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Abstract: The tri-reforming process was employed for syngas production from biogas at elevated
pressures in this study. In the tri-reforming process, air and water were added simultaneously as
reactants in addition to the main biogas components. The effects of various operating parameters
such as pressure, temperature and reactant composition on the reaction performance were studied
numerically. From the simulated results, it was found that methane and carbon dioxide conversions
can be enhanced and a higher hydrogen/carbon monoxide ratio can be obtained by increasing the
amount of air. However, a decreased hydrogen yield could result due to the reverse water–gas shift
reaction. A higher level of methane conversion and hydrogen/carbon monoxide ratio can be obtained
with increased water addition. However, negative carbon dioxide conversion could result due to
the water–gas shift and reverse carbon dioxide methanation reactions. The dry reforming reaction
resulting in positive carbon dioxide conversion can only be found at a high reaction temperature.
For all cases studied, low or negative carbon dioxide conversion was found because of carbon
dioxide production from methane oxidation, water–gas shift, and reverse carbon dioxide methanation
reactions. It was found that carbon dioxide conversion can be enhanced in the tri-reforming process
by a small amount of added water. It was also found that first-law efficiency increased with increased
reaction temperature because of higher hydrogen and carbon monoxide yields. Second-law efficiency
was found to decrease with increased temperature because of higher exergy destruction due to a
more complete chemical reaction at high temperatures.

Keywords: biogas; tri-reforming process; syngas; methane and carbon dioxide conversion;
hydrogen/carbon monoxide ratio; first-law/second-law efficiency

1. Introduction

The efficient production of syngas (a mixture of hydrogen and carbon monoxide) is gaining
significant attention worldwide as it is a versatile feedstock that can be used to produce a variety of
fuels and chemicals, such as methanol, Fischer–Tropsch fuels, H2, and dimethyl ether (DME) [1]. Using
CH4 as the primary material, syngas can be produced from steam reforming (SR), partial oxidation
(POX), autothermal reforming (ATR), and dry reforming (DR). The tri-reforming (TR) process for
syngas production from CH4 has received growing attention because of its technical simplicity and
flexible operation [2–5]. In the TR process, the syngas is produced by combining SR, DR, and POX
in a single step. The TR process was proposed originally for syngas production from power plant
flue gas [6,7]. There are several advantages for syngas production from the TR process. As CO2 is
one of the reactants, there is no need for CO2 separation from the flue gas [6,7]. The H2/CO ratio in
syngas can be altered by adjusting the relative amounts of the reactants. In addition, the presence of
H2O and O2 in the feedstock helps to mitigate carbon deposition, and catalyst deactivation can be
prevented [8,9].
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As fossil energy resources reduce sharply and environmental pollution becomes more serious,
searching for new materials for syngas production plays an important role in future energy
development [10–12]. Biogas is receiving much attention because of its considerable economic and
environmental benefits [13]. The biogas composition is related to the starting substrate, but is basically
composed of CH4 and CO2 with the volume ratio of 2 [14–16]. Both CH4 and CO2 are regarded as
major greenhouse gases (GHGs), which pose a serious threat to the global climate and environment.
Using biogas for syngas production, both CH4 and CO2 emissions into the atmosphere can be reduced.
Because of its potential for reducing global warming, further understanding of syngas production
from biogas is essential. Moreover, syngas can also be used for H2 production. In this case, H2 can
be enriched via the water–gas shift reaction using syngas and H2O as feedstock. Among the various
alternative energy forms, hydrogen is considered an important energy carrier in the future [17]. It is
also an important raw material in the chemical industry and can be used as a fuel in fuel cells to
produce electrical energy. For reasons of sustainability, the use of renewable fuel sources such as biogas
or biomass for hydrogen production has received considerable attention [18–20].

Several studies have reported on syngas production from biogas via the TR process experimentally.
In the study of Vita et al. [21], tri-reforming simulated biogas over a Ni/ceria based catalysts was
carried out and the H2O/CH4 and O2/CH4 molar ratios, reaction temperature, and nickel content
effects on the catalyst’s performance were studied. They found that the H2/CO ratio could be flexibly
adjusted using added amounts of oxygen and steam in order to meet the requirements of downstream
processes. In the study of Lau et al. [22], biogas was used as the fuel source in dry reforming and
combined dry/oxidative reforming reactions. The gas stream temperature and reactor space velocity
effects were examined experimentally. Their results indicated that an increase in the O2/CH4 ratio at
low temperature promotes hydrogen production. In dry/oxidative reforming, they found that biogas
dry reforming is dominant and the overall reaction is net endothermic when the reaction temperature
is higher than 600 ◦C. In the study of Zhu et al. [23], biogas reforming with added O2 through a
spark-shade plasma was conducted under an O2/ CH4 ratio of 0.60 and CO2/CH4 ratios ranging from
0.17 to 1.00. Their results indicated that O2 and CH4 conversions decreased when the CO2/CH4 ratio
was increased. They also reported that the partial oxidation of methane contributed mostly to CH4

conversion and the reverse water–gas shift (WGS) reaction dominated in CO2 conversion.
In addition to experimental work, several numerical TR process models using biogas as the

feedstock have also been reported in the literature. In the study of Corigliano and Fragiacomo [24],
biogas dry reforming analysis under various operating conditions was carried out using a numerical
model. The CO2/CH4 ratio, pressure and temperature effects on reaction performance were reported.
In the study of Hernández and Martín [25], a process based on mass and energy balances, chemical
and phase equilibria, and rules of thumb was developed to optimize the production of methanol
using biogas as the raw material. Based on the production cost and carbon footprint, the optimized
CH4/CO2 ratio contained in the biogas was found. In the study of Hajjaji et al. [26], a H2 production
system via biogas reforming was investigated using life-cycle assessment (LCA). They found that
the total GHG emissions from the system were about half of the life-cycle GHG of conventional H2

production systems via steam methane reforming. In the study of Zhang et al. [27], the effects of
various factors including reaction temperature, reactor pressure and CH4 flow rate on the syngas
compositions obtained from the TR process were investigated numerically. An optimum operating
condition for syngas production with a target ratio and maximized CO2 conversion were obtained.

In this work, the TR process is employed for syngas production using biogas as the feedstock. The
effects of various operating conditions such as pressure, temperature, biogas composition, air addition,
and H2O additions are investigated. The novelty of this paper is the focus on CO2 conversion in the
TR process, which is seldom reported in the literature. Air is used as the added reactant in this study
instead of pure oxygen in the conventional TR process.
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2. Modeling

2.1. Chemical Reaction

The following reactions are coupled and carried out in a single reactor in the TR porcess:

Steam reforming (SR):

CH4 + H2O↔ CO + 3H2, ∆H0
298K = +206 kJ/mole (1)

Dry reforming (DR):

CH4 + CO2 ↔ 2CO + 2H2, ∆H0
298K = +247 kJ/mole (2)

Partial oxidation (POX):

CH4 + 0.5O2 ↔ CO + 2H2, ∆H0
298K = −36 kJ/mole (3)

As shown in Equations (1)–(3), the TR process combines the endothermic SR and DR reactions
and the exothermic POX reaction. The heat released from POX is used as the heat supply for SR
and DR and makes the TR process energy efficient [28]. As noted by Cho et al. [29], the chemical
reactions involved in the TR process can be alternatively described using Equation (1) along with the
following reactions:

Reverse CO2 methanation (RCM):

CH4 + 2H2O↔ CO2 + 4H2, ∆H0
298K = +165 kJ/mole (4)

Water-gas shift (WGS):

CO + H2O↔ CO2 + H2, ∆H0
298K = −41 kJ/mole (5)

Complete oxidation of methane (COM):

CH4 + 2O2 ↔ CO2 + 2H2O, ∆H0
298K = −803 kJ/mole (6)

Note that with the chemical reactions described in Equations (1) and (4)–(6), the TR process
becomes the well-known catalytic partial oxidation of methane (CPOM). In the literature, there are
many studies devoted to the analysis of kinetic mechanisms for CPOM [30,31]. Similar to other
reforming process of CH4, many reactions are likely to occur in the TR process. In addition to the study
of Cho et al. [29], studies of De Groote and Froment [32], Scognamiglio et al. [33], Chan and Wang [34],
and Izquierdo et al. [35] also reported that the reaction mechanism of CPOM is indirect in which the
process can be described by combining reactions of methane oxidation, methane–steam reforming,
and water–gas shift. According to these studies, reactions such as CO oxidation, H2 oxidation, and the
Boudouard reaction were not included.

Equations (1), (4) and (5) are the reactions involved in the conventional SR reaction. In this study,
syngas under high pressure is of interest for further fuel synthesis. The kinetic model for the SR
reaction over a nickel catalyst given by Xu and Froment [36] is adopted,

SR:

r1 =
k1

p2.5
H2

[
pCH4

pH2O −
p3

H2
pCO

Keq,1

]
/DEN2 (7)

WGS:

r2 =
k2

pH2

[
pCOpH2O −

pH2
pCO2

Keq,2

]
/DEN2 (8)
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RCM:

r3 =
k3

p3.5
H2

[
pCH4

p2
H2O −

p4
H2

pCO2

Keq,3

]
/DEN2 (9)

DEN = 1 + KCH4 pCH4
+ KCOpCO + KH2 pH2

+
KH2OpH2O

pH2

(10)

For COM, the kinetic model of Trimm and Lam [37] is adopted in this study,

COM:

r4 =
k4apCH4

pO2

(1 + KC
CH4

pCH4
+ KC

O2
pO2

)
2 +

k4bpCH4
pO2

(1 + KC
CH4

pCH4
+ KC

O2
pO2

)
(11)

Equation (11) was derived over Pt-based catalyst support, while the model adsorption parameters
are adjusted for a Ni-based catalyst [38]. In Equations (7)–(11), ri is the reaction rate for SR (i = 1),
WGS (i = 2), RCM (i = 3), and COM (i = 4); Keq,i and ki are the chemical equilibrium constant and
rate constant for reaction i (i = 1,2,3,4); pj (j = CH4, CO2, H2O, H2, and CO) is the partial pressure

of species j; and Kj and KC
j are the adsorption constants of species j. All of these kinetic parameters

are given in the Arrhenius function type and are functions of temperature, and can be found in the
literature [36,37]. It is noted that catalyst deactivation due to the thermal effect and carbon deposition
is neglected in this study [39]. For a reforming reaction involving CH4, carbon formation is inevitable.
The carbon deposition on the catalyst surface is one of the reasons that causes catalyst deactivation.
In the tri-reforming process, the appearances of O2 and H2O may suppress carbon formation [40,41].
Therefore, catalyst deactivation due to carbon deposition on the catalyst surface is neglected in
this study.

2.2. Process Simulation

In this study, Aspen Plus (v.10) is employed to carry out the TR process using biogas as the
feedstock. The flow process is depicted in Figure 1. The simulation is performed for a steady state.
The biogas stream is assumed to be purely composed of CH4 and CO2 with the designated molar
ratio. The air stream is composed of 21% O2, 78% N2, and 1% H2. The purpose of H2 addition is to
avoid the singularity in chemical reaction rate computation. A 1% H2 addition is determined through
sensitivity analysis [42,43]. In order to produce high-pressure syngas for future use in fuel synthesis,
two compressors (COM-1 and COM-2) are used to increase the biogas and air pressures. In the H2O
stream, a pump is used to increase the water pressure and it is then superheated in a boiler with heat
supplied from the high-temperature product stream. After mixing in a mixer, the reactant mixture
(TRI) is heated to a certain temperature before entering the insulated Rplug reactor (TR). The gas
mixture from the reactor (TRO) is sent to the boiler where the heat is recovered for superheating the
water. The TR process performance is characterized using the following dimensionless groups,

CH4 and CO2 conversions:

Xi =
ni,in − ni,out

ni,in
× 100%, i = CH4, CO2 (12)

H2 yield:

YH2 =
nH2,out − nH2,in

nCH4,in
(13)

CO yield:

YCO =
nCO,out − nCO,in

nCH4, in
(14)

H2/CO ratio:

H2/CO =
YH2

YCO
(15)
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where ni,in is the molar flow rate of the i-th species supplied to the process; and ni,out is the molar
flow rate of the i-th species at reactor outlet. Based on these definitions, CH4 conversion is the ratio of
the CH4 consumption rate to the fed CH4 flow rate at the reactor inlet. Similarly, CO2 conversion is
the ratio of the CO2 consumption rate to the fed CO2 flow rate at the reactor inlet. The H2 and CO
yields are defined as the net increased amounts of H2 and CO from the reaction per fed CH4 flow
rate. The H2/CO ratio is defined as the ratio of H2 yield to CO yield. Note that all these variables
are dimensionless.
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Figure 1. Tri-reform process for syngas production using biogas as feedstock.

In addition to the reactant conversion and product yield, energy and exergy analyses based on the
resulting product stream flowing out of the TR reactor are also carried out. For the chemical reaction,
there are several ways to define the first- and second-law efficiencies [44,45]. Since the objective of the
TR process is to convert biogas into syngas, and noting that CO2 has zero low heating value (LHV),
the first-law efficiency is then defined as,

ηI =
nCO,outLHVCO + nH2,outLHVH2

nCH4,inLHVCH4 + Wcomp + Wpump + Qheat
× 100% (16)

where Wi (i = comp, pump) and Qheat are the input work and heat input, respectively. The main heat
input occurs at the heater at which the mixed reactant is heated to a certain inlet temperature. The
exergetic analysis is carried out by considering three exergy transfers:

Exergy due to work:
ExW = Wcomp + Wpump (17)

Exergy due to heat transfer:

ExQ = Qheat(1−
T0

T
) (18)

Exergy due to mass flow:

Exf,i = Ni{[(h− h0)− T0(s− s0)] + ∑ xkeCH
k + RT0 ∑ xklnxk} (19)

In these equations, the subscript 0 denotes the reference state (25 ◦C and 1 atm). The exergy due
to mass flow is contributed by physical exergy, chemical exergy and mixing exergy as shown on the
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right-hand side of Equation (19). For second-law efficiency, this is generally defined as the ratio of
exergy recovered to the exergy supplied,

ηII =
Exout

Exin
× 100% (20)

where Exin and Exout are the exergies supplied to and recovered from the system, respectively. Based
on Figure 1, Exin and Exout are expressed as,

Exin = Exbiogas + Exair + ExH2O + ExQ + ExW, Exout = Exproduct (21)

3. Results and Discussion

The TR process using biogas as the feedstock is similar to the tri-reforming of methane (TRM).
The only difference is the CH4 and CO2 composition. We developed this work from our previous
study [46] and focused on using biogas as the feedstock. To verify the correctness of the model built
in Aspen Plus, the TRM using the reactor geometry and reactant composition reported in the studies
of Chein et al. [46] and Arab Aboosadi et al. [47] was carried out using the built model in Aspen
Plus. Figure 2 shows the comparison between the temperature and gas species distributions predicted
from a two-dimensional model [46] and from a model built in Aspen Plus. As shown in Figure 2, the
agreements for both temperature distribution shown in Figure 2a and species mole fractions shown in
Figure 2b are quite good at the reactor downstream. The discrepancies in the region near the reactor
inlet zone is believed due to the difference between one- and two-dimensional modeling. Since the
TR process performance is evaluated using results at the reactor outlet, good agreement between one-
and two-dimensional results is expected. In addition to the comparisons between numerical models,
experimental verification of the numerical model was given in our previous study [46]. Also note
that O2 is consumed rapidly as it enters the reactor shown in Figure 2b. That is, there will be no O2

available for oxidation of CO or H2 in the downstream of the reactor.
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Figure 2. Comparison of results predicted from Aspen Plus and two-dimensional model [46] using the
optimized reactant composition reported by Arab Aboosadi et al. [47]. Tin = 1100 K, p = 20 atm, and
reactant composition CH4/CO2/H2O/O2 = 1/1.3/2.46/0.47. (a) Temperature and (b) species mole
fraction variations along the reactor center line.

Based on the comparisons discussed above, the model built in Aspen Plus can be correctly
extended to the TR process using biogas as the feedstock. The base operating conditions are listed
in Table 1. The parameters listed in Table 1 are adopted from our previous study except for the
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feedstock composition and total volumetric flow rate [46]. The molar ratio of the reactants are chosen
as CH4:CO2:Air:H2O = 1:0.5:2:1 and the volume flow rate is fixed as 0.0723 L/min. As compared with
the previous study [46], a higher volume flow is used in this study because of the presence of N2 in the
air. For economy, air is added instead of pure oxygen. The advantage of this is to avoid the cost of
oxygen separation from air, but this obviously results in increased reactor volume. In the following,
the TR process performance is examined using reactant inlet temperature Tin as the primary parameter.
The effects of various pressures, catalyst weight/volume flow rate (W/F) ratios, CO2/CH4 ratio in
biogas, amounts of air and H2O on TR process performance are discussed.

Table 1. Reactor geometry and base operation conditions [46,47].

Parameter Value

Reactor length, L 2 m
Reactor diameter, d(=2Rb) 10 mm
Inlet pressure, pin 20 atm
Inlet temperature, Tin 300~1000 ◦C
Reactant flow rate, F 0.0723 L min−1

Molar ratio of biogas CH4:CO2:Air:H2O 1:0.5:2:1
Catalyst Ni/Al2O3
Catalyst size, dp 0.42 mm
Catalyst weight, W 0.25 g
W/F ratio 0.0576 ghL−1

Heat-transfer condition Adiabatic

Figure 3 shows the TR process performance using the base operations listed in Table 1. In Figure 3a
the temperature variation along the reactor length for Tin = 900 ◦C is shown. Due to the methane
oxidation reaction, the maximum temperature occurs in the near entrance region. The energy produced
from methane oxidation is used for steam reforming and dry reforming in the reactor downstream.
This causes the temperature to decrease along the reactor length. The CH4 and CO2 conversions are
shown in Figure 3b. The abrupt increase in CH4 conversion occurs at Tin = 550 ◦C. This indicates that
Tin should be higher than 550 ◦C in order to activate the catalyst. With temperature higher than 550 ◦C,
CH4 conversion increases gradually with increased Tin. In Figure 3b, negative CO2 conversion results
for the low Tin regime. From the TR process chemical reactions, CO2 is produced by the methane
oxidation and WGS reactions and consumed by the dry reforming reaction. For low Tin, the WGS
reaction is dominated and CO2 consumption by DR is low. This results in negative CO2 conversion.
However, positive CO2 conversion can result when Tin becomes higher than 700 ◦C, indicating that
DR is active. DR contributes to increase the H2 and CO yield in the high Tin regime. Figure 3b also
indicates that a complex interaction between CO2 consumption and production reactions occurs for Tin

in the 500~600 ◦C range. The conversions of CH4 and CO2 from an equilibrium TR process obtained
from an Aspen Plus simulation are also shown in Figure 3b using the parameters listed in Table 1.
Since the results from the equilibrium process can be regarded as the theoretical limit of the reaction, it
can be seen that CH4 conversion from the catalytic reaction is lower than that from the equilibrium
reaction. Due to more CO2 production, lower CO2 conversion results from the equilibrium reaction.
For Tin higher than 800 ◦C, CO2 conversion from the equilibrium reaction is higher than that from
the catalytic reaction. From Figure 3c, the H2 yield, CO yield and H2/CO ratio are shown. It can be
seen that when Tin is lower than 500 ◦C, the H2 and CO yields are very low due to inactive catalytic
reactions at low temperatures. In this low Tin regime, CO yield is much lower than H2 yield and
results in a high H2/CO ratio. As Tin is higher than 550 ◦C, the H2/CO ratio decreases with Tin slowly
with a value close to 2. The decrease in H2/CO with Tin is due to increased CO production from
the DR reaction while H2 decreases due to the reverse WGS reaction. In Figure 3d, the H2 yield, CO
yield, and H2/CO ratio from the equilibrium TR process are also shown. As with conversions of CH4

and CO2 shown in Figure 3b, both yields of H2 and CO from the catalytic reaction are lower than
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the equilibrium reaction. At high temperature, the H2/CO ratio from both equilibrium and catalytic
reactions is about the same. In Figure 3d, the first- and second-law efficiencies are shown. Based on
Equation (16), the first-law efficiency depends on the H2 and CO yields. Because of higher H2 and CO
yields at higher Tin, ηI increases with increased Tin. However, the variation in ηII is opposite that of ηI.

Increased Tin implies that the chemical reaction is more complete towards the product side. Since the
chemical reaction is a highly irreversible process, high exergy destruction due to the chemical reaction
is expected. This results in decreased ηII as Tin increases. For the low Tin regime, exergy destruction
due to the chemical reaction is low because of low catalytic activity. Moreover, the contributions of
exergy destruction from compressors, pump, heaters and mixers are small. This leads to high ηII in the
low Tin regime.
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Figure 3. Performance of tri-reforming (TR) process obtained using the base operation conditions listed
in Table 1. (a) Temperature variation along reactor with Tin = 900 ◦C; (b) CH4 and CO2 conversions;
(c) H2 yield, CO yield, and H2/CO ratio; and (d) First- and second-law efficiencies.

In Figure 4, the variation of species mole fraction of the TR process using the base operation
conditions listed in Table 1 is shown. It can be seen that significant mole fraction variation can be
found when Tin is higher than 500 ◦C. The mole fractions of reactants (CH4, CO2, H2O, O2, and N2)
decrease while the mole fractions of products (CO and H2) increase as Tin increases. Due to a highly
active methane oxidation reaction, O2 is consumed completely when Tin is greater than 550 ◦C. Also
note that the variation trend of mole fractions of CO and H2 are similar to the yields of CO and H2

presented in Figure 3c. The yields of H2 and CO are used to characterize the TR process performance
in this study.
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Figure 4. Variations of species mole fraction of the TR process using the base operation conditions
listed in Table 1.

In the following, parametric studies based on the base operation conditions listed in Table 1 are
carried out. As listed in Table 1, the inlet temperature of the reactant is the primary parameter and
the amount of CH4 fed is used as the reference for the species contained in the reactant and product.
The catalyst weight (W) is varied from 0.025 g to 2.5 g; the operation pressure (P) is varied from 10
to 30 atm; the air/CH4 ratio is varied from 1 to 3; H2O/CH4 is varied from 1 to 3; and CO2/CH4 is
varied from 0.25 to 0.75.

In Figure 5 the effect of W/F ratios on the TR process is examined. The results shown in Figure 4
were obtained by varying the catalyst weight, while other parameters listed in Table 1 were kept fixed.
That is, higher W/F ratio results when the catalyst weight is increased. As shown in Figure 5a, a higher
temperature along the reactor length is obtained for the W/F = 0.00576 ghL−1 case. This indicates
that a smaller amount of energy released from methane oxidation reaction is used for endothermic SR
and DR reactions. For W/F = 0.0576 and 0.576 ghL−1 cases, temperature variations are identical at
the reactor downstream. That is, there is a limiting W/F ratio for the reaction. Increasing the W/F
ratio (either increasing catalyst weight or decreasing reactant volumetric flow rate) may not lead to
further improved reaction performance. In Figure 5b, CH4 and CO2 conversions are shown. Due
to low catalyst activity, CH4 conversion is low when Tin is low. It can be seen that the Tin at which
CH4 conversion abruptly increases can be decreased by increasing the W/F ratio. That is, the catalyst
activation temperature can be lowered with increased W/F ratio. As shown in Figure 5b, the Tin at
which CH4 conversion increases abruptly are 700 ◦C, 500 ◦C and 400 ◦C for W/F = 0.00576, 0.0576,
and 0.576 gLh−1, respectively. CH4 conversions for the W/F = 0.0576 and 0.576 gLh−1 cases become
identical when Tin is higher than 550 ◦C. As discussed above, limited performance results when the
W/F ratio is increased. From Figure 5b, CO2 conversion has a negative value except in the high Tin

regime. This is due to CO2 formation in the methane oxidation and WGS reactions while DR is less
active. At high temperatures, CO2 is consumed via the dry reforming reaction, leading to positive
CO2 conversion. In Figure 5c, the H2/CO ratios for various W/F ratios are shown. It can be seen that
H2/CO ratio is about the same for the three W/F ratios studied when Tin is high. The H2/CO ratio
close to a value of 2 can be obtained for the W/F range studied. In Figure 5d, variations in ηI and ηII

are shown. It can be seen that ηI can be enhanced by increasing the W/F ratio. However, ηII decreases
when the W/F ratio is increased because of a more complete chemical reaction.
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Figure 5. Effect of catalyst weight/volume flow rate (W/F) ratios on the TR process. Catalyst weight
is varied from 0.025 to 2.5 g while the other parameters were kept unchanged, as listed in Table 1.
(a) Temperature variation along reactor with Tin = 900 ◦C; (b) CH4 and CO2 conversions; (c) H2/CO
ratio; and (d) first- and second-law efficiencies.

In Figure 6, the reactor operating pressure effect on TR process performance is examined. From
Figure 6a the highest temperature increases with increased operating pressure. As the high temperature
in the near-entrance region of the reactor is due to the methane oxidation reaction, this implies that
methane oxidation can be enhanced by increasing the operating pressure. Due to the enhanced
methane oxidation reaction, the Tin at which an abrupt increase in CH4 conversion occurs can be
decreased by increasing the pressure, as shown in Figure 6b. Figure 6b also shows that CH4 conversion
can be increased in the low Tin regime when the pressure is increased. That is, increased operating
pressure can enhance catalyst activity at lower temperatures. In the high Tin regime, CH4 conversion
is slightly decreased as the pressure is increased. Although higher CH4 conversion can be obtained
from lower pressure operations, the resulting syngas may not be suitable for further use because
most applications involve high-pressure synthetic processes. A H2/CO ratio with a value close to 2 is
obtained for all the pressures studied when Tin is high, as shown in Figure 6c. Because of the reduced
CH4 conversion at a high Tin regime, it can be seen that ηI decreases with increased Tin and pressure,
as shown in Figure 6d. However, Figure 6d shows that ηII increases with decreasing pressure because
of less exergy destruction by the chemical reaction.
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Figure 6. Effect of pressure on the TR process. Pressure is varied from 10 to 30 atm while the other
parameters were kept unchanged, as listed in Table 1. (a) Temperature variation along reactor with
Tin = 900 ◦C; (b) CH4 and CO2 conversions; (c) H2/CO ratio; and (d) first- and second-law efficiencies.

The variation in reactant composition effect on TR process performance is examined in the
following. Figure 7 shows the air amount effect. Figure 7a shows that temperature can be increased
using more air as the reactant. That is, a more complete methane oxidation reaction is achieved when
the air supply is increased. With the increase in air amount, both CH4 and CO2 conversions can be
enhanced, as shown in Figure 7b. For the Air/CH4 = 3 case, 100% CH4 conversion can be reached
for Tin higher than 550 ◦C. Due to the increased energy supply, dry reforming can occur in the lower
Tin regime resulting in increased CO2 conversion. However, negative CO2 conversion is still found
when Tin is low. Although more N2 is also introduced, increasing the volumetric flow rate of the entire
reactant, it does not affect CH4 and CO2 conversions. As shown in Figure 7c, a H2/CO ratio with a
value higher than 2 can be obtained for the Air/CH4 = 3 case because DR is more active when the
temperature is high. For the Air/CH4 = 1 case, the H2/CO value is lower than 2. This is due to the
reverse WGS reaction at high temperatures, reducing the H2 amount. Because of decreased H2 yield,
lower ηI in the higher Tin regime is obtained, as shown in Figure 7d. The reverse WGS reaction also
causes ηII to increase with Tin in the high Tin regime.
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Figure 7. Air/CH4 ratio effect on the TR process. The Air/CH4 ratio is varied from 1 to 3 while the other
parameters are kept unchanged, as listed in Table 1. (a) Temperature variation along the reactor with
Tin = 900 ◦C; (b) CH4 and CO2 conversions; (c) H2/CO ratio; and (d) first- and second-law efficiencies.

Figure 8 shows the H2O amount effect on TR process performance. With increased H2O in the
reaction, lower temperature results at the reactor entrance region, as shown in Figure 8a, because of an
increased reactant volumetric flow rate and endothermic SR reaction. The increased H2O amount does
not affect CH4 conversion, as shown in Figure 8b. However, more negative CO2 conversion results. In
addition to CO2 produced from methane oxidation, CO2 may also be produced from WGS and RCM
reactions, as indicated in Equations (4) and (5) when H2O is increased. As shown in Figure 8c, a higher
H2/CO ratio is obtained when H2O is increased because of increased H2 yield. Figure 8d shows lower
ηI results when the H2O amount is increased. This is because higher heating to the reactant is required
when the H2O amount is increased. ηII increases with increased H2O amount, indicating that less
exergy destruction results as H2O is increased.

Figure 9 shows the amount of CO2 contained in the biogas effect on the TR process. As shown in
Figure 9a, the amount of CO2 does not affect the reaction temperature to a large extent. The temperature
increases slightly as the CO2 amount is decreased. As shown in Figure 9b, CH4 conversion is affected
insignificantly by the CO2 amount. However, CO2 conversion is always negative for the CO2/CH4 =
0.25 case. That is, more CO2 is produced as a result of SR and WGS reactions than that consumed by
DR and reverse WGS reactions. In Figure 9c, higher H2/CO results when CO2 is decreased. This may
be due to less CO formed from CO2 conversion. As with CH4 conversion, the CO2 amount effect on
first- and second-law efficiencies is not significant, as shown in Figure 9d.
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result, a higher H2/CO ratio is obtained, as shown in Figure 8b. 
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law efficiency states that ηII decreases with increased Tin because of higher exergy destruction when 
the chemical reaction is more complete. 
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Figure 8. Effect of H2O/CH4 ratios on the TR process. H2O/CH4 is varied from 1 to 3 while the other
parameters were kept unchanged, as listed in Table 1. (a) Temperature variation along reactor with
Tin = 900 ◦C; (b) CH4 and CO2 conversions; (c) H2/CO ratio; and (d) first- and second-law efficiencies.
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Figure 9. Effect of CO2/CH4 ratios on the TR process. CO2/CH4 is varied from 0.25 to 0.75 while the
other parameters were kept unchanged, as listed in Table 1. (a) Temperature variation along reactor with
Tin = 900 ◦C; (b) CH4 and CO2 conversions; (c) H2/CO ratio; and (d) first- and second-law efficiencies.
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Typical H2 and CO yield results are shown in Figure 10 for various air and H2O amounts.
In Figure 10a, the H2 and CO yields increase with the increased air added in the reactant. As a high
temperature results in the Air/CH4 = 3 case, the H2 yield decreases with increased Tin due to the
reverse WGS reaction. Figure 10b shows that H2 yield can be enhanced by increased H2O addition.
CO yield also decreases with H2O addition because of inactive DR and reverse WGS reactions. As a
result, a higher H2/CO ratio is obtained, as shown in Figure 8b.
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Figure 10. H2 and CO yields for various (a) air and (b) H2O amounts added.

From the results shown above, the CO2 conversion is low or negative (CO2 production). Positive
CO2 conversion only occurs in the high Tin regime. It is, then, desirable to determine the way to
enhance CO2 conversion in the TR process. After several sets of numerical experiments, it was found
that high CO2 conversion can be obtained when H2O is low. In this case, the TR process approaches the
dry reforming of methane (DRM). Figure 11 shows TR process performance with H2O/CH4 = 0.001.
As shown in Figure 11a, the temperature drop occurs in the region very near the entrance because
DRM is a highly endothermic reaction. Large amounts of required heat leads to this temperature
drop. When the methane oxidation becomes active, energy release causes a temperature increase in
the reactor downstream. In Figure 11b, CH4 and CO2 conversions are shown for the H2O/CH4 =
0.001 case. CO2 conversion is always positive and increases with increased Tin. The CO2 conversion is
lower than that of CH4 because of a low CO2/CH4 ratio in the biogas. Because of small amounts of
H2O, the H2/CO ratio is close to unity, which is the stoichiometric H2/CO ratio of DRM, as shown
in Figure 11c. Figure 11d shows that ηI increases with increased Tin because of higher H2 and CO
yield. The second-law efficiency states that ηII decreases with increased Tin because of higher exergy
destruction when the chemical reaction is more complete.
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Figure 11. TR process with H2O/CH4 = 0.001 while the other parameters were kept unchanged,
as listed in Table 1. (a) Temperature variation along reactor with Tin = 900 ◦C; (b) CH4 and CO2

conversions; (c) H2/CO ratio; and (d) first- and second-law efficiencies.

4. Conclusions

The tri-reforming process was used in this study for syngas production from biogas. The effects
of various operating parameters such as pressure, temperature and reactant composition were studied
based on a model built in Aspen Plus. Based on the results obtained, the following conclusions can
be drawn:

(1) There appears to be a limiting space velocity for the reaction. Beyond this limiting value, the
reaction approaches the same performance. Lowering the reaction pressure could lead to higher
CH4 conversion, but the syngas produced may not be suitable for further applications.

(2) CH4 and CO2 conversions can be enhanced by increasing the amount of air in the reactant. Higher
amounts of air could result in decreased H2 yield due to the reverse water–gas shift reaction,
which is favorable at high reaction temperatures.

(3) A higher H2/CO ratio can be obtained by increasing H2O addition. However, the dry reforming
reaction is suppressed, leading to low CO2 or negative conversion.

(4) Dry reforming of CO2 can only be found when the reaction temperature is high. This results in
positive CO2 conversion and contributes to increased H2 and CO yields.

(5) Higher CO2 conversion can be obtained for the low H2O addition case. However, low H2/CO
with a value close to unity results.

(6) The first-law efficiency increases with the increased reaction temperature because of higher H2

and CO yields. The second-law efficiency decreases with the increased temperature because of
higher exergy destruction due to a more complete chemical reaction at high temperatures.
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Abbreviation

Nomenclature
dp catalyst particle diameter, m
Ex exergy, kJ
eCH chemical exergy, kJ mol−1

F reactant volumetric flow rate, m3 s−1

Kj surface adsorption equilibrium constant of species j, Pa−1

KC
j surface adsorption equilibrium constant of species j in combustion reaction, Pa−1

Keq,i equilibrium constant of reaction i
ki rate constant of reaction i, mol Pa0.5kgcat s−1, or mol Pa kgcat s−1

L length of reactor, m
LHV lower heating value, kJ mol−1

Ni total molar flow rate of a stream i, mole s−1

nj molar flow rate of species j, mole s−1

p pressure, Pa
Q heat transfer, W
R universal gas constant, 8.314 J mol−1 K−1

Rb reactor radius, m
ri kinetic rate of reaction i, mol kgcat s−1

s entropy, kJ mol−1 K−1

T temperature, K
W catalyst weight, g
Wcomp compressor work, W
Wpump pump work, W
X species conversion
x mole fraction
Y species yield
Subscript
in inlet
out outlet
0 reference state
Greek symbols
∆H heat of reaction, kJ/mol
η efficiency
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