution algorithms and can be applied to most realistic
cases. The tool allows users to customize the problem based on their own preferences and find the
optimal combination of investments. Uncertainty complicating the decision process is addressed by
using interval analysis; therefore, the robustness of the optimal decision can be evaluated to facilitate
the decision-making process. A domestic building in the Mediterranean area is used as a case study
to demonstrate the functionality of this tool and to evaluate the impact of the decision-maker’s
uncertainty on the optimal decision.
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1. Introduction

Buildings account for more than 40% of total energy consumption, and the majority of this
energy is for residential use [1,2]. Therefore, building energy efficiency has become a worldwide
priority for environmental reasons, including emissions and sustainability [3]. To improve the energy
performance of buildings, the E.U. has established the Energy Performance in Buildings Directive
(EPBD, 2010/31/EU) and the Energy Efficiency Directive (EED, 2012/27/EU) has set specific goals
and requirements for reducing building energy consumption. New constructions are now designed
according to these standards; however, the majority of buildings in Europe and the United States
were built before 2000 [4,5], meaning interventions and refurbishments could drastically increase
their energy efficiency. Residential buildings built between 2000 and 2005 are 14% more efficient
than those built in the 1980s and 40% more efficient than those built before 1950 [5]. Therefore,
a strong interdependence exists between energy consumption and building age, explaining why some
governments provide incentives for retrofitting old buildings.

The measures that improve a building’s energy efficiency range from equipping with more
efficient devices to complete renovation [6]. The most important measures are major interventions
that significantly increase the building’s energy savings; however, these are usually very expensive.
Potential energy-saving interventions can be classified into categories to facilitate evaluation based on
various criteria such as final layout of the building, financial cost, energy savings achieved, and/or
environmental performance [7,8]. Practically, the aim of evaluating available retrofit solutions for
a building is to improve its energy efficiency and increase its energy label, with the goal of being
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a nearly Zero Energy Building [9]. In this study, domestic buildings are considered, since they are the
major and simultaneously the most aged building category. The energy needs of a domestic building
are usually broken down into two parts: heating and cooling needs that depend on thermal comfort
and can be simulated using computational fluid dynamics (CFD) analysis [10], and electromechanical
equipment consumption that depends on residents’ schedule and habits. These two categories are
different, but they interact if electricity is used for the heating and cooling of the house.

Therefore, a large set of interventions is available that needs to be evaluated based on various
criteria, and the decision-maker needs to manage many conflicting objectives. Such multi-criteria
problems are common in the energy sector [11]. In this study, to address the retrofit problem, weights
are assigned to the evaluation criteria that are then incorporated into a unique function representing
the total gain of the decision-maker from all points of view according to his preferences. The weighting
method is a widely used generation method, since a set of Pareto optimal solutions can be generated
from which the decision-maker can select one [12]. The objective function is then optimized using
integer and mixed-integer programming techniques, and by changing the weights, different optimal
solutions are obtained. The problem is formulated using binary variables that are convenient, and the
algorithms converge to the optimal solution after proper reformulation of nonlinear criteria.

Weight assignment has been used in several recent energy efficiency studies, mostly originating
from multi-criteria analysis and multi-objective optimization, to address the problem of selecting the most
efficient and suitable measures [13]. These studies propose models that either mainly focus on complex
computer-aided simulation [14], in which uncertainty can be addressed by testing scenarios, or offer
a holistic approach to the problem by considering the retrofit cost and the respective energy savings [15].
In the latter case, software tools have also been developed to facilitate the decision process, without,
however, addressing uncertainty [16]. Some studies include a third objective, such as environmental
impact [17] or resident comfort [18], and the problem is solved using meta-heuristic algorithms and
penalty functions that may lead to sub-optimal or even unrealistic solutions. These methods independently
evaluate each intervention without addressing probable synergies, and most do not consider that, except
for the criteria used to evaluate an energy intervention, other preferences and limitations could also exist,
which act as constraints to the formulated problem. For example, there may be a budget limit, a time
horizon limit depending on the rental or ownership of the residence, personal preferences regarding
aesthetics and hassle resulting from the refurbishment, or even special requirements for some building
types, such as historical buildings [19]. This means that there could be quantitative and qualitative criteria,
and the respective thresholds should be considered during the decision process. Moreover, uncertainties
faced during this evaluation and their influence on the optimal decision are not examined thoroughly in
recent studies, since uncertainty is usually incorporated either by performing a sensitivity analysis of the
optimal solution [20] or using probability distributions [21].

Uncertainty needs to be taken into consideration to study the robustness of solutions. Robustness
and reliability of optimal solutions is an important issue for several studies using multi-criteria
decision-making framework [22,23]. In this problem, uncertainty results from properly selecting the
weights that correspond to the decision maker’s preferences, which is one of the most critical problems
in decision-making, as well as from the problem’s constraints that might change unexpectedly, such as
the available budget. Uncertainty can also exist in the investment’s cost [24] or expected savings,
such as if funding mechanisms are available or if the energy rates are not fixed. Although these
uncertainties are not considered in this study, they can be addressed using the proposed methodology.

Several methodologies address parameter uncertainty in integer programming, such as Fuzzy
Sets [25] and Stochasticity [26]. In this study, Interval Analysis is used, as it is considered more suitable
for engineering problems [27], since the distribution information and the membership functions for the
uncertain parameters are not usually known or required. In Interval Analysis, an unknown parameter
x is substituted with an interval, meaning that the parameter’s value lies between the limits of this
interval. Any function applied to x produces another interval that contains all the possible values of
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that function for all possible values of the uncertain parameter. Therefore, the decision maker can
effectively obtain the range of the optimal solution and how the decision variables affect it.

A decision support model is thus used to incorporate nonlinear criteria and various constraints
that depend on the decision-maker in order to address the retrofit problem. It is also discussed how the
proposed model, extending recent studies, easily addresses synergies among the various interventions
and qualitative criteria to solve even the most complicated realistic case studies. The uncertainty in the
decision-maker’s preferences is addressed to study the robustness of the decision variables and to estimate
which decisions are most affected, resulting in a more efficient decision support tool. A case study is
presented of a residence in the Mediterranean area that requires upgrading to improve its energy efficiency,
and the available energy-saving interventions are evaluated. The developed decision support system is
used, and the influence of the preferences, constraints, and uncertainty is studied using some examples.
Except for energy efficiency investments, the proposed model can also be used to address other selection
problems in various sectors in which investment decisions need to be assessed under uncertainty.

In summary, the main contributions of this paper are:

1. The development of a decision-support tool to evaluate energy-saving interventions, which can
incorporate any number of quantitative and/or qualitative criteria for assessing the available
interventions even when synergies exist.

2. The ability of the tool to address uncertainty, taking into account the lack of distribution
information and robustness of the solutions.

This paper is organized as follows: the problem is formulated in Section 2, and Section 3 describes
the interval analysis framework and the methodology used to solve the problem under uncertainty.
In Section 4, a case study is presented, and some numerical examples are solved and discussed in
Section 5 to evaluate the proposed methodology. Finally, in Section 6, the conclusions are summarized,
and some future extensions are suggested.

The steps of the proposed methodology are summarized in the high-level flowchart in Figure 1.
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2. Formulation of the Problem

After understanding the current energy profile of a building and the potential interventions,
the decision-maker needs to evaluate the options to decide how many and which interventions to
select for financing. The criteria used should be necessary and sufficient for the stakeholder to decide.
Various criteria can be used, but based on the opinions of real-estate market participants, the most
important energy efficiency criteria for residential decision-makers are (1) the capital cost of each
intervention; (2) the projected annual savings, which are the reduced costs due to improved energy
efficiency; and (3) the payback time of the total investment based on its costs and gains. Capital cost is
the most important deterrent to energy efficiency projects in the residential sector, since individuals
lack funding options, technical knowledge, and long-term investment approach when compared to
companies. Energy savings are used to evaluate the annual profits that result from an intervention.
Savings are calculated using the estimated reduction in energy consumption due to an intervention
and the respective energy cost. Finally, payback time is an important criterion in any investment
decision, as it measures the relationship between the savings and the cost of capital. The payback time
for a decision in the proposed model results from the costs and savings of all the interventions selected
and not from their own payback time, because a decision-maker is mainly interested in the return
on the total investment. All three criteria are quantitative, and their values can easily be calculated,
even though payback time is not expressed in monetary terms.

Some decision-makers may wish to add more criteria to the decision process that they consider
important, such as Net Present Value instead of payback time (the latter was selected because it
is easier to understand by a residential decision-maker without a financial background) or carbon
dioxide (CO2) emissions to evaluate the environmental effect of an intervention if there is an ecological
approach. Some criteria may even be qualitative, e.g., the extent of the renovation needed that could
act as a deterrent. Therefore, various criteria could be of interest, since the prioritization and relevance
can vary. However, a typical residential decision-maker’s approach is simple, usually leading to the
three above-mentioned criteria. Nevertheless, the methodology proposed in this study can address
any number of criteria, and qualitative criteria can be incorporated into the model as well, as long as
the decision-maker creates a representative numeric evaluation scale for each criterion.

Continuing with the mathematical formulation, the selection of an intervention Ii is modeled as
a binary variable xi. This means that the final decision is represented by a vector x of binary variables,
in which zero means that the respective interventions are not suggested and one means that the
respective interventions should be preferred. The criteria Cj (j ∈ C) that are considered in the decision
process are the respective costs Jj. J1 represents the total capital cost of an investment decision, J2 is the
total annual cost savings from a decision, and J3 is the payback time of the decision. Costs Jj are given
by the following equations, respectively:

J1(x) =
5

∑
i=1

a1,ixi (1)

J2(x) =
5

∑
i=1

a2,ixi (2)

J3(x) =
J1(x)
J2(x)

=
∑5

i=1 a1,ixi

∑5
i=1 a2,ixi

(3)

in which J1 is the aggregation of capital costs a1,i of the selected interventions, and it is assumed
that no synergies exist between the interventions, so that J2 results similarly from annual savings
a2,i. However, in many cases, there are synergies between two or more interventions that result in
higher or lower savings than the independent aggregation of these savings. These synergies can
be easily formulated by using products of binary variables, so that the terms that correspond to
specific combinations of interventions are inserted into J2 and J3. For example, if the combination of
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external insulation and frame replacement leads to 10% lower savings than the sum of their annual
savings because these two interventions’ savings overlap, J1 remains the same, but J2 becomes equal to
∑5

i=1 a2,ixi − 0.1(a2,1 + a2,2)x1x2, and the denominator of J3 is modified, respectively. The products of
the binary variables can then be substituted with simple binary variables by adding more constraints to
the problem. Assuming there are n binary variables yi, i = 1, . . . , n, their product can be substituted by
a binary variable yp by imposing the additional constraints ys ≤ yp + (n− 1) and ys ≥ nyp, in which
ys is the sum of the n binary variables. Through this method, the linear and nonlinear formulation
of J2 and J3 are not affected, and the proposed methodology can be used to address even more
complex real-world applications. After proper reformulation, any synergies lead again to the original
cost formulations. Therefore, for simplicity, it is assumed that the annual savings resulting from an
intervention are independent of the simultaneous selection of any other intervention.

Furthermore, the decision maker could set some limits for the criteria costs to meet. For example,
there may be a budget limit or a certain time horizon. This means that upper and lower bounds
Jj,min and Jj,max can be assigned to costs Jj and be used as constraints of the decision problem. These
constraints can be either optional, or the decision-maker should appropriately select the values of the
related parameters. They are formulated as:

Jj,min ≤ Jj ≤ Jj,max, j = 1, 2, 3 (4)

All the different costs that affect the final decision lead to the multi-objective mathematical
programming (MMP) framework, which is an extension of traditional mathematical programming
theory. MMP is part of the multi-criteria decision-making framework that includes various
methodologies to facilitate the decision process [28,29]. To combine these objectives and obtain
a single cost that acts as an objective function, the weighting method is used. Therefore, the decision
maker assigns weights to these criteria according to his preferences, thus creating his own objective
function that needs to be optimized. This method is simple and converges quickly to the optimal
solution. In the end, the formulated problem is a binary integer programming problem [30]:

min
x

(w1 J1 − w2 J2 + w3 J3) (5)

Subject to
Jj,min ≤ Jj ≤ Jj,max, j = 1, 2, 3 (6)

A negative or positive sign is assigned to each Jj depending on its notion. Total capital cost and
payback time should be as low as possible. Therefore, costs J1 and J3 are inserted into the objective
function of the minimization problem with positive signs, whereas cost savings imply gain that should
be as high as possible, so J2 is inserted with a negative sign. Opposite signs would be used to maximize
the objective function.

For every weight vector w = (w1, w2, w3), an optimal solution exists that corresponds to the
decision maker’s preferences. The weights represent value trade-offs among criteria [31]. These weights
can be considered as a measure of the importance of each criterion by assigning to them any positive
value, but they can also be reformulated so as to add up to one, thus implying percentages. Moreover,
the weights can also be used for the transformation of units so that the costs are comparable. If some
weights are equal to zero, the respective costs are not considered in the objective function.

3. Optimization Procedure and Methods

When uncertainty is inserted into the model, the value of some parameters cannot be exactly
estimated; therefore, typical integer programming algorithms may not be effective. In these cases,
the methods used to address uncertainty are usually Fuzzy Sets, Stochasticity, or Interval Analysis.
However, the first two methodologies require additional data and lead to complex sub-models that
limit their applicability in practical problems. In stochastic and fuzzy programming, the probabilistic
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distribution information and the membership function of each uncertain parameter are required,
respectively. In practical engineering problems, a decision-maker can usually estimate the interval
within which the uncertain parameter lies, but meaningful possibilistic or probabilistic information
may be difficult to obtain. Conversely, Interval Analysis can be directly applied to the optimization
problem and its uncertainty requirements are less demanding. This is why the interval analysis
framework is proposed, and the uncertain parameters are expressed as intervals that represent the
range of these parameters’ values [27]. In this framework, any unknown parameter x± is expressed as
an interval with an upper bound x+ and a lower bound x−, meaning its values range within [x−, x+].
The values allowed within this interval depend on whether the unknown parameter is continuous
or discrete. All basic numerical operations can also be performed with intervals. Firstly, the interval
linear problem is described, and then it is extended to address the nonlinear problem formulated in
Section 2.

An interval linear programming problem can be formulated as

min f± = C±X± (7)

Subject to
A±X± ≤ B± (8)

X± ≥ 0 (9)

in which A±, B±, C±, X± are matrices, with elements belonging to a set of interval numbers R±.
This problem can be solved by being split into two sub-models [32]. For a minimization

problem, a sub-model corresponding to f− is formulated, and, using its solutions, another sub-model
corresponding to f+ is then formulated and solved. Otherwise, the model corresponding to f+ is
formulated and solved first. Assuming that b± > 0, the first submodel is

min f− =
k1

∑
j=1

c−j x−j +
n

∑
j=k1+1

c−j x+j (10)

Subject to

k1

∑
j=1

∣∣aij
∣∣+Sign(a+ij )x−j /b−i +

n

∑
j=k1+1

∣∣aij
∣∣−Sign(a−ij )x+j /b+i ≤ 1, ∀i (11)

x±j ≥ 0, ∀j (12)

in which x±j for j = 1, . . . , k1 are continuous or discrete variables with positive cost coefficients c±j ,
and for j = k1 + 1, . . . , n the cost coefficients are negative.

After solving the first sub-model, optimal values x−j,opt for = 1, . . . , k1, x+j,opt for j = k1 + 1, . . . , n and

f−opt are obtained. The second sub-model is similarly formulated by inverting the signs of Equations (10)
and (11), and adding the constraints x+j ≥ x−j,opt, j = 1, 2, . . . , k1 and x−j ≤ x+j,opt, j = k1 + 1, k1 + 2, . . . , n.

After solving the two sub-models, the final solutions f−opt, f+opt and x−j,opt, x+j,opt for j = 1, . . . , n are obtained.
Using this methodology, a set of optimal and robust solutions for the decision variables becomes

available, which results in a range of feasible optimal solutions for the objective function. This is
superior to a best/worst case analysis that mainly focuses on the objective function without studying
the robustness and feasibility of the decision variables.

In this study, the problem differs from the classic interval linear programming problem, because
J3 is nonlinear. However, this nonlinear cost can be reformulated using fractional programming
techniques, since it is a quotient of linear functions [33].
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Constraints of the form ∑i aixi
∑i dixi

≤ c, which are not linear, can be reformulated as ∑i(ai − cdi)xi ≤ 0,

since the denominators of the problem are always positive. Similarly, constraints of the form ∑i aixi
∑i dixi

≥ c
can also be transformed. If linear quotients appear in the objective function, the linear fractional
programming problem can be reformulated into a mixed-integer programming (MIP) problem using
binary and positive continuous variables.

The linear fractional programming problem with binary variables is

min
a1x1 + · · ·+ akxk + ak+1
c1x1 + · · ·+ ckxk + ck+1

(13)

Subject to
A1x1 + · · ·+ Akxk ≤ b (14)

in which Ai, i = 1 . . . k and b are m-dimensional constant column vectors, xi are binary variables,
and ai, ci with i = 1, . . . , k + 1 are the respective constant coefficients.

By setting y = 1/c1x1 + · · ·+ ck xk + ck+1, the problem is reduced to

min a1x1y + · · ·+ akxky + ak+1y (15)

Subject to
c1x1y + · · ·+ ckxky + ck+1y = 1 (16)

A1x1 + · · ·+ Akxk ≤ b (17)

in which xi are binary variables and y ≥ 0.
Then, the transformation z = xy can be used by adding four linear inequalities: y− z ≤ K− Kx,

z ≤ y, z ≤ Kx, and z ≥ 0, in which K > y and x is a binary variable.
Following similar transformations, the general extended form of a linear fractional programming

problem, with interval coefficients in the objective function, can be transformed [34]. In that case,
the constraint in Equation (16) with interval coefficients c±i is replaced by two inequalities:

c+1 z1 + · · ·+ c+k zk + c+k+1y ≥ 1 (18)

c−1 z1 + · · ·+ c−k zk + c−k+1y ≤ 1 (19)

Implementing the methodology described in this section, the original nonlinear interval problem
can be written as

min
x

(
5

∑
i=1

(w±1 a±1,i − w±2 a±2,i)x±i +
5

∑
i=1

w±3 a±1,izi

)
(20)

Subject to
a±2,1z1 + · · ·+ a±2,5z5 = 1 (21)

y− zi ≤ K− Kx±i , zi ≤ y, zi ≤ Kx±i , zi ≥ 0 ∀i (22)

J±1,min ≤
5

∑
i=1

a±1,ix
±
i ≤ J±1,max (23)

J±2,min ≤
5

∑
i=1

a±2,ix
±
i ≤ J±2,max (24)

J±3,min ≤
∑5

i=1 a±1,ix
±
i

∑5
i=1 a±2,ix

±
i
≤ J±3,max (25)

in which y ≥ 0, K > y and x±i binary variables ∀i, i = 1 . . . 5.
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To solve the problem, the signs of the decision variables’ coefficients are needed to separate those
that contribute either to f− or f+. This is not always a simple task, since the objective function is
nonlinear with respect to xi. Therefore, these signs depend on the specific problem. Attention should
be paid to the fact that coefficients c±i of the linear interval programming problem correspond to x±i ,
whereas coefficients w±i correspond to Jj; therefore, they differ. The first derivative and the monotony of
the objective function were used to find certain conditions that determine these signs. Another method
involves testing all scenarios for each decision variable. This procedure is considerably simplified,
because decision variables are binary. Notably, in case synergies exist, additional constraints should
be added to express the product and sum of the reformulated binary variables using the technique
presented in Section 2.

4. Case Study

In this section, the residence that needs to be upgraded and the potential interventions are
described. The house examined is situated in a city in which the climate is Mediterranean, meaning
the weather is usually sunny and dry during summer, with temperatures up to 40 ◦C, and mild during
winter without significant snowfall, with temperatures as low as 3 ◦C. This residence is an apartment
on the top floor with an area of 75 m2 in the city suburbs, so it is also protected from strong winds to
a certain extent. It was built in the late 1980s, and its specifications are outdated; however, the building
receives minimum solar exposure due to its orientation, and the other apartments of the building
reinforce the floor insulation. Based on this data, the heat transfer coefficient and the annual energy
needs for heating and cooling can be calculated. The annual needs for electricity were obtained from
historical billing data.

The most widely suggested interventions for a residence to improve heating and cooling include
external wall insulation, replacement of external window frames with newer and more efficient
frames, and the installation of a heat pump for heating and cooling. Other interventions could
include the use of geothermal energy if the house was detached, and the use of natural gas instead
of heating oil. The residence examined is separate from the natural gas distribution network and
uses heating oil for space heating and a solar thermal collector for water heating. The interventions
proposed for reducing the electricity costs are mainly the installation of photovoltaic cells (PVs),
since the Mediterranean climate is sunny and a feed-in tariff mechanism exists, and the replacement
of incandescent and fluorescent lamps with light-emitting diodes (LEDs) that are easy to install and
much more efficient. LED lights are one of the most widely adopted energy efficiency interventions
in residences worldwide. Even though LEDs are more expensive than other lights, they offer the
same light output (luminous flux), using much less power and increasing luminous efficiency up to
10-fold, and their lifespan is typically about 15 times longer. These advantages also hold compared
with fluorescent lamps, although to a lesser degree. The energy consumption of a residence can
be also reduced by replacing old devices and equipment with new technologically improved and
more efficient devices, but these individual replacements are not considered interventions, with the
exception of lamps that account for a large percentage of energy consumption.

The proposed interventions for the residence examined, along with their cost of capital and
annual cost savings, are presented in Table 1. The capital costs used were based on market prices,
after consulting energy services companies that undertake such projects in the area. Depending
on the retrofitting period, the capital cost can be reduced by taking advantage of probable funding
mechanisms that were not available during this study. In that case, the results may differ in accordance
with each funding option’s terms. The energy and cost savings stem from the annual energy needs
and costs, along with the reduction expected from each intervention. The payback time is the ratio of
capital cost to annual gain. For example, replacing 1000 W incandescent light fixtures with 120 W LED
fixtures costs about €65 depending on the brand selected, which results in the same light output and
880 W less power installed. Given that the variable component of the electricity cost for this residence
is circa 0.14 €/kWh including the supply cost, regulated costs, and all taxes and levies, and assuming
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lights will stay on for about 6–6.5 h per day, the resulting annual savings were estimated to be about
€277. Similarly, the costs and savings of the other available interventions were obtained.

Table 1. Available interventions. LEDs: light-emitting diodes; PVs: photovoltaic cells.

Data
Interventions

External Insulation Frames LEDs PVs Heat Pump

Capital cost (€) a1,1 = 6000 a1,2 = 8000 a1,3 = 65 a1,4 = 6900 a1,5 = 1100
Annual savings (€) a2,1 = 1208 a2,2 = 1072 a2,3 = 277 a2,4 = 988 a2,5 = 325

In case a decision-maker wants to assess less common or more innovative interventions that are
not widely available for residences, they can be easily incorporated into the model as long as their
capital cost and savings can be calculated.

5. Results

To solve the problem presented in the previous section, a suitable GAMS solver is used. GAMS is
a high-level modeling system tailored for complex and large-scale optimization problems [35] and the
LP/MIP solver used is CPLEX [36]. GAMS is widely used worldwide for modeling applications. In this
section, only a few examples are presented, but using the same algorithms and methodology, any other
numerical examples or case studies can be completed, since the scalability is obvious. The algorithm
requires less than one second to solve the following examples in which five interventions are evaluated
based on three criteria. Therefore, the methodology is also applicable and efficient for large-scale
problems with many available interventions and various criteria.

In the following examples, the capital cost and the annual savings are expressed in thousands of
Euros so that the three costs are comparable; otherwise, J1 would dominate in the objective function.
As already mentioned, another method to ensure comparability involves considering the scale of each
cost during weight selection. Moreover, in the following examples and generally, in most cases x2

and x3 have a positive and a negative coefficient, respectively, as can be easily calculated. The rest
of the coefficients’ signs highly depend on the weight selection. It is highlighted that the algorithms
converge to the optimal value of the objective function, but it is the decision variables for the selection
of interventions that are actually of practical use to the decision-maker.

In the first examples (Table 2), the problem is solved without uncertainty; all parameters are
deterministic, and the optimal solution is obtained in each scenario. This means that all data are
available and the decision-maker is certain regarding his preferences and limitations.

As expected, as the thresholds in the constraints are tightened, the more the feasible solutions
are restricted. Thus, the optimal solution includes fewer interventions, and the value of the objective
function deteriorates. The opposite results hold true if the constraints are relaxed. For example,
the relaxation of the constraints between the first and second example affects the selection of the
PVs, even though the value of the objective function is only slightly affected. This is due to the fact
that the PV cost of capital is high, thus increasing the total investment’s payback time. These are
the two constraints that differ in the two examples. Moreover, the importance assigned to each cost
in the objective function can affect the optimal solution even if the constraints remain unchanged.
For example, the difference between the first and last example in Table 2 is that the importance of
payback time increases as opposed to the importance of savings. Therefore, the selection of external
insulation, which provides high energy savings at a high capital cost, is affected.
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Table 2. Examples without uncertainty.

Inputs Optimal Decision

w1 w2 w3 Constraints x1 x2 x3 x4 x5 Jopt

0.1 0.7 0.2 J1,max = 10, J2,min = 0, J3,max = 5 1 0 1 0 1 −0.504
0.1 0.7 0.2 J1,max = 15, J2,min = 0, J3,max = 7 1 0 1 1 1 −0.505
0.1 0.7 0.2 J1,max = 8, J2,min = 0, J3,max = 5 0 0 1 0 1 −0.258
0.1 0.4 0.5 J1,max = 10, J2,min = 0, J3,max = 5 0 0 1 0 1 −0.007

In the next set of examples (Table 3), it is assumed that the decision-maker can specify the
constraints, but he cannot explicitly decide the weights that correspond to his preferences. Therefore,
the objective function includes the interval values w±j for j = 1, 2, 3, and the remainder of the
parameters are assumed to be deterministic.

Table 3. Examples with interval weights.

Inputs Optimal Decision

w±1 w±2 w±3 Constraints x±1 x±2 x±3 x±4 x±5 J±opt

[0.3, 0.5] [0.4, 0.6] [0.1, 0.2]
J1,max = 10
J2,min = 1.5
J3,max = 6

[1, 1] [0, 0] [1, 1] [0, 0] [1, 1] [1.087, 2.905]

[0.1, 0.3] [0.4, 0.7] [0.2, 0.3]
J1,max = 15
J2,min = 1 [1, 1] [0, 0] [1, 1] [0, 1] [0, 1] [−0.505, 1.296]

In the first example, it is observed that the optimal decision may not be affected by the uncertainty,
in contrast with the second example, in which the robustness decreases as the uncertainty increases
and/or different constraints are used. In the first example, three interventions, namely external
insulation, LEDs, and heat pump, are recommended even though the decision-maker is not absolutely
certain about his preferences. In the second example, the tool informs him that his uncertainty affects
the optimal decision as far as the PV and heat pump installation are concerned. In both examples,
the objective function’s optimal value is within a certain range that depends on the weighting factors,
meaning Jopt may vary independently of the choice of optimal interventions. In that case, the solution
can be robust, since the decision-maker is more interested in the selection of optimal interventions
rather than the range of Jopt.

Finally, in Table 4, the weights are assumed to be deterministic, but uncertainty exists in the
constraints and more specifically in the limits imposed by the decision-maker. Therefore, intervals are
used to express J±j,max and J±j,min for j = 1, 2, 3.

Table 4. Examples with uncertainty in the constraints.

Inputs Optimal Decision

w1 w2 w3 Constraints x±1 x±2 x±3 x±4 x±5 J±opt

0.5 0.45 0.05
J1,max = 15

J±2,min = [1, 1.5] [1, 1] [0, 0] [1, 1] [0, 0] [0, 1] [2.376, 2.780]

0.5 0.45 0.05
J±1,max = [15, 20]
J±2,min = [1, 2.5]

[1, 1] [0, 0] [1, 1] [0, 1] [0, 1] [3.303, 7.775]

It is observed that the optimal value of the objective function may not be considerably affected,
but the uncertainty influences the optimal solution. In the case of low demand for energy savings in
the first example of Table 4, only interventions I1 and I3 are selected, i.e., external insulation and LEDs.
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Conversely, if more savings are required, potentially due to a legislative provision, the fifth intervention
(heat pump installation) should also be selected. In the second example, greater uncertainty leads
to less robust optimal solutions, as expected. The range of the objective function’s optimal value
increases, but the most important outcome is that the number of interventions whose selection is
uncertain also increases. Another method to assess the robustness of the optimal solution could include
studying various examples with deterministic parameters that cover the entire range of the uncertainty.
However, these examples should be appropriately selected to avoid incoherent decisions.

Judging from the examples tested, the uncertainty in the constraints seems to affect the robustness
of the optimal solution more than the possible uncertainty in the weight parameters as far as this
particular building is concerned. However, more examples need to be studied to verify if this
observation also applies to other cases and buildings. For the residence examined, the replacement of
external frames is not generally suggested for improving energy efficiency (this intervention could,
however, be selected due to soundproofing if a decision-maker includes this qualitative criterion into
the model), whereas the installation of LEDs is considered a cheap intervention with high energy
savings and its selection is generally robust.

The uncertainty of both the weight parameters and the constraint thresholds is expected to have
an aggregate effect on the robustness of the optimal solution and the objective function, rendering
the optimal selection more difficult. The proposed framework helps the decision-maker to evaluate
how different circumstances affect the optimal decisions. If the problem was solved based on the most
probable scenario, all parameters would be deterministic, and the decision-maker would not be able to
determine which decision variables are more sensitive to slight variations in the parameters.

6. Conclusions

Retrofitting domestic buildings has become a worldwide priority given the unexploited
energy efficiency potential in this sector. For this reason, all available building interventions and
energy efficiency measures need to be evaluated to optimize the improvement of a building’s
energy performance.

To facilitate the decision process, a decision support tool has been developed that incorporates
the stakeholder preferences using the multi-criteria decision support framework and mixed-integer
programming. The proposed methodology offers a holistic approach to the retrofit problem and also
incorporates the effect of uncertainty on the optimal decision in a consistent and understandable
manner. The uncertainty faced when both the importance and the limits of each criterion need to be
decided is addressed using interval analysis, which is suitable for engineering problems, since the
distribution information of uncertain parameters is usually unknown. Moreover, this approach is
superior to only studying the best- and worst-case scenarios, since the decision-maker is provided
with a set of feasible and robust solutions. The proposed methodology can also address both nonlinear
fractional criteria, which are common in engineering problems, and synergies that arise among the
interventions, thus increasing the practicality of the tool.

Future research could include large-scale simulations in building blocks using extensions of the
proposed model so that more interventions and all their synergies are incorporated. Furthermore,
the robustness of the solutions could be studied given uncertain capital costs and/or uncertain energy
savings. The proposed model could also be applied to other multi-criteria selection problems in which
quantitative and qualitative criteria need to be considered.
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Nomenclature

Acronyms
EPBD Energy Performance in Buildings Directive
EED Energy Efficiency Directive
CFD Computational Fluid Dynamics
MMP Multi-objective Mathematical Programming
LP Linear Programming
MIP Mixed-Integer Programming
PV Photovoltaic
LED Light-emitting diodes
GAMS General Algebraic Modeling System
Problem’s functions
J1 capital cost of the investment
J2 annual energy savings of the investment
J3 payback time of the investment
Problem’s variables
xi intervention selection (binary)
y variable used for reformulation
z variable used for reformulation
Problem’s parameters
i potential interventions
j evaluation criteria
a1,i capital cost of intervention i
a2,i annual savings due to intervention i
Jj,min lower bound of cost Jj
Jj,max upper bound of cost Jj

wj weight of cost Jj
K sufficiently large positive number
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