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Abstract: State of charge (SOC) estimation is becoming increasingly important, along with electric
vehicle (EV) rapid development, while SOC is one of the most significant parameters for the battery
management system, indicating remaining energy and ensuring the safety and reliability of EV.
In this paper, a hybrid wavelet neural network (WNN) model combining the discrete wavelet
transform (DWT) method and adaptive WNN is proposed to estimate the SOC of lithium-ion
batteries. The WNN model is trained by Levenberg-Marquardt (L-M) algorithm, whose inputs are
processed by discrete wavelet decomposition and reconstitution. Compared with back-propagation
neural network (BPNN), L-M based BPNN (LMBPNN), L-M based WNN (LMWNN), DWT with
L-M based BPNN (DWTLMBPNN) and extend Kalman filter (EKF), the proposed intelligent SOC
estimation method is validated and proved to be effective. Under the New European Driving Cycle
(NEDC), the mean absolute error and maximum error can be reduced to 0.59% and 3.13%, respectively.
The characteristics of high accuracy and strong robustness of the proposed method are verified by
comparison study and robustness evaluation results (e.g., measurement noise test and untrained
driving cycle test).

Keywords: wavelet neural network; state of charge; wavelet analysis; discrete wavelet transform;
lithium-ion battery

1. Introduction

The battery management system (BMS) is responsible for monitoring power batteries’ complete
information to guarantee the electric vehicle (EV) performance, because the batteries’ parameters such
as current, voltage, resistance, and temperature are of importance, indicating the safety and normality
of the power system [1]. State of Charge (SOC) has an undoubted critical position for BMS to realize
management functions, and it indicates the remaining energy, whose accuracy is of great significance
for service safety and life of batteries [2,3]. Nevertheless, the limitation on the progress of BMS is
mostly due to SOC unmeasurable and dynamic properties that are similar to the characteristics of the
batteries, which are influenced by various factors [4], such as discharge rate, ambient temperature,
battery degeneration, and external disturbance. Therefore, the study of high accuracy SOC estimation
methods is vitally important using measureable variables, such as current, voltage and temperature.

With the rapid development of EV and the increasing importance of BMS, numbers of estimation
approaches have been proposed to monitor the SOC. The ampere-hour (A·h) integral or Coulomb
counting method [5,6] and open-circuit voltage method [7] are simple to implement, but non-model
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based and open-loop characteristics limit their precision on account of the inaccurate initial SOC
measurement noise and ambient disturbance [8].

Model-based methods are the hot area of recent research, such as the Kalman filter (KF)-class
methods (e.g., the extended Kalman filter (EKF) [9–12], cubature Kalman filter (CKF), and unscented
Kalman filter (UKF) [13,14]), observer based methods (e.g., sliding mode observer (SMO) [15,16],
Luenberger observer [17,18], and multi-time-scale observer [19]) and particle filter (PF) [20,21].
Based on the proposed battery models (e.g., the well-used equivalent circuit model [22,23], the relative
more complex electrochemical model [17,18,24], and the electrical thermal model [11]), model-based
methods have satisfying results in SOC estimation in terms of high accuracy level and robustness
against measurement error, especially the online, model-based SOC estimation methods [12,25].
Nevertheless, there are shortcomings in the application of model-based methods. For instance,
the EKF method is influenced by the initial parameters and has to face large linearization errors [16].
Furthermore, the assumption that the noise is approximate to Gaussian white noise and the statistic
property of measurement noises is known should be satisfied, which is the basement for KF-class
methods. The PF method has the requirement for numbers of particles and matrix operations causing
limitations to its application. As for SMO method, it is hard to obtain the optimal parameters that leads
to the process of SOC estimation complex. Undoubtedly, model-based methods have performed
excellently in current research, but model parameters identification using various optimization
methods is costly and time-consuming. For instance, the second-order equivalent circuit model-based
KF-class methods to estimate SOC should not only identify the resistors and capacitors value but
also ascertain the temperature related relationship between open-circuit voltage (OCV) and SOC.
The charging process is supposedly equally important for batteries that has been studied valuably as
well [26]. Therefore, in the application process, more experiments, such as the hybrid power pulse
characteristics (HPPC) experiment and the experiment to ascertain OCV-SOC relationship, have to be
conducted, which are complex and costly.

Artificial neural networks (ANNs) methods are not based on the detailed knowledge of the
battery model (e.g., the back-propagation neural network (BPNN) [27,28], support vector machine
(SVM) network, radial neural network (RNN) [29,30], and wavelet neural network (WNN) [31,32]).
For ANNs, the SOC estimation problem can be regarded as a nonlinear system identification problem,
and a trained ANN can be described as the model of identified batteries. Therefore, to some extent,
ANN-based SOC estimation methods can avoid the problems of non-model-based methods and can
be more practical than physical model-based methods. Furthermore, along with the fast development
of artificial intelligence and the rapid progress of the driverless car, deeper research on ANN-based
SOC estimation methods is required to correspond to technological development. Nevertheless,
ANN methods have drawbacks as well. The accuracy of training data directly influences the model
approximation effect, and more neurons are needed to increase the approximation ability of complex
system [33]. The large training time of the ANNs-based method is also an unavoidable problem.
WNN is one important branch of ANNs because of its considerable nonlinear function approximation
ability and great robustness, which are in terms of the combination of the wavelet decomposition
property and self-learning ability [34]. The wavelet decomposition process can considerably reduce
the influence of errors, and the mathematics foundation of WNN can minimize the needed number
of neurons.

WNNs can be classified according to the combining method of wavelet decomposition and ANNs.
The hybrid WNN is well studied, which simply connects the computation process of the discrete
wavelet multi-resolution decomposition with the multi-layer perceptron [35–37]. Another kind of
WNN is the multi-resolution analysis (MRA) structure-based neural network, which is a kind of more
tightly bound WNN, but the structure and learning process are limited by MRA theory, which is
not flexible to confirm [38]. Adaptive WNN is developed based on the BPNN, which replaces the
excitation function with wavelet functions [39]. The auto-generating parameters of adaptive WNN
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make the neural network model easy to establish and apply to the estimation method. Little research
studies the combination of the hybrid WNN connecting method and the adaptive WNN.

The field of WNN-based SOC estimation needs more study. Most researches mainly focus on
the denoising ability of discrete wavelet transform (DWT) [40–42]. The hybrid WNN [43] -based
SOC estimation methods; adaptive WNN-based [32] in 2005; and momentum-optimized, adaptive
WNN [31]-based in 2013 SOC estimation methods are discussed, which have good performance facing
the high nonlinear battery system, but the training algorithm is based on the steepest descent method,
and the study of the hybrid WNN using the wavelet multi-resolution decomposition method to
optimized the adaptive WNN is quite limited. The combination is supposed to have high accuracy
estimation ability on SOC.

To solve the above problems, this paper combines the adaptive WNN with the hybrid WNN
and proposes a kind of novel, intelligent SOC estimation method that is expressed as the DWT and
Levenberg-Marquardt (L-M) algorithm-based WNN (DWTLMWNN). The adaptive WNN is trained
by L-M algorithm and, importantly, the input signals are from the data processed by discrete wavelet
decomposition and reconstitution. The SOC, in discharge process under the New European Driving
Cycle (NEDC), is estimated by BPNN, EKF, and the proposed WNN-based methods as a comparison.
Estimation robustness is discussed by the untrained driving cycle test and measurement noise test.

The remaining part of this paper is organized as follows. Section 2 introduces the adaptive WNN
model. The L-M algorithm and DWT optimizing process are presented in Section 3. The experimental
validation of the proposed method and discussion are proposed in the Section 4. In the end, the paper
is summarized in Section 5.

2. Estimation Model Based on WNN

The definition of SOC is commonly defined as the ratio of the remaining capacity to the nominal
capacity and formulated as

SOC(t) = SOC(t0)−
1

Cn

∫ t

t0

i(τ)dτ (1)

in which i(τ) and Cn, respectively, denote the battery current and the nominal capacity of the battery.
The adaptive WNN has good performance for the reason that the parameters of wavelet templates

can be adaptively generated[39]. As shown in Figure 1, there are three layers (input layer, hidden layer,
and output layer) that consist of K, L, and M nodes, respectively. The input data and output data are
presented by xk and om. The weights ωkl and ω

′
lm, the wavelet translation parameter bl , and wavelet

dilation parameter al are the main parameters adjusted corresponding to the learning process. x′l is
defined as the output of the hidden layer, which is formulated as

Energies 2018, 11, x FOR PEER REVIEW  3 of 18 

 

The field of WNN-based SOC estimation needs more study. Most researches mainly focus on 
the denoising ability of discrete wavelet transform (DWT) [40–42]. The hybrid WNN [43] -based SOC 
estimation methods; adaptive WNN-based [32] in 2005; and momentum-optimized, adaptive WNN 
[31]-based in 2013 SOC estimation methods are discussed, which have good performance facing the 
high nonlinear battery system, but the training algorithm is based on the steepest descent method, 
and the study of the hybrid WNN using the wavelet multi-resolution decomposition method to 
optimized the adaptive WNN is quite limited. The combination is supposed to have high accuracy 
estimation ability on SOC. 

To solve the above problems, this paper combines the adaptive WNN with the hybrid WNN and 
proposes a kind of novel, intelligent SOC estimation method that is expressed as the DWT and 
Levenberg-Marquardt (L-M) algorithm-based WNN (DWTLMWNN). The adaptive WNN is trained 
by L-M algorithm and, importantly, the input signals are from the data processed by discrete wavelet 
decomposition and reconstitution. The SOC, in discharge process under the New European Driving 
Cycle (NEDC), is estimated by BPNN, EKF, and the proposed WNN-based methods as a comparison. 
Estimation robustness is discussed by the untrained driving cycle test and measurement noise test. 

The remaining part of this paper is organized as follows. Section 2 introduces the adaptive WNN 
model. The L-M algorithm and DWT optimizing process are presented in Section 3. The experimental 
validation of the proposed method and discussion are proposed in the Section 4. In the end, the paper 
is summarized in Section 5. 

2. Estimation Model Based on WNN 

The definition of SOC is commonly defined as the ratio of the remaining capacity to the nominal 
capacity and formulated as  

0
0

1( ) ( ) ( )
t

t
n

SOC t SOC t i τ dτ
C

  
 

(1)

in which ( )i   and nC , respectively, denote the battery current and the nominal capacity of the 
battery.  

The adaptive WNN has good performance for the reason that the parameters of wavelet 
templates can be adaptively generated[39]. As shown in Figure 1, there are three layers (input layer, 
hidden layer, and output layer) that consist of K, L, and M nodes, respectively. The input data and 

output data are presented by kx  and mo . The weights kl  and 
'
lm , the wavelet translation 

parameter lb , and wavelet dilation parameter la  are the main parameters adjusted corresponding 

to the learning process. 
'
lx  is defined as the output of the hidden layer, which is formulated as 

 

Figure 1. Structure of a three-layer WNN. 

휓(푎 , 푏 )

휓(푎 , 푏 )

휓(푎 , 푏 )

휓(푎 , 푏 )

input hidden outputlayer

푥

… … …푥

푥

푥

표

표

표

표

휔
휔

Σ

Σ

Σ

Σ

Figure 1. Structure of a three-layer WNN.



Energies 2018, 11, 995 4 of 18

x′l = ψal ,bl
(netl) (l = 1, 2, ..., L) (2)

netl =

K
∑

k=1
ωkl xk − bl

al
(l = 1, 2, ..., L) (3)

in which ψ(x) denotes the generating functions, and in this paper ψ(x) is defined as Morlet
wavelet function:

ψ(x) = cos(1.75x) exp(−0.5x2) (4)

The outputs of output layer’s nodes are formulated as

x′′m = net′m =
L

∑
l=1

ω
′
lmx′l (m = 1, 2, ..., M) (5)

Firstly, the process of training WNN is demonstrated basing the steepest descent algorithm as a
basis of following section. The output mean square error is defined as

E =
1
2

M

∑
m=1

(x′′m − om)
2 (6)

The weights and wavelet parameters can be adjusted as follows:

ω∗
kl
= ωkl + ∆ωkl (7)

ω
′
lm
∗ = ω

′
lm + ∆ω

′
lm (8)

a∗
l
= al + ∆al (9)

b∗
l
= bl + ∆bl (10)

in which ∆ωkl , ∆ω
′
lm, ∆al , and ∆bl are calculated as

∆ωkl = −η
∂E

∂ωkl
= −η

∂E
∂netl

∂netl
∂ωkl

= −η
∂E
∂x′l

∂x′l
∂netl

∂netl
∂ωkl

(11)

∆ω
′
lm = −η

∂E
∂ω

′
lm

= −η
∂E

∂net′m

∂net′m
∂ω

′
lm

(12)

∆al = −η
∂E
∂al

= −η
∂E

∂netl

∂netl
∂al

= −η
∂E
∂x′l

∂x′l
∂netl

∂netl
∂al

(13)

∆bl = −η
∂E
∂bl

= −η
∂E

∂netl

∂netl
∂bl

= −η
∂E
∂x′l

∂x′l
∂netl

∂netl
∂bl

(14)

in which we have

− ∂E
∂x′l

=
M

∑
m=1

(x′′m − om)ω
′
lm (15)

∂x′l
∂netl

= ψ(1)(netl) (16)

∂netl
∂ωkl

=
xk
al

(17)



Energies 2018, 11, 995 5 of 18

∂netl
∂al

= −

K
∑

k=1
ωkl xk − bl

a2
l

(18)

∂netl
∂bl

= − 1
al

(19)

− ∂E
∂net′m

= (x′′m − om) (20)

∂net′m
∂ω

′
lm

= x′l (21)

in which ψ(1)(x) denotes the first derivatives of ψ(x). Substitute Equations (15)–(21) into
Equations (11)–(14):

∆ωkl = η
M

∑
m=1

(x′′m − om)ω
′
lm · ψ

(1)(netl)
xk
al

(22)

∆al = η
M

∑
m=1

(x′′m − om)ω
′
lm · ψ

(1)(netl) · (−

K
∑

k=1
ωkl xk − bl

a2
l

) (23)

∆bl = η
M

∑
m=1

(x′′m − om)ω
′
lm · ψ

(1)(netl) · (−
1
al
) (24)

∆ω
′
lm = η(x′′m − om) · x′l ; (25)

Furthermore, Equations (22)–(25) can be rewritten as

∆ωkl = η
M

∑
m=1

δ
′
mω

′
lm · ψ

(1)(netl)
xk
al

= ηδl xk (26)

∆al = η
M

∑
m=1

δ
′
mω

′
lm · ψ

(1)(netl) · (−

K
∑

k=1
ωkl xk − bl

a2
l

) = ηδl · (−

K
∑

k=1
ωkl xk − bl

al
) = −ηδlnetl (27)

∆bl = η
M

∑
m=1

δ
′
mω

′
lm · ψ

(1)(netl) · (−
1
al
) = −ηδl (28)

∆ω
′
lm = ηδ

′
mx′l (29)

in which δ
′
m and δl are defined as equivalent errors:

δ
′
m = (x′′m − om) (30)

δl =
M

∑
m=1

δ
′
mω

′
lm · ψ

(1)(netl) ·
1
al

(31)

Modifying the WNN for the process of SOC estimation, the number of output nodes is set to 1.

3. L-M Algorithm and Discrete Wavelet Transform

3.1. L-M Algorithm

L-M algorithm is an outstanding optimization method, which combines the characteristic of
Gauss-Newton’s method and the steepest descent algorithm [44]. On account of the considerable
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performance in much research [45–47], it is chosen as the learning algorithm of the WNN. The total
mean square error of P sets of training data is defined as

V(h) =
1
2

P

∑
p=1

e2
p (32)

L-M algorithm is formulated as

∆h =
[

JT(h)J(h) + µI
]−1

JT(h)
→

e(h) (33)

in which the Jacobian matrix J(h) is

J(h) =


∂e1(h)

∂h1

∂e1(h)
∂h2

· · · ∂e1(h)
∂hI

∂e2(h)
∂h1

∂e2(h)
∂h2

· · · ∂e2(h)
∂hI

...
...

. . .
...

∂eP(h)
∂h1

∂eP(h)
∂h2

· · · ∂eP(h)
∂hI

 (34)

and →
e(h) = [e1, e2, · · · eP]

T (35)

ep = x′′ − o (p = 1, 2, ..., P) (36)

∇V(h) = JT(h)
→

e(h) (37)

h = [ω11, ω12, · · · , ω1L, ω21, ω22, · · · , ω2L, · · · , ω
′
11, ω

′
21, · · · , ω

′
L1, a1, a2, · · · aL, b1, b2, · · · bL]

T (38)

with hi (i = 1, 2, . . . , I) representing the i-th term of parameters that need to be updated. The partial
derivatives in J(h) are calculated similar to the steepest descent algorithm, but one modification at the
output layer should be conducted. The equivalent error δ

′
m in Equation (30) should be replaced by

∆′ = 1 (39)

In each iteration process, the L-M learning algorithm proceeds as follows:

a. Calculate the forward propagation outputs using Equations (2)–(5);
b. Calculate equivalent errors of each layer using Equation (39) and

∆l =
M

∑
m=1

∆′ω′lm · ψ
(1)(netl) ·

1
al

= ∆′ω′l1ψ(1)(netl) ·
1
al

= ω
′
l1ψ(1)(netl) ·

1
al

(40)

c. Calculate the Jacobian matrix using Equation (34) with:

∂e
∂ω

′
lm

= −∆′ x′l = −x′l (41)

∂e
∂ωkl

= −∆l xk (42)

∂e
∂al

= ∆lnetl (43)

∂e
∂bl

= ∆l (44)
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d. Update the parameters using Equation (33) and Equations (7)–(10).
e. The parameter µ in Equation (33), which decides the result closer to Gauss-Newton algorithm or

the steepest descent algorithm, is multiplied by factor β when V(h)increases in present iteration;
then, turn back to step d. Otherwise, it is divided by β when V(h) is decreased in present
iteration; then, turn to the next iteration process until the maximum iteration. In Section 4.3,
µ = 0.01 is selected as the initial value with β = 10.

3.2. Discrete Wavelet Transform

For a nonstationary signal, wavelet analysis is more effective than the Fourier analysis on account
of the good localization in time and frequency domains [48]. This paper preprocesses the input data
using DWT and inverse discrete wavelet transform (IDWT). In terms of MRA, the reconstitution data
of the approximate and detail signals are regarded as the inputs of the WNN.

The DWT of an original time series signal x(t), according to the wavelet analysis theory proposed
by Percival and Walden in 2000, is defined as below [49]

DWT(j, k) =
∞∫
−∞

x(t)ψ∗j,k(t)dt (45)

with ψj,k(t) = a−j/2
0 ψ(a−j

0 t− b0k) and where ψ(t) denotes the mother wavelet, ψ∗ indicates the complex
conjugate of mother wavelet, and a0, b0 are constants. Dilation parameter j and translation k(j, k ∈ R)
are two scaling parameters that determine the oscillatory frequency and shifted position, respectively.
In practice, a0 and b0 are usually set as 2 and 1, respectively:

DWT(j, k) =
∞∫
−∞

x(t)ψ∗j,k(t)dt (46)

with ψj,k(t) = 2−j/2ψ(2−jt− k).
MRA provides a fast implementation method of DWT, which has good approximations of

low-frequency components and good resolution of the details at high frequencies. Based on low- and
high-pass filters, an original signal x(t) can be expressed as the J-level DWT representation as
Equation (47) [50]:

x(t) =
2N−J−1

∑
k=0

aJ,k2−
j
2 φ(2−jt− k) +

J

∑
j=1

2N−j−1

∑
k=0

dj,k2−
j
2 ψ(2−jt− k) (47)

where J(J ≤ N) is the number of decomposition levels with maximum decomposition level N and
φ(t) denotes the scaling function. The original signal x(t) can be separated into lower resolution
components that are described by approximate coefficients aj,k and detailed coefficients dj,k through
a serious of decomposition processes based on high- and low-pass filters and down-sampling.
The inverse process can well reconstruct the decomposed signal by IDWT, which uses up-sampling
and synthesis filter bank.

The DWT-based decomposition and reconstruction processes are shown in Figure 2,
which describes the DWT-WNN-based SOC estimation methods as well. The input signals x(n),
such as U(n), I(n), are decomposed into approximation (A1 − A3) and detail (D1 − D3) components,
and the reconstructed components x(n)A3

, x(n)D1
,x(n)D2

, and x(n)D3
are alternative as the inputs

of WNN.
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4. Experiments and Discussion

4.1. Test Bench

Figure 3 shows the test bench, which includes Arbin BT-5HC (Arbin, College Station, TX,
USA) battery test equipment, a constant temperature and humidity chamber, tested Samsung
ICR-18650-22P lithium-ion batteries (Samsung, Seoul, South Korea), and a host computer with
MATLAB (R2016b, MathWorks, Natick, MA, USA) installed. The test chamber (Sanwood, Dongguan,
China) controls the temperature and humidity environment of tested batteries. The battery test
equipment has a voltage range of 5 V, four current ranges of 0.02 A, 0.5 A, 5 A, and 30 A,
and measurement accuracy of current and voltage of ±0.02% full scale range. The battery test
equipment controls the charge and discharge process and transmits the experimental data to the host
computer in which the MATLAB is used to conduct the estimation process and analyze the experiment
results. The tested batteries have a nominal capacity of 2150 mA, maximum continuous discharging
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current of 10 A, a nominal voltage of 3.7 V, charging end voltage of 4.2 V, and discharging cut-off
voltage of 2.75 V. The set ambient temperature is fixed at 25 ◦C.
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4.2. Data Acquisition

In this paper, based on the experiment directed by the systems analysis tool ADVISOR [51] for
EV, NEDC, UDDS (Urban Dynamometer Driving Schedule), and UKBC (the United Kingdom Bus
Cycle), three driving cycles are tested, which are shown in Figure 4. The current, voltage, and SOC
values are mainly collected in the experiment, and the data under NEDC driving cycle are used as the
training data, and the data under the other two cycles are used for discussion sections. The batteries
are discharged from 98% to 2% with the battery’s surface temperature in the range from 25.42 ◦C to
26.48 ◦C, whose average value is 25.94 ◦C.Energies 2018, 11, x FOR PEER REVIEW  10 of 18 

 

 

Figure 4. Current profiles and zoom figure of (a,b) NEDC, (c,d) UDDS, and (e,f) UKBC. 

4.3. Method Validation and Comparison Study 

In this paper, in order to validate the performance of DWTLMWNN, other SOC estimation 
methods based on BPNN, L-M-based BPNN (LMBPNN), L-M based WNN (LMWNN), DWT-based 
LMBPNN (DWTLMBPNN), and EKF are used to make a comparative study. The estimation process 
of DWT-based WNN is as shown in Figure 1. In order to denoise and keep most useful information, 
based on a preliminary experiment, the input data of the WNN is set as the reconstructed components 

3
( )Ax n  and 1

( )Dx n  of the current and voltage, respectively. The DWT and IDWT processes are 
conducted in three decomposition levels using the Daubechies basis of order 5 (dB5). The training 
reconstructed components are normalized into the range of [–1, 1], which are transformed using the 
following formula: 

2
2( )

'

max min
mid

mid

max min

x + x
x

x x
x

x x






  

(48)

in which maxx  and minx , respectively, denote the maximum value and minimum value of original 
input variables, and x and x′, respectively, denote original input variable and normalized input 
variable. 

On account of random selection of the initial WNN parameters, the estimation result may 
possess small fluctuations in the same conditions. The results shown in this paper are the moderate 
and effective ones. The number of nodes in hidden layer is selected as 10. 

As shown in Figure 5 and Table 1, BPNN, LMBPNN, LMWNN, DWTLMBPNN, DWTLMWNN, 
and EKF are validated under the NEDC. The ANN-based methods in the experiments have the same 
training data, number of hidden layer nodes, and working environment. The comparative EKF SOC 
estimation method is based on the second-order equivalent circuit model. The identified parameters 
and tuning parameters are shown in Table 2. To make the comparison more reasonable, the initial 
state is set as [1;0;0], while the initial SOC is supposed to be 100%. Thus, the covariance of observation 
noise Qk is selected to be not very small as a balance. 

According to Figure 5b–d, the application of L-M algorithm and DWT method makes effective 
improvement on the SOC estimation accuracy. Based on the exact values in Table 1, it is found that 
L-M algorithm reduces the mean absolute error considerably and greatly improves the 
approximation ability according to the values of the correlation coefficient R but cannot reduce the 
maximum error to a desired level. DWT method can well reduce the maximum error of SOC 
estimation. Compared with model-based EKF estimation methods and BPNN-based estimation 

(e)(a) (c)

(f)(b) (d)

Figure 4. Current profiles and zoom figure of (a,b) NEDC, (c,d) UDDS, and (e,f) UKBC.



Energies 2018, 11, 995 10 of 18

4.3. Method Validation and Comparison Study

In this paper, in order to validate the performance of DWTLMWNN, other SOC estimation
methods based on BPNN, L-M-based BPNN (LMBPNN), L-M based WNN (LMWNN), DWT-based
LMBPNN (DWTLMBPNN), and EKF are used to make a comparative study. The estimation process
of DWT-based WNN is as shown in Figure 1. In order to denoise and keep most useful information,
based on a preliminary experiment, the input data of the WNN is set as the reconstructed components
x(n)A3

and x(n)D1
of the current and voltage, respectively. The DWT and IDWT processes are

conducted in three decomposition levels using the Daubechies basis of order 5 (dB5). The training
reconstructed components are normalized into the range of [–1, 1], which are transformed using the
following formula:

xmid = xmax+xmin
2

x′ = 2(x−xmid)
xmax−xmin

(48)

in which xmax and xmin, respectively, denote the maximum value and minimum value of original input
variables, and x and x′, respectively, denote original input variable and normalized input variable.

On account of random selection of the initial WNN parameters, the estimation result may possess
small fluctuations in the same conditions. The results shown in this paper are the moderate and
effective ones. The number of nodes in hidden layer is selected as 10.

As shown in Figure 5 and Table 1, BPNN, LMBPNN, LMWNN, DWTLMBPNN, DWTLMWNN,
and EKF are validated under the NEDC. The ANN-based methods in the experiments have the same
training data, number of hidden layer nodes, and working environment. The comparative EKF SOC
estimation method is based on the second-order equivalent circuit model. The identified parameters
and tuning parameters are shown in Table 2. To make the comparison more reasonable, the initial state
is set as [1;0;0], while the initial SOC is supposed to be 100%. Thus, the covariance of observation noise
Qk is selected to be not very small as a balance.

According to Figure 5b–d, the application of L-M algorithm and DWT method makes effective
improvement on the SOC estimation accuracy. Based on the exact values in Table 1, it is found that
L-M algorithm reduces the mean absolute error considerably and greatly improves the approximation
ability according to the values of the correlation coefficient R but cannot reduce the maximum error to
a desired level. DWT method can well reduce the maximum error of SOC estimation. Compared with
model-based EKF estimation methods and BPNN-based estimation methods, WNN-based methods
have the characteristics of low mean absolute error (e.g., only the mean absolute errors of LMWNN and
DWTLMWNN below 1.00%), and the proposed method can solve the high maximum error problem
(e.g., the maximum error is reduced more than 5% compared with LMWNN method). Furthermore,
according to the results that DWT method reduces the mean absolute error and maximum error of
LMBPNN by 0.03% and 1.74%, respectively, but of LMWNN by 0.23% and 5.23%, respectively, it is
found that the estimation accuracy improvement using the combination of DWT method and adaptive
WNN method is more considerable, which indicates the superiority of the proposed combination
method. Figure 6 shows the error histogram of EKF, DWTLMBPNN, and DWTLMWNN, which
directly supports that the DWTLMWNN SOC estimation method has advantage of estimation accuracy.
Although the training time of ANN-based method is larger than the EKF based method unavoidably
according to Table 1, the estimation time of ANN-based method is satisfying, which means the
feasibility of actual SOC estimation application.
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Figure 6. SOC estimation error histogram using DWTLMBPNN, EKF, and DWTLMWNN under
the NEDC.

Table 1. Mean and maximum SOC error of BPNN, LMBPNN, LMWNN, DWTLMBPNN, DWTLMWNN,
and EKF.

Methods BPNN LMBPNN LMWNN DWT
LMBPNN

DWT
LMWNN EKF

Mean absolute error 3.22% 1.69% 0.82% 1.65% 0.59% 1.71%
Maximum error 14.84% 8.28% 8.36% 6.54% 3.13% 5.17%

R 0.94937 0.99748 0.99962 0.99716 0.99967 0.97871
Estimation time 0.0772 s 0.0947 s 0.1362 s 0.2328 s 0.2461 s 0.3276 s

Training time 12.8785 s 6.0839 s 13.6264 s 6.2151 s 13.7539 s -
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Table 2. Identified parameters and tuning parameters of the comparative EKF estimation method.

Parameters R0 R1 R2 C1 C2

Values 0.0377 Ω 0.0242 Ω 0.0030 Ω 1.6733 × 103 F 1.7823 × 105 F

Parameters Rk Qk P0

Values 0.01 diag (0.001,0.0001,0.0001) diag (0.01,0.01,0.01)

4.4. Robustness Evaluation

Influenced by electromagnetic interference or low precision sensors, the measured input data
may not be that accurate. Therefore, noises are simulated as bias noises and random noises added
to current and voltage to evaluate the robustness of proposed method. Moreover, different driving
cycles have different charge and discharge forms. Therefore, tests on untrained driving cycle for the
proposed method should be conducted.

4.4.1. Measurement Noise Test

As shown in Figure 7, the absolute values of positive and negative bias noises added to current
and voltage are, respectively, 0.1 A and 0.01 V. The amplitudes of random noises are, respectively,
0.1 A and 0.01 V or 0.2 A and 0.02 V. According to Table 3, compared with EKF SOC estimation
method, the DWTLMWNN SOC estimation method has great robustness against noises, especially
against large random noises. Besides, the DWTLMWNN method is more stable than the EKF method
for the reason that the mean absolute errors and maximum errors of different noise types for the
DWTLMWNN method have much less variation, whose mean absolute errors range from 0.66% to
1.16% and maximum errors range from 3.62% to 5.12%, than for the EKF method, whose mean absolute
errors range from 1.13% to 3.99% and maximum errors range from 3.32% to 11.44%. The results
indicate that the DWTLMWNN method has a good performance against measurement noise and is
more stable and accurate than the EKF SOC estimation method.
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Figure 7. SOC estimation with measurement noises under the NEDC.

Table 3. Mean and maximum SOC error with measurement noise under the NEDC.

Noise Type DWTLMWNN (Mean/Max) EKF (Mean/Max)

0.01 V/0.1 A bias noises 1.02%/4.09% 1.13%/3.32%
−0.01 V/−0.1 A bias noises 0.97%/5.12% 3.90%/6.97%
0.01 V/0.1 A random noises 0.66%/3.62% 2.05%/5.71%
0.02 V/0.2 A random noises 0.78%/4.09% 3.61%/11.44%

0.01 V/0.1 A random and 0.01 V/0.1 A bias noises 1.16%/4.46% 1.14%/4.74%
0.01 V/0.1 A random and −0.01 V/−0.1 A bias noises 0.92%/4.50% 3.99%/9.13%
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4.4.2. Untrained Driving Cycle Test

In this section, the DWTLMWNN is trained by the data collected under the NEDC and UDDS,
and then validated under the UKBC. As shown in Figure 8 and in Table 4, for the trained driving
cycles and the untrained driving cycle, the DWTLMWNN SOC estimation method has good estimation
performance in terms of the low mean absolute errors and maximum errors. Although the results
show that the accuracy of SOC estimation under the NEDC reduces, the overall estimation results are
ensured to a satisfying level. Compared with the EKF method, the DWTLMWNN SOC estimation
method has a more reliable performance for the unexpected conditions.
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Figure 8. SOC estimation and SOC error under: (a–1,a–2) NEDC (trained), (b–1,b–2) UDDS (trained),
and (c–1,c–2) UKBC (untrained).

Table 4. Mean and maximum SOC error of DWTLMWNN and EKF under NEDC, UDDS, and UKBC.

Driving Cycles NEDC (Mean/Max) UDDS (Mean/Max) UKBC (Mean/Max)

DWTLMWNN 0.72%/3.95% 0.71%/4.50% 0.92%/3.83%
EKF 1.71%/5.17% 2.06%/4.61% 2.43%/7.68%

5. Conclusions

In this paper, DWTLMWNN, as a hybrid WNN model combining DWT method and adaptive
WNN, is proposed to estimate the SOC of lithium-ion batteries. Comparing with BPNN, LMBPNN,
LMWNN, DWTLMBPNN, and EKF, the proposed intelligent SOC estimation method is validated
and proved to be more effective. The characteristics of high accuracy and strong robustness of the
proposed method are verified by a comparison study and robustness evaluation results.

It is found that the proposed analyzed method can solve the high maximum error problem of the
BPNN- or WNN-based methods (e.g., the maximum error of DWTLMWNN is reduced to 3.13% under
the NEDC). Furthermore, the mean absolute error and maximum error are ensured in a satisfying level
even if there is large measurement noise (e.g., 0.2 A/0.02 V random noises) or under untrained driving
cycles. Therefore, the proposed method is suitable and of great significance for SOC estimation.

Future work may focus on verifying the proposed method using a high-rate load condition,
and the robustness test on packet loss will be considered. Other learning algorithms of neural networks
such as the Bayesian regularization method and scaled conjugate gradient will also be employed
tentatively in the future. Additionally, the influence of temperature on the proposed method will
be studied.
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Nomenclature

Acronyms
A Ampere
A·h Ampere-hour
ANNs Artificial neural networks
BMS Battery management system
BPNN Back-propagation neural network
CKF Cubature Kalman Filter
DWT Discrete wavelet transform

DWTLMBPNN
Discrete wavelet transform and Levenberg-Marquardt algorithm-based
back-propagation neural network

DWTLMWNN
Discrete wavelet transform and Levenberg-Marquardt algorithm-based wavelet neural
network

EKF Extend Kalman filter
EV Electric vehicle
HPPC The hybrid power pulse characteristics
IDWT Inverse discrete wavelet transform
KF Kalman filter
L-M Levenberg-Marquardt
LMBPNN Levenberg-Marquardt based back-propagation neural network
LMWNN Levenberg-Marquardt based three-layer wavelet neural network
MATLAB Matrix Laboratory
MRA Multi-resolution analysis
NEDC New European Driving Cycle
OCV Open-circuit voltage
PF Particle filter
RNN Radial neural network
SMO Sliding mode observer
SOC State of charge
SVM Support vector machine
UDDS Urban Dynamometer Driving Schedule
UKBC the United Kingdom Bus Cycle
UKF Unscented Kalman filter
V Volt
WNN Wavelet neural network
Symbols
a Wavelet dilation parameter
A1 − A3 Approximation components of different levels
b Wavelet translation parameter
C1, C2 Capacitance values of second-order equivalent circuit model
Cn The nominal capacity of the battery [F]
D1 − D3 Detail components of different levels
→
e Error column vector
E The output mean square error
h Parameters which need to be updated
i/I Current [A]



Energies 2018, 11, 995 15 of 18

J Number of decomposition level
J(h) Jacobian matrix
K, L or M Total number of the nodes in input layer, hidden layer, or output layer
net Weighted sum value of a node
N Maximum decomposition level
o Output data of the neural network
P The number of total input sets
P0 Predicted covariance
Qk Covariance of observation noise
R The correlation coefficient
R0, R1, R2 Resistance values of second-order equivalent circuit model
Rk Covariance of process noise
t Time [s]
t0 Initial time [s]
U Cell voltage or cell potential [V]
V The total output mean square error
x Input data of the neural network
x′ Output data of the hidden layer
x(t) The original signal
β,µ Tuning parameters of Levenberg-Marquardt algorithm
δ Equivalent error in the steepest descent algorithm
∆ Equivalent error in the Levenberg-Marquardt algorithm
ψ(t) Mother wavelet function
φ(t) Scaling function
ω Weight of neural networks between input and hidden layer
ω′ Weight of neural networks between hidden and output layer
Subscript
min Minimum value
max Maximum value
k, l or m Number of the nodes in input layer, hidden layer, or output layer
j, k in DWT Dilation parameter and translation parameter
Superscript
′ Values of hidden layer related to output layer
′′ Values of output layer
∗ Updated value or complex conjugate
(1) First derivative
Abbreviations
mean Mean absolute error
max Maximum absolute error
maximum error Maximum absolute error
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