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Abstract: One-quarter of the world’s population lives without access to electricity. Unfortunately,
the generation technology most commonly employed to advance rural electrification, diesel
generation, carries considerable commercial and ecological risks. One approach used to address
both the cost and pollution of diesel generation is renewable energy (RE) integration. However,
to successfully integrate RE, both the stochastic nature of the RE resource and the operating
characteristics of diesel generation require careful consideration. Typically, diesel generation is
configured to run heavily loaded, achieving peak efficiencies within 70–80% of rated capacity. Diesel
generation is also commonly sized to peak demand. These characteristics serve to constrain the
possible RE penetration. While energy storage can relieve the constraint, this adds cost and complexity
to the system. This paper identifies an alternative approach, redefining the low load capability of
diesel generation. Low load diesel (LLD) allows a diesel engine to operate across its full capacity
in support of improved RE utilization. LLD uses existing diesel assets, resulting in a reduced-cost,
low-complexity substitute. This paper presents an economic analysis of LLD, with results compared
to conventional energy storage applications. The results identify a novel pathway for consumers to
transition from low to medium levels of RE penetration, without additional cost or system complexity.
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1. Introduction

Isolated and remote power systems cannot rely upon traditional grid connection, which becomes
economically unviable over large distances [1]. For these communities, diesel generation represents the
mainstay of their power supply infrastructure [2]. Historically, diesel has offered available, affordable,
reliable, and well-supported generation solutions [3]. Unfortunately, volatile pricing and diesel’s
environmental impact have motivated the search for alternative generation sources [4,5]. At the same
time, renewable energy (RE) technologies have established themselves as clean and cost-competitive
alternatives to diesel [6,7].

In contrast to diesel generation, RE generation is stochastic, unable to supply a power system
without the support scheduled generation [8]. In response, communities are increasingly pairing RE
with their existing diesel generation, creating hybrid diesel architectures. While a range of enabling
technologies exist to support RE penetrations within hybrid systems, the cost and complexity of these
solutions can be significant [3,9]. Prior research has identified multiple barriers to medium- and
high-penetration RE integration, with system cost, complexity and flexibility as common issues [10,11].
In general, high RE penetrations add complexity, with increased demand placed upon the control and
energy management strategies [1,12–15]. From the perspective of the diesel generation, these strategies
tend to restrict diesel contribution to one of two extremes, standby operation [16,17] or continuous
operation [6,18]. Enabling technologies are required for standby operation, with energy storage system
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(ESS) integration the state-of-the-art approach [10,19,20]. ESSs improve system flexibility yet add to the
expense and complexity of the system [21]. Given their high cost, significant research has been devoted
to determining the optimal ESS sizing [22–26]. In contrast, this paper identifies a novel alternative,
one independent of ESS integration, yet able to provide comparable system flexibility without the
associated costs or complexity [27]. The research contributions of this paper include a definition
of a technology alternative to ESS integration, validation of a low load diesel economic modeling
approach, development of a LLD hybrid diesel control strategy, and simulation of low load diesel
transient response.

Low Load Diesel (LLD) is the name assigned to modified engine application, allowing an engine’s
full capacity to be employed. LLD is implemented via removal of an engine’s low load limit, as set
within the station sequencer or controller. LLD is applicable to all diesel engine makes and models,
irrespective of age or capacity [21,27,28]. The ability to exploit existing diesel assets results in a
very low capital cost and minimal hardware or software disruption. Conventionally, load limits
are set between 30% and 40% of an engine’s rated capacity, prohibiting operation below this level.
Engine manufacturers stipulate compliance with load limits as part of their standard warranty terms
and conditions. Subsequently, most power system operators adopt the practice across an engine’s
lifetime [3]. Unfortunately, as the available renewable generation increases, load limits serve to restrict
the balance of generation offered to any renewable technologies (Figure 1a). LLD allows for improved
engine response, permitting engine operation across its full range, opening up an additional 30–40% of
engine capacity for renewable pairing Figure 1b. All three scenarios presented in Figure 1a–c assume
an identical twin peak load profile and RE resource. In all cases the consumer load is met by diesel
and/or renewable generation. If no renewable generation is available, the load is met entirely via
diesel generation. If renewable generation is available, the load is met by the renewable generation
plus diesel generation, with the diesel generation able to reduce to the specified low load limit. In this
manner, the lower the diesel load limit, the greater share of renewable generation can be utilized. If the
available renewable generation exceeds the consumer load, this generation is spilt from the system.
High renewable spillage can be addressed via the integration of energy storage (Figure 1c).
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Figure 1. Typical electrical demand [black line], diesel generation [dark grey area], renewable 
generation [grey area], energy storage [light grey area] and renewable spill [black] for cases (a) to (c). 
Case (a) represents a standard 30% diesel load limit, Case (b) low load diesel, and Case (c) low load 
diesel plus energy storage applications. Note the increasing share of renewable penetration across (a) 
to (c). A solar PV RE resource is shown for illustrative purposes above. 

While LLD is not a new technology, prolonged low load operation was historically ill advised. 
Low load operation typically resulted from incorrect engine sizing, when an engine was oversized in 
regard to a load. Under such an application the reduced torque demand requires less fuel, resulting 
in reduced cylinder temperature and pressure. Both are strong drivers of combustion efficiency. To 
compound reduced cylinder pressure, exhaust volumes drop, restricting turbocharger performance, 
further constraining air charge density. Engine impacts included reduced efficiency, cylinder 
glazing, wet stacking and eventual engine damage [29]. Cylinder glazing results from incomplete 

Figure 1. Typical electrical demand [black line], diesel generation [dark grey area], renewable generation
[grey area], energy storage [light grey area] and renewable spill [black] for cases (a) to (c). Case (a)
represents a standard 30% diesel load limit, Case (b) low load diesel, and Case (c) low load diesel plus
energy storage applications. Note the increasing share of renewable penetration across (a) to (c). A solar
PV RE resource is shown for illustrative purposes above.

While LLD is not a new technology, prolonged low load operation was historically ill advised.
Low load operation typically resulted from incorrect engine sizing, when an engine was oversized in
regard to a load. Under such an application the reduced torque demand requires less fuel, resulting
in reduced cylinder temperature and pressure. Both are strong drivers of combustion efficiency.
To compound reduced cylinder pressure, exhaust volumes drop, restricting turbocharger performance,
further constraining air charge density. Engine impacts included reduced efficiency, cylinder glazing,
wet stacking and eventual engine damage [29]. Cylinder glazing results from incomplete fuel
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combustion, with carbon accumulation impacting correct cylinder function. Wet stacking results
when there is unburnt fuel in the exhaust stream. The solution to both issues was traditionally to
correctly size the engine. In contrast, this paper identifies opportunity for low load diesel application,
in partnership with renewable generation.

More recently, low load specific purge routines have been developed, which permit sustained
low load application without risk to engine condition or breach of warranty provisions [30,31]. Purge
routines exhaust engine carbon, exposing the engine to elevated loading at sufficient frequency to
prevent any adverse performance. Elevated loading sufficiently increases the thermal inertia of the
engine to restore engine condition in much the same way as a particulate filter regenerates under
elevated temperatures [32]. While purge requirements are engine- and load-specific, one hour of purge,
every eight to 12 h of continuous low load operation is typical [30,31,33]. For hybrid diesel systems,
the improved low load function offers an opportunity to accept significantly greater renewable content
without an increase in system cost or complexity. This paper presents both economic and system
considerations for LLD application. The paper details model validation and results (Section 2), with the
model used to evaluate a number of LLD case studies. Discussion of the challenges and opportunities
of LLD application are presented in Section 3, ahead of the modeling methodology (Section 4) and
conclusions (Section 5).

2. Results

2.1. Economic Modeling

Economic simulation allows for rapid evaluation across a range of system architectures,
component sizes and RE penetrations. Prior to assessment of low load application, simulation results
for increasing renewable energy penetration were validated against the performance of the King Island
power system (Figure 2) [34]. King Island is located in North West Tasmania, approximately 200 km
south of Melbourne, Victoria. Generators supplying King Island include five diesel generator sets
(6.0 MW), one low load diesel (1.2 MW), five wind turbines (2.45 MW), a 3 MW 1.5 MWh advanced
lead-acid battery, a 1.5 MW resistor bank, a dual axis solar array (100 kW) and two Hitzinger Diesel-UPS
(1.0 MVA) units. King Island was selected for the ability to validate simulation results to observed
system performance, specifically the system’s ability to utilize high RE penetrations, and the recent
integration of a LLD generator set.
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Renewable integration can be observed to reduce the diesel consumption required to meet the
King Island load. Modeling results for the system are also presented in Figure 2, in validation of the
developed modeling methodology. In interpreting the system performance integration milestones
include, two Nordex N29 (500 kW) wind turbines installed in 1998, followed by two Vestas V52
(1.7 MW) wind turbines in 2004. Simulation results accurately represent the system performance
following each milestone. Despite the annual resource variation evident between modeled and
measured performance, the root mean square error is within 3% across the measurement period.
The model was subsequently extended to low load application via revision to the diesel engine low
load limit and low load fuel consumption.

In assessing the performance of the hybrid diesel systems, it is useful to define low (<30%),
medium (30% to 60%) and high (>60%) RE penetrations. The level of RE penetration represents
the renewable energy contribution, as a percentage of the total annual system load. Adopting this
classification the reader can appreciate the divide between low RE penetration, where the majority of
isolated power systems reside, and high RE penetration systems, those offering the lowest cost of energy
(Figure 3). With reference to King Island, the configuration of the system from 2004 to 2012 approaches
the cost optimized RE penetration level for a conventional diesel system (Figure 3a). Post 2012,
enabling technologies, including a battery ESS, were installed on King Island. RE utilization increased
to 65%, the cost optimized RE penetration level for diesel plus ESS (Figure 3a) [34]. In realizing high
RE penetrations, King Island has addressed many technical barriers; however, commercial obstacles
remain, with the system capital cost exceeding $20 million [35]. A significant contributor to this cost is
ESS integration, yet without such enabling technologies, increasing the level of RE integration is not
possible. The challenge for hybrid diesel systems seeking to emulate King Island remains to minimize
the capital cost and complexity of such enablers. As an enabling technology, LLD achieves this. LLD
performs as a conventional diesel system at low RE penetrations, while offering benefits comparable
to ESS integration, at higher levels. LLD accordingly finds application bridging the two approaches,
with the ability to offer many of the benefits of storage without the high capital cost or complexity.
Conceptually it bridges the divide evident between low and high RE penetrations (Figure 3a), offering
systems a transitional pathway to improved RE utilization. Such a strategy holds additional benefit as
battery ESS pricing discounts over time.
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Figure 3. (a) CoE as a function of RE penetration for diesel, LLD and diesel plus ESS; (b) CoE for
reduced ESS pricing, as a function of RE penetration for diesel, low load diesel and diesel plus energy
storage architectures. At sufficient (>50%) ESS discount LLD benefit becomes marginal.

Sensitivity analysis for the presented CoE modeling, to both ESS pricing (Figure 3b) and strength
of renewable resource (Figure 4a), identifies the influence of these parameters on the case for LLD
adoption. A range of values were modeled to represent the possible future position of each parameter.
ESS pricing was assessed within the range of $1 million/MW to $3 million/MW, while a wind
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resource of between 7 m/s to 9 m/s was assessed. The assessment was designed to identify values for
both renewable resource and ESS price at which LLD application was not recommended. Figure 3b
demonstrates the diminishing role for LLD assuming reduced ESS pricing. Given a 50% ESS price
discount (Figure 3b), justification for prior LLD adoption is significantly diminished. However, under
reduced ESS pricing, we should consider a fourth architecture, that of a paired LLD and ESS application.
Partnered, the two produces a cost curve below that for standalone ESS integration. Paired with an ESS,
LLD can reduce the required ESS capacity, providing system benefit during unfavorable battery states
of charge (when the battery is flat). Alternatively, Figure 4a considers reduction to the average site
wind resource. Weakening RE resource is shown to lessen both the CoE gradient and cost optimized
RE penetration. Subject to reduced RE resource, diminished benefit is observed for RE integration,
and accordingly also enabling technologies, such as LLD or ESS. Resource variation is similar to
the impacts of fuel price variation, with reducing fuel pricing also moderating the CoE gradient
(the gradient determined by the ratio of diesel to RE energy costs). Of distinction, fuel price movement
exhibits bias for diesel reliant systems (left hand side of the graph), while resource variation impacts
renewable reliant systems (right hand side of the graph). The greatest risk to the proposed LLD
methodology remains declining ESS pricing. However, the astute reader will appreciate the need for
diesel generation under all ESS approaches [21]. ESS pricing accordingly affects the staging approach
between LLD and ESS adoption, rather than displacing LLD application.

Energies 2018, 11, x FOR PEER REVIEW  5 of 13 

 

values for both renewable resource and ESS price at which LLD application was not recommended. 
Figure 3b demonstrates the diminishing role for LLD assuming reduced ESS pricing. Given a 50% 
ESS price discount (Figure 3b), justification for prior LLD adoption is significantly diminished. 
However, under reduced ESS pricing, we should consider a fourth architecture, that of a paired LLD 
and ESS application. Partnered, the two produces a cost curve below that for standalone ESS 
integration. Paired with an ESS, LLD can reduce the required ESS capacity, providing system benefit 
during unfavorable battery states of charge (when the battery is flat). Alternatively, Figure 4a 
considers reduction to the average site wind resource. Weakening RE resource is shown to lessen 
both the CoE gradient and cost optimized RE penetration. Subject to reduced RE resource, 
diminished benefit is observed for RE integration, and accordingly also enabling technologies, such 
as LLD or ESS. Resource variation is similar to the impacts of fuel price variation, with reducing fuel 
pricing also moderating the CoE gradient (the gradient determined by the ratio of diesel to RE 
energy costs). Of distinction, fuel price movement exhibits bias for diesel reliant systems (left hand 
side of the graph), while resource variation impacts renewable reliant systems (right hand side of the 
graph). The greatest risk to the proposed LLD methodology remains declining ESS pricing. 
However, the astute reader will appreciate the need for diesel generation under all ESS approaches 
[21]. ESS pricing accordingly affects the staging approach between LLD and ESS adoption, rather 
than displacing LLD application. 

 
(a) 

 
(b) 

Figure 4. (a) CoE for a reduced RE resource, as a function of RE penetration for diesel, low load diesel 
and diesel plus energy storage architectures. Weaker RE resource is observed to reduce optimized RE 
penetrations across all cases; (b) IRR as a function of RE penetration for diesel and low load diesel. 

In further exploring the barriers to hybrid diesel RE progression, discussion of the investment 
return, not just the capital cost, is relevant. Figure 4b defines the reducing internal rate of return 
observed for increasing RE penetration across both ESS and LLD applications. The inputs to the IRR 
analysis are detailed in Table 1. Internal rate of return (IRR), represents the discount rate applicable 
to the annual fuel savings, as required to align the system costs with a 100% diesel base case. With 
consideration for IRR across high RE penetrations, we observe diminishing returns for every dollar 
invested, despite reducing energy costs. Of the two approaches, lower total system costs and 
improved return are achieved under LLD. Under LLD application, low RE penetration systems are 
permitted to transition into medium penetrations without the economic and technical barriers 
associated with ESS integration. In doing so LLD represents a transitional pathway for hybrid 
systems looking to increase RE penetration. 

As evident in Figure 4b, LLD allows owners to more efficiently allocate capital across medium 
RE penetrations, promoting increased RE capacity while permitting delay to ESS integration. In 
general decreasing returns are driven by the reduced return for additional RE investment, with 
increasing returns prompted via increasing utilization of available storage capacity. It is also 
relevant to note that ESS investment is not directly able to contribute generation, with ESS sizing 
critical to efficient investment. Given the interdependence of the two approaches, LLD application is 

Figure 4. (a) CoE for a reduced RE resource, as a function of RE penetration for diesel, low load diesel
and diesel plus energy storage architectures. Weaker RE resource is observed to reduce optimized RE
penetrations across all cases; (b) IRR as a function of RE penetration for diesel and low load diesel.

In further exploring the barriers to hybrid diesel RE progression, discussion of the investment
return, not just the capital cost, is relevant. Figure 4b defines the reducing internal rate of return
observed for increasing RE penetration across both ESS and LLD applications. The inputs to the
IRR analysis are detailed in Table 1. Internal rate of return (IRR), represents the discount rate
applicable to the annual fuel savings, as required to align the system costs with a 100% diesel base
case. With consideration for IRR across high RE penetrations, we observe diminishing returns for
every dollar invested, despite reducing energy costs. Of the two approaches, lower total system costs
and improved return are achieved under LLD. Under LLD application, low RE penetration systems
are permitted to transition into medium penetrations without the economic and technical barriers
associated with ESS integration. In doing so LLD represents a transitional pathway for hybrid systems
looking to increase RE penetration.

As evident in Figure 4b, LLD allows owners to more efficiently allocate capital across medium RE
penetrations, promoting increased RE capacity while permitting delay to ESS integration. In general
decreasing returns are driven by the reduced return for additional RE investment, with increasing
returns prompted via increasing utilization of available storage capacity. It is also relevant to note



Energies 2018, 11, 1080 6 of 13

that ESS investment is not directly able to contribute generation, with ESS sizing critical to efficient
investment. Given the interdependence of the two approaches, LLD application is recommended as a
precursor to ESS integration. Projected diesel fuel savings across the range of medium RE penetration
are between 8–18% for LLD, and 10–26% for ESS integration, as compared to a conventional hybrid
diesel reference case.

Table 1. Economic model inputs.

Quantity Value Quantity Value Quantity Value Quantity Value

Discount Rate 8% Fuel Curve
Slope 0.24 Wind CAPEX $1700/kW ESS CAPEX $1900/kWh

Project Life 20 years Diesel Fuel
Cost $1/L

Wind
Maintenance

Cost

$30,000
per annum

ESS
Replacement

Cost
$600/kWh

Diesel CAPEX $500/kW
Diesel

Heating
Value

43.2
MJ/kg

Wind Turbine
Losses 18%

ESS
Maintenance

Cost

$20,000
per annum

Diesel
Maintenance

Costs
$2/h Diesel

Density 820 kg/m3 Wind Turbine
Lifetime 20 years ESS Roundtrip

Losses 15%

Diesel
Lifetime 20,000 h Diesel Low

Load Limit 0% Hub Height 60 m System Fixed
Capital Cost $5million

Fuel Intercept
Coefficient 0.0134 - - Rotor

Diameter 52 m - -

2.2. Transient Response Simulation

LLD offers remote and isolated power systems the ability to increase RE penetration without
substantial change to the configuration or control of the system. Unfortunately, economic analysis
is unable to comment on the power security implications of the proposed approach. This is because
the economic model considers a time scale resolution of hours, while transient events within a power
system occur on a time scale of milliseconds. For this reason assessment of LLD application must
consider both power security and economic performance. To address system security, the transient
response of three medium RE penetration case studies are presented, with simulations undertaken
in Matlab. Medium penetration RE case studies were selected given the greatest role for LLD across
this range. The three cases were selected to represent a range of possible technology configurations,
including conventional hybrid diesel system design (Case 1), state of the art design (Case 2), and a LLD
design (Case 3). Case 1 introduces a conventional wind diesel system architecture, specifically
to explore the limitations of conventional approaches to achieve medium level RE penetrations.
A common response to these limitations, Case 2 introduces a battery ESS to enable higher RE
penetration. In contrast, Case 3 introduces LLD as an alternative to ESS integration. All case studies
consider the diesel generator subject to a rated capacity step load increase of 60%, followed by a 60%
step load decrease. The system load and generator response for Case 2 are presented in Figure 5.

The loading is intended to simulate the connection or disconnection of a major load/generator.
Typically this would involve a system fault, which occurs a handful of times a year. The control
approach targets uninterrupted operation of the system via co-ordination of the available generation to
meet demand. At all times wind generation receives a priority dispatch to maximize the RE utilization.
As part of the system security thresholds, a 2 Hz frequency variation is adopted for the presented
analysis [36]. Frequency dip typically follows load acceptance given a decline in the systems spinning
reserve as the generators respond to the increased demand. In all cases the diesel generator remains
the systems primary means of frequency regulation, with a large load variability observed.
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Figure 5. Operation of the diesel plus ESS system (Case 2) under wind speed deviation and 60% load
perturbation, Top left going clockwise: Load (MW), Frequency (p.u.), Voltage (p.u.), Diesel Torque
(p.u.), Battery (MW), Dump Load (MW), Wind Generation (MW), Diesel Generation(MW).

2.2.1. Case 1—Conventional Diesel and Wind System

Case 1 consists of diesel generation (1 p.u.), a renewable resource (1 p.u.), a consumer load and a
resistive dump load (1 p.u.). The purpose of the resistive dump load is to spill excess RE generation
as heat. The dump load offers the system improved frequency response, with the resistive element
able to switch at a faster rate than the pitch response typically available from a wind turbine generator.
The generators are sized to be of equal capacity. The diesel generation is tasked with reactive and
active power coordination. The wind turbine receives priority dispatch, exporting power to the system,
as available. During high wind periods the available generation may exceed the load. Available
generation consists of the wind generation, plus the diesel generation operating at its low load limit
(30%). Excess generation is spilt from the system via the resistive load. The wind turbine control allows
for pitch regulated wind spill; however, dump load frequency control is preferable, offering improved
system inertia. Unless a substantial heat load exists, all renewable energy spilt in this way is lost from
the system and should be minimized. During low wind periods the wind generation may not satisfy
the load, with diesel generation used to maintain the power balance. Should no wind generation exist,
the diesel generator is exclusively used to supply the required load. Under all operating scenarios
the diesel generator remains on. Case 1 performance is used to benchmark Case 2 and 3 results,
as representative of conventional system performance.

2.2.2. Case 2—Conventional Diesel, Wind, Plus Energy Storage System (ESS)

Energy storage (0.5 p.u.) is subsequently added to the Case 1 system model, with the integration
of an ESS permitting excess RE generation to be directed to the ESS. Subject to the state of charge (SoC)
of the battery, it can acts either as a source or a sink, serving to reducing RE spill, the number of diesel
starts and promoting diesel efficiency. Typical SoC is within the range of 40% to 90%, with the battery
permitted to drain to a 30% SoC under extreme operating conditions. The capacity and operation of
the ESS has been selected to represent the King Island system performance.
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2.2.3. Case 3—Low Load Diesel and Wind System

Case 3 is analogous to Case 1, with a low load functionality introduced (0% load limit). This case
is used to assess the performance of low load diesel application in comparison to an ESS approach.

A summary of the transient response within a 60 Hz system, to both load acceptance and load
rejection, is presented in Figure 6. Both loading events are shown to occur one second into the
presented plots. In all cases the diesel generator remains the systems primary means of frequency
regulation. ESS technologies are shown to offer improved system dampening, via provision of
additional kW supply (Figure 6). While all cases produce acceptable system security, integration
of a battery provides for reduced transient overshoot and recovery time. In contrast, adoption of a
LLD approach is shown to delay system response, owing to the reduced engine inertia. Despite such
variations, the performance under all configurations remains within standards [36]. A similar result is
observed for voltage variation. Accordingly, from a system security perspective, all configurations
offer acceptable system security.
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3. Discussion

One solution available for hybrid diesel systems looking to maximize RE penetration involves the
integration of an ESS. While battery costs are broadly anticipated to reduce over time, they are currently
cost prohibitive. Indeed costs would have to reduce by over 50%, to offer a comparable benefit to
the proposed LLD approach. Importantly, lower ESS pricing, instead of excluding LLD application,
alternatively shifts application in favor of a combined LLD plus ESS configuration. More probable is
the role of LLD as a forerunner to ESS integration. LLD redefines the role given to diesel generation in
support of system flexibility. LLD allows systems to progress past low RE penetrations, bridging the
divide evident across low and high RE penetration systems. Conversion of an existing generator to
LLD is presented as an affordable and accessible transitional technology able to provide an immediate
pathway to medium RE penetrations without significant cost. Whilst conversion consists of little more
than control refinement, plausible optimizations exist to delivering improved/extended low load
operation. Such modification may include water jacket preheating, variable turbo geometries specific
to low exhaust flow, pre-treatment (boost) of the engine air charge (supercharging), variable speed
generation, and/or load variable cooling. All target increased cylinder temperatures and pressures
under low load application. As the purpose of this paper is to demonstrate capabilities within existing
diesel assets, no such subsystem refinement has been considered; however, consideration of such
approaches represents a logical extension of the present research.
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4. Materials and Methods

Economic evaluation for LLD application was undertaken in Matlab using Homer. Transient
response was simulated in Matlab using Simulink. For the presented analysis, load and resource
data for King Island, Tasmania was adopted [34]. King Island was selected for the ability to validate
simulation results to observed system performance, specifically the system’s ability to utilize high RE
penetrations. The economic model develops an annual, hourly time series simulation of all generation
sources, determining the lowest cost generation mix able to satisfy consumer load. Possible system
configurations are ranked according to cost of energy (CoE), [37]. Power system simulation develops
a 20 s time series of key system parameters, inclusive of step load acceptance (t = 6 s) and step load
rejection (t = 16 s).

4.1. Diesel Generation Modeling

The model adopts a standardized approach to diesel fired generation [38,39], with frequency
controlled by the governor and voltage controlled by the automatic voltage regulator. In this regard,
conventional diesel and LLD platforms share a similar mechanical architecture. Diesel generation is
dispatched based on the needs of the system and the status of any available RE generation sources.

Low load diesel application differs from conventional diesel operation given modified engine
parameters, principally lower cylinder temperature and pressure. Low temperature and pressure result
from a complex interaction of reduced combustion efficiency, reduced cylinder to piston ring alignment,
reduced turbocharger velocity and proportionally reduced air charge pressures, all culminating in
reduced engine efficiency at low loading. Low load engine response is simulated via manipulation of
the engine specific delay (τ1), as defined within the governor, actuator and engine model (Figure 7).
The model describes the conversion of fuel, to torque, and finally rotational shaft velocity. The role of
the governor is to regulate the output shaft speed (ω) via control of the fueling rate (ṁf). Governor
response is represented by the transfer function Gr(s), as determined by the angular speed error
∆ω (rad/s) between ω and its set point ωref. As the engine speed varies, the governor identifies
the variation, instructing the actuator to regulate fuel supply accordingly. The actuator system is
represented by a first order network, characterized by the actuator constant K2 and current driver
constant K3. Inherent to the actuator operation is the delay constant (τ2), representing the response
time of the actuator. Representative values for these parameters are provided in [40].
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Figure 7. Diesel engine—Governor model [40].

Diesel generator control is overseen by the engine control unit (ECU), which integrates control of
all engine subsystems. The excitation system of the generator assumes a modified IEEE2 model.

4.2. Wind Generation Modeling

A wind turbine consists of a horizontal axis rotor, coupled to a geared drive chain, which itself
couples to a generator. The mechanical drivetrain, yaw and pitch mechanisms are located atop a
sectionalized steel tower, within the nacelle. Wind generator output is represented by the measured hub
height mean wind speed, the turbine electrical efficiency and turbine power curve. Wind generation
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extracts kinetic energy from the wind, harnessing this resource to develop torque. Many differing
electrical systems exist for the conversion of mechanical to electrical energy for wind turbines, although
by far the most common system adopts a double-fed induction generator (DFIG) (Figure 8).Energies 2018, 11, x FOR PEER REVIEW  10 of 13 
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This is also the system considered within this paper. The active power capabilities of a DFIG
are limited by a number of factors, including rotor and stator voltage, stator current, rotor speed and
stability limits [41]. For this paper the DFIG is considered only at unity power factor [14]. The DFIG is
controlled by a back-to-back pulse width modulated converter, which consists of a rotor side converter
(RSC) and a grid side converter (GSC). A vector control strategy is used for the active power and
voltage control via the RSC, with both DC link voltage and the reactive power control undertaken via
the GSC [27].

4.3. Energy Storage System (ESS) Modeling

High RE penetration systems require both energy storage and an associated dispatch strategy.
The dispatch strategy determines the interaction of system components and the energy exchange
between them. The model assumes a load following methodology, permitting only RE generation to
charge the batteries. Simulation uses a kinetic battery model, treating the ESS as a two tank system
(Equation (1)). One tank represents available energy and the other bound energy [42]. The rate of
energy transfer between the tanks is dependent on the charge difference between them. In representing
ESS performance the kinetic battery model prohibits either full charge or discharge of the battery,
while limiting the rate of energy exchange to the previous state of charge. The maximum amount of
power that the battery can discharge is given by Equation (2), while the maximum amount of power
the battery can accept is defined in Equation (3) [43]. An ESS is defined by its capacity curve, lifetime
curve, efficiency, and minimum state of charge.

Q = Q1 + Q2 (1)

Pdischarge =
−kcQmax + kQ1e−k∆t + Qkc(1 − e−k∆t)

1 − e−k∆t + c(k∆t − 1 + 1 − e−k∆t)
(2)

Pcharge =
−kQ1e−k∆t + Qkc

(
1 − e−k∆t

)
1 − e−k∆t + c

(
k∆t − 1 + e−k∆t

) , (3)

where Q1 is available and Q2 is bound energy, k is the rate constant, a measure of how quickly energy
can convert between bound and available energy, and c is the capacity ratio, the size ratio of the
available energy tank compared to the combined available and bound tank size. The kinetic battery
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model also accounts for rate-dependent losses and temperature effects on capacity. A battery reaches
its end of life when it deteriorates to the specified degradation limit (30% modeled). To determine
optimal ESS sizing multiple simulations were undertaken across a range of possible battery sizes
(inclusive of a no battery model). This process determined the cost-optimized battery size, with this
approach used for subsequent analysis.

The control methodology for the battery adopts a power management approach, with reference
to system frequency via PI control (Figure 9).Energies 2018, 11, x FOR PEER REVIEW  11 of 13 
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5. Conclusions

Low load diesel application offers isolated and remote communities significant commercial and
environmental benefit. In extending system capability to medium RE penetrations, LLD is able to
return fuel savings of between 8% and 18%, in comparison to conventional operation. Resultant
savings reduce the cost of energy by up to 8%. Across medium RE penetrations LLD is shown to
increase investment IRR by 50%, effectively bridging both the commercial and technical divide evident
across low to high RE penetration systems (those with and without storage). Improvement to system
flexibility is delivered without significant capital investment, and without the complexity of energy
storage integration. The results successfully identify a novel pathway for consumers to transition
from low to medium levels of RE penetration, without additional cost, system complexity, or risk to
system security.
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