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Abstract: Liquid lipase-catalyzed esterification of fatty acids with methanol is a promising process
for biodiesel production. However, water by-product from this process favors the reverse reaction,
thus reducing the reaction yield. To address this, superabsorbent polymer (SAP) was used as a
water-removal agent in the esterification in this study. SAP significantly enhanced the conversion
yield compared with the reaction without SAP. The lipase-catalyzed esterification in the presence
of SAP was then optimized by response surface methodology to maximize the reaction conversion.
A maximum conversion of 96.73% was obtained at a temperature of 35.25 ◦C, methanol to oleic
acid molar ratio of 3.44:1, SAP loading of 10.55%, and enzyme loading of 11.98%. Under these
conditions, the Eversa Transform lipase could only be reused once. This study suggests that the
liquid lipase-catalyzed esterification of fatty acids using SAP as a water-removal agent is an efficient
process for producing biodiesel.
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1. Introduction

Extensive energy consumption and environmental pollution have stimulated the development
of renewable energy sources. Biodiesel, a renewable fuel derived from vegetable oil, is increasingly
considered a promising alternative to petrodiesel because of its superior combustion properties,
compatibility with diesel engines, and environmental benefits [1–4]. Therefore, biodiesel is being
produced globally to reduce the consumption of petrodiesel.

Biodiesel is commonly produced from edible feedstocks such as soybean, sunflower, and rapeseed
oils [5–8]; however, the use of these feedstocks for biodiesel production is restricted because of their
high cost (which accounts for 75% of the production cost) and competition with demand for the
food supply [9–11]. Therefore, inedible and waste oils have been developed as potential feedstocks
for biodiesel production [12–15]. These inedible and waste oils usually contain a high level of free
fatty acids, which must be esterified into biodiesel before the transesterification [16,17]. In recent
years, the esterification of fatty acids for biodiesel production has been widely investigated [18–20].
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The common method is acid-catalyzed esterification [16,17,21]. Although biodiesel is successfully
produced from fatty acids through acid catalysis, this process retains several drawbacks such as
equipment corrosion and negative environmental effects [10,22,23]. Esterification using lipase as a
biocatalyst is considered a promising alternative for biodiesel production, because this method is
ecofriendly and proceeds at mild reaction conditions, thus reducing the energy consumption and
adverse environmental effects [10,24,25]. To improve the stability and reusability of lipase, immobilized
lipases have been developed and used for the reaction [10,14,24]. However, the rate of the reaction
catalyzed by immobilized lipase is relatively low because of the mass transfer limitation between the
enzyme and substrate [26,27]. Moreover, the high cost of immobilized lipase is the main drawback
that limits its industrial application [28].

Liquid lipase formulations have increasingly attracted attention as a promising alternative to
immobilized lipase for industrial applications because of their low cost (30- to 50-fold lower than
that of immobilized lipase) and high catalytic activity [29–31]. Recent studies have shown that liquid
lipases can be used for biodiesel production with high yield [26,29,32,33]. However, high water content
(from the feedstock and produced from the esterification of fatty acid and methanol) favors the reverse
reaction, thus lowering the reaction rate and production yield [32,34]. Efforts have been made to
remove the water from the reaction mixture, including the use of a molecular sieve, alumina, or silica
gel as adsorbents [35–37]. Although these adsorbents efficiently remove water from the reaction
solution, they cannot prevent the inactivation of lipase caused by water [37]. Superabsorbent polymer
(SAP) has been widely used for soil water conservation, sewage treatment, mineral dewatering, and
drug drying [37,38]. SAP demonstrates rapid water absorption and high water retention capacity [37]
and has been employed to remove water formed during the transesterification of corn oil and dimethyl
carbonate [37]. However, no report has mentioned the use of SAP as a water-removal agent for the
esterification process; this is an attractive research direction.

This study examined the potential use of SAP as a water-removal agent in the esterification of
fatty acid with methanol when using liquid lipase for biodiesel production. Oleic acid was used as a
model substrate, because it is one of the most common fatty acids in plant oils and animal fats [34].
Response surface methodology (RSM) was employed to analyze the effects of reaction conditions
(temperature, reaction time, SAP loading, and enzyme loading) on the reaction conversion. Liquid
lipase was also studied for its reusability.

2. Materials and Methods

2.1. Materials

Eversa Transform lipase (liquid lipase produced by Thermomyces lanuginosus) with activity of
100,000 PLU/g was obtained from Novozymes A/S (Bagsvaerd, Denmark). The SAP was provided
by Formosa Plastic Corp. (Kaohsiung, Taiwan). The SAP used in this study is mainly produced from
sodium polyacrylate and its properties are absorption capacity (0.9% NaCl) of 60 g/g, centrifuge
retention capacity (0.9% NaCl) of 38 g/g, and particle size distribution of 470 µm. Oleic acid (99%)
was provided by Showa Chemical Industry Co., Ltd. (Tokyo, Japan). Methanol, ethanol, and other
reagents were analytical grade and obtained from Echo Chemical Co. Ltd. (Miaoli, Taiwan).

2.2. Effect of SAP on the Esterification

A comparative study conducted lipase-catalyzed esterification of oleic acid with methanol with
and without the presence of SAP (5%, w/w) to investigate the effects of SAP on reaction conversion.
The reaction was initiated by adding 10% Eversa Transform lipase into reaction mixtures containing
methanol and oleic acid at a molar ratio of 3:1 and various amounts of water (0–30%, w/w). The reaction
was subsequently kept at 35 ◦C with stirring for 150 min. The sample was regularly withdrawn for
determination of the reaction conversion.
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The amount of oleic acid during the esterification was determined using a previously reported
procedure [39]. A sample was withdrawn from the reaction mixture, weighed, and dissolved in a
20-mL ethanol–diethyl ether solution (1:1, v/v). The sample was subsequently titrated against 0.1 M
KOH using phenolphthalein as the indicator to determine the acid value (AV). The reaction conversion
was then calculated as follows [40]:

Reaction conversion (%) =
AV1 − AV2

AV1
× 100 (1)

where AV1 is the initial acid value, and AV2 is the acid value after esterification.

2.3. Optimization of Esterification Using RSM

A four-level and four-factorial central composite design was used to study the effects of reaction
factors on the reaction conversion. Esterifications with different reaction temperatures (30–50 ◦C),
methanol:oleic acid molar ratios (1:1–9:1), SAP loadings (5–15%), and enzyme loadings (5–15%) were
performed in 100-mL screw-cap glass bottles with stirring for 150 min. After the reaction, a sample was
withdrawn from the reaction mixture to determine the reaction conversion. A quadratic equation was
then used to establish the relationship between the determined reaction conversion and reaction factors:

Y = β0 + β1X1+ β2X2 + β3X3 + β4X4 + β11X2
1 + β22X2

2 + β33X2
3 + β44X2

4 + β12X1X2

+ β13X1X3 + β14X1X4 + β23X2X3 + β24X2X4

+ β34X3X4

(2)

where Y is the reaction conversion; X1 is the reaction temperature; X2 is the molar ratio of methanol
to oleic acid; X3 is the SAP loading; X4 is the enzyme loading; β0 is the regression coefficient for the
intercept term; β1–β4 are linear parameters; β12, β13, β14, β23, β24, and β34 are interaction parameters;
and β11, β22, β33, and β44 are quadratic parameters. These parameters were determined using
the least-squares method [41], and an empirical model was subsequently employed to determine
the optimal reaction conditions for maximizing reaction conversion [41]. Minitab 16 (Minitab Inc.,
State College, PA, USA) was employed to develop the empirical model, perform analysis of variance
(ANOVA), and determine the optimal reaction conditions.

2.4. Enzyme Reuse

Eversa Transform lipase was reused in the esterification in the presence of SAP. The reaction was
conducted under the optimal conditions determined through RSM. After the reaction was completed,
the reaction mixture was centrifuged for phase separation. The oil phase was collected for the reaction
conversion determination, and the water phase containing liquid lipase was subsequently remixed
with fresh reactants and SAP to start a new reaction.

3. Results and Discussion

3.1. Effect of SAP on the Reaction Conversion

This study compared liquid lipase-catalyzed esterification of oleic acid with methanol in various
water contents with and without the presence of SAP. As shown in Figure 1, the conversion of the
reaction without SAP increased when the amount of water increased. This indicated that a certain
amount of water is required for the activity of liquid lipase. Nevertheless, a further increase in water
content caused a significant decrease in the conversion of the reaction without SAP. This is attributed
to high water content driving the reaction equilibrium to the reverse reaction [35,36,42] and decreasing
the activity of liquid lipase [32,35,37]. This result agrees with those of other studies [29,32,37]. Studies
have reported that a minimal amount of water is required for optimal enzyme activity, but excess
water adversely affects enzyme activity and stability, thus reducing the reaction conversion [32,35,37].
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To overcome this obstacle, SAP was used as a water-removal agent for the reaction. The results showed
that the conversion of the reaction with SAP increased and reached the highest conversion when
increasing the water content from 0% to 5%. Remarkably, higher water contents resulted in no loss
in reaction conversion, indicating that excess water had no negative effect on the conversion of the
reaction with SAP. This is attributed to the efficient water absorption of the SAP that reduced the
negative effects caused by water [37]. In biodiesel production, the feedstock always contains various
amount of water; the presence of water in feedstock is the main concern, because it can reduce the
conversion yield [32,43,44]. The feedstock is thus treated to remove water before being used for the
reaction [44–46]. However, based on the results of this study, the water-removal can be eliminated by
adding SAP directly into the reaction solution. Therefore, the liquid lipase-catalyzed esterification
using SAP as a water-removal agent is a promising process for biodiesel synthesis from feedstock
containing high water content.
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Figure 1. Effects of SAP on the esterification with varied water content. The reaction was conducted
under the following conditions: molar ratio of methanol to oleic acid of 3:1, a temperature of 35 ◦C,
enzyme loading of 10%, in the presence of 5% SAP (•), or without SAP (�).

3.2. The RSM Model Development

A central composite RSM model was employed to establish the relationships between reaction
conversion (measured response) and reaction factors (input variables)—temperature, molar ratio
of methanol to oleic acid, SAP loading, and enzyme loading. Table 1 shows the input variables
with their coded and un-coded values. Table 2 illustrates the experimental design for obtaining the
optimal reaction conditions. Based on the results shown in Table 2, the measured responses and
input variables in term of code values were input into an empirical model as the following quadratic
polynomial equation:

Y = 89.5 − 6.6X1− 6.39X2 + 1.26X3 + 5.9X4 − 3.77X2
1 − 4.53X2

2 − 3.45X2
3 − 3.75X2

4

+ 0.86X1X2 + 1.21X1X3 − 0.26X1X4 − 1.99X2X3 + 0.15X2X4

− 0.21X3X4

(3)

where X3, X4, X1X2, X1X3, and X2X4, have positive effects on the response, and the other parameters
have adverse effects.
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Table 1. Coded values of the input variables for the central composite RSM design.

Variables Symbols
Variable Levels

−2 −1 0 1 2

Temperature (◦C) X1 30 35 40 45 50
Methanol:oleic acid molar ratio X2 1 3 5 7 9

SAP loading (%) X3 5 7.5 10 12.5 15
Enzyme loading (%) X4 5 7.5 10 12.5 15

Table 2. Experimental design for the influences of the four independent variables on the reaction
conversion in coded values and experimental results.

Run
Variable

Response, Y
X1 X2 X3 X4

1 1 1 1 1 66.87
2 1 −1 1 1 88.13
3 −2 0 0 0 85.83
4 1 1 −1 1 68.91
5 0 0 2 0 77.68
6 0 2 0 0 60.76
7 −1 −1 1 1 96.20
8 1 −1 −1 1 74.42
9 −1 −1 −1 1 95.88

10 0 0 0 2 81.21
11 1 1 1 −1 55.43
12 1 −1 1 −1 70.65
13 −1 1 −1 −1 65.83
14 −1 −1 −1 −1 80.98
15 −1 −1 1 −1 85.09
16 1 1 −1 −1 55.23
17 1 −1 −1 −1 64.56
18 0 −2 0 0 79.16
19 2 0 0 0 60.15
20 −1 1 1 1 78.20
21 0 0 0 −2 64.98
22 0 0 −2 0 70.88
23 −1 1 −1 1 83.59
24 −1 1 1 −1 65.38
25 0 0 0 0 90.92
26 0 0 0 0 89.90
27 0 0 0 0 88.79
28 0 0 0 0 90.92
29 0 0 0 0 87.92
30 0 0 0 0 88.36
31 0 0 0 0 89.72

Repeated experiments based on the central runs (25–31) showed a low coefficient of variance
(1.33%), indicating the high reproducibility and precision of the experiments. The model was evaluated
for statistical significance using the F test for ANOVA (Table 3). Results showed a very low p value
(<0.0001) of the model in the F test, confirming that the regression was statistically significant at the
95% confidence level. The coefficient of determination (R2) was determined to evaluate the quality
of the developed model. Result showed that a high R2 value (0.97) was achieved, signifying high
reliability of the model for predicting reaction conversion. As shown in Figure 2, the model predictions
were in good agreement with experimental values, indicating that the established model provided
satisfactory and accurate results. Table 4 presents the overall effects of the input variables on the
reaction conversion, which were examined using t tests. Low p values (<0.05) of the intercept term,
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three linear terms (X1, X2, and X4), all quadratic terms, and an interaction term (X2X3) indicated their
significant effects on the reaction. The developed model can therefore be used to forecast the optimal
reaction conditions for obtaining maximal responses.

Table 3. Analysis of variance for the empirical model.

Source DF b SS b MS b F Value Probability (P) > F

Model a 14 4319.58 308.54 32.91 <0.0001
Residual (error) 16 150.01 9.38 - -

Total 30 4469.59 - - -
a Coefficient of determination (R2) = 0.97; adjusted R2 = 0.94. b DF, degree of freedom; SS, sum of squares; MS,
mean square.
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Figure 2. Correlation between experimental and fitted conversions of the reaction.

Table 4. Significance of the coefficients in the empirical model.

Model Term Parameter Estimate Standard Error t Value a p Value

β0 89.50 1.16 77.34 0.000 b

β1 −6.60 0.63 −10.55 0.000 b

β2 −6.39 0.63 −10.22 0.000 b

β3 1.26 0.63 2.01 0.062
β4 5.90 0.63 9.43 0.000 b

β11 −3.77 0.57 −6.59 0.000 b

β22 −4.53 0.57 −7.91 0.000 b

β33 −3.45 0.57 −6.03 0.000 b

β44 −3.75 0.57 −6.54 0.000 b

β12 0.86 0.77 1.13 0.275
β13 1.21 0.77 1.58 0.133
β14 −0.26 0.77 −0.34 0.740
β23 −1.99 0.77 −2.61 0.019 b

β24 0.15 0.77 0.19 0.850
β34 −0.21 0.77 −0.27 0.788

a tα/2,n-p = t0.025,19 = 2.093. b p < 0.05 indicates that the model terms are significant.
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3.3. Effect of Reaction Factors on Reaction Conversion

Figure 3 shows the effects of the methanol:oleic acid molar ratio and SAP loading on the reaction
conversion while maintaining temperature and enzyme loading at their central levels. Results showed
a significant interaction between the methanol:oleic acid molar ratio and SAP loading. At high
methanol:oleic acid molar ratios, SAP loading slightly affected the reaction conversion. However, at a
low methanol:oleic acid molar ratio, increasing the SAP loading significantly enhanced the reaction
conversion. This is attributed to the SAP absorbing water from the reaction mixture and enhancing the
enzyme activity to create a suitable microenvironment for an efficient reaction [37]. However, a higher
SAP loading resulted in a significant decrease in reaction conversion. Because liquid lipase requires
a minimal amount of water for optimal activity, high SAP loading caused less water content to be
present the reaction solution [35,37]. Consequently, the enzyme activity was reduced, leading to a
reduction in reaction conversion.
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Figure 3. Response surface plot of combined effects of the reactant molar ratio and SAP loading on the
conversion of the reaction at a constant temperature (40 ◦C) and enzyme loading (10%).

Figure 4 presents a response surface curve obtained by plotting the reaction conversion against
temperature and molar ratio of methanol to oleic acid while maintaining the other factors at their
central levels. At any temperature, the reaction conversion significantly increased when increasing
the methanol:oleic acid molar ratio. This was because a high amount of methanol is required for
esterification [20,47,48]. However, the reaction conversion decreased with a further increase in the
methanol:oleic acid molar ratio. This result is similar to that of other studies [10,14]. Studies have
reported that high methanol content in the reaction mixture can inhibit the activity of lipase [10,14].
In this study, the maximal reaction conversion was obtained at a methanol:oleic acid molar ratio of 3.34:1.

Figure 5 presents the effects of temperature and enzyme loading on the reaction conversion while
maintaining methanol:oleic acid molar ratio and SAP loading at their central levels. At any enzyme
loading level, the reaction conversion increased when increasing the temperature. Nevertheless, a high
temperature resulted in a decrease in the reaction conversion because the enzyme becomes inactive
at high temperatures [14,32,49]. This result agrees with that of other studies [32,33]. Studies have
demonstrated that lipases are sensitive to temperature, and therefore low or elevated temperatures
caused a dramatic decrease in their activity [14,33,49]. Similar to temperature, the enzyme loading
also significantly affected the reaction conversion. At a given temperature, increasing enzyme loading
led to a significant increase in reaction conversion. Studies have reported that an increase in the
amount of the enzyme increased contact between the enzyme active surface area and the reactants,
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thus enhancing the reaction [14,50]. However, a further increase in enzyme loading resulted in a slight
decrease in reaction conversion. Excess enzyme possibly caused enzyme aggregation, which limited
the enzyme flexibility to react with the oleic acid–methanol interface, thus lowering the conversion of
the reaction [14,50].Energies 2018, 11, x FOR PEER REVIEW  8 of 12 
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Figure 4. Response surface plot of the combined effects of temperature and reactant molar ratio on the
conversion of the reaction at a constant SAP loading (10%) and enzyme loading (10%).
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Figure 5. Response surface plot of the combined effects of temperature and enzyme loading on the
conversion of the reaction at a constant reactant molar ratio (5:1) and SAP loading (10%).

3.4. Obtaining Optimal Reaction Conditions

Based on the empirical model [Equation (3)], the canonical method was used to forecast the
optimal reaction conditions for maximizing reaction conversion. The highest conversion was predicted
to be 97.83% at 35.25 ◦C, methanol:oleic acid molar ratio of 3.34:1, SAP loading of 10.55%, and enzyme
loading of 11.98%. An experiment was then carried out under optimal conditions to verify the
prediction. A conversion of 96.73% ± 0.15% was obtained, indicating consistent with the empirical
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model prediction. The developed RSM model can be therefore used to describe the relationships
between the response and the variables in the liquid lipase-catalyzed esterification of oleic acid with
methanol. Furthermore, the reaction conversion was comparable with other process but exhibited a
shorter reaction time [25,29]. In this study, high reaction conversion (96.73%) was obtained under the
reaction time of 2.5 h whereas 24 h was required to yield conversion of 90.8% in the esterification of
oleic acid with methanol using lipase without SAP reported by Rosset et al. [25]. This suggests that the
liquid lipase-catalyzed esterification of fatty acids with methanol using SAP as a water-removal agent
is a promising process for producing biodiesel.

3.5. Reusability of Liquid Lipase

Although immobilized lipase is being used for its stability and reusability, its high cost restricts
its industrial application. To solve this concern, liquid lipase was developed as an alternative for
the reaction. Liquid lipase can be reused several times without significant loss in activity [29]. This
study investigated the reusability of Eversa Transform lipase through the esterification of oleic acid
and methanol under the optimal reaction conditions. As indicated in Figure 6, the Eversa Transform
lipase could only be reused once to drive the reaction to high conversion. After one cycle, the reaction
conversion decreased sharply. This was attributed to the inactivation effect of methanol on the
enzyme [10,14] and the low stability of liquid enzyme [51]. Further investigation is required to address
this limitation. Although liquid lipase demonstrated low reusability in this study, the enzyme remains
a promising alternative to immobilized lipase for industrial application because of its low cost [33,52].
Studies have demonstrated that the cost of liquid lipase is 30- to 50-fold lower than that of immobilized
lipase [30]. Additionally, the preparation of the liquid lipase is much simpler. Because of these merits,
liquid lipase is suggested as a potential alternative for the reaction to improve economic viability.
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Figure 6. Reusability of liquid lipase for esterification of oleic acid and methanol.

4. Conclusions

This paper reports the liquid lipase-catalyzed esterification of oleic acid with methanol using SAP
as a water-removal agent for biodiesel production. The use of SAP significantly enhanced the reaction
conversion by suppressing the reverse reaction. The reaction conditions were then optimized to obtain
maximal conversion yield using RSM. A maximal conversion of 96.73% was achieved and verified
the optimization calculations. Although Eversa Transform lipase was ineffectively reused due to the
deactivation of enzyme caused by methanol, liquid lipase-catalyzed esterification in the presence of
SAP is promising for biodiesel production from feedstocks containing high water content.
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