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Abstract: Accurate detection and isolation of possible faults are indispensable for operating complex
industrial processes more safely, effectively, and economically. In this paper, we propose a fault
isolation method for steam boilers in thermal power plants via classification and regression tree
(CART)-based variable ranking. In the proposed method, binary classification trees are constructed
by applying the CART algorithm to a training dataset which is composed of normal and faulty
samples for classifier learning then, to perform faulty variable isolation, variable importance values
for each input variable are extracted from the constructed trees. The importance values for non-faulty
variables are not influenced by faulty variables, because the values are extracted from the trees with
decision boundaries only in the original input space; the proposed method does not suffer from
smearing effect. Furthermore, the proposed method, based on the nonparametric CART classifier,
can be applicable to nonlinear processes. To confirm the effectiveness, the proposed and comparison
methods are applied to two benchmark problems and 250 MW drum-type steam boiler. Experimental
results show that the proposed method isolates faulty variables more clearly without the smearing
effect than the comparison methods.

Keywords: drum-type steam boiler; fault isolation; classification and regression tree; variable ranking;
smearing effect

1. Introduction

Modern industrial processes (e.g., power plants, and chemical and manufacturing processes) are
becoming larger and more complex owing to efforts to fulfill safety and environmental regulations,
to save costs, and to maximize profits. Therefore, process monitoring for accurate and timely detection
and isolation of potential faults is more important than ever before. Faults are defined as abnormal
events that occur during process operations. In thermal power plants (TPPs), main generating units
(e.g., steam boilers and turbines) operate under very high pressure and temperature; if possible
faults of the main units are not detected and isolated precisely, they may result in system failures,
and eventually may cause significant losses of life and property. Properly designed monitoring systems
can ensure safe, effective, and economical operations of target processes.

Statistical process monitoring techniques fall into two categories: model-based and data-based
methods. In the model-based methods, process monitoring is carried out by rigorous mathematical
models derived from prior physical and/or chemical knowledge (e.g., mass or energy balances)

Energies 2018, 11, 1142; doi:10.3390/en11051142 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4932-5458
http://www.mdpi.com/1996-1073/11/5/1142?type=check_update&version=1
http://dx.doi.org/10.3390/en11051142
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1142 2 of 19

governing target processes; the monitoring performance may be degraded when the derived models
are inaccurate. If target processes are heavily complex and large-scale, the derivation of the models is
difficult, or may be impossible; even when possible, it is costly and takes much time. Despite their
development efforts (e.g., mathematical derivations and proofs), they may be limited by boundary
conditions for specific system behaviors or only applicable for particular system setups [1]. In the
data-driven techniques, monitoring models are developed based on historical operation data. Recent
advances in communications and measurement technologies facilitate the installation of huge numbers
of sensors in target processes; various key variables related to process monitoring and control are
measured by the installed sensors. Distributed control systems and/or supervisory control and data
acquisition systems built into modern industrial processes enable efficient management and storage of
the massive amounts of operational data. Without mathematical models based on the first-principles,
the data-driven methods are capable of extracting useful health information from abundant operation
data; they are receiving a great deal of attention from academia and industries.

Process monitoring is carried out via the following four steps [2]: fault detection, fault isolation,
fault diagnosis, and process recovery. Fault detection determines whether possible faults have
occurred; early detection helps operators and maintenance personnel take corrective actions to prevent
developing abnormal events from leading to serious process upsets. Fault isolation (also called fault
identification) locates faulty variables closely related to detected faults; the isolation results assist field
experts in diagnosing the faults precisely, i.e., it helps the system operators to determine which parts
should be repaired or replaced [3]. Fault diagnosis investigates the root causes and/or sources of
occurring faults. Process recovery corresponds to the last step in finishing the process monitoring
loop; in this step, the effects of abnormal events are removed and target processes get back to normal
operating conditions.

So far, multivariate statistical techniques and machine learning have been widely used for fault
detection and diagnosis of power plant equipment, such as principal component analysis (PCA) [4–7],
independent component analysis (ICA) [8,9], auto-associative kernel regression (AAKR) [10,11],
artificial neural networks [12,13], fuzzy models [14,15], support vector machine [15,16], neuro-fuzzy
networks [17], and group method of data handling [18]. PCA and ICA can handle multivariate process
data effectively via dimensionality reduction. AAKR is a nonparametric multivariate technique to
obtain predicted vectors for new query vectors by updating local models in real time; it can perform
fault detection tasks without any assumptions for target data properties (e.g., linear or nonlinear).
In the case of machine learning techniques for black box modeling, considering nonlinearities of target
processes, fault detection and diagnosis can be carried out without the need of physical or chemical
knowledge. Although these methods can detect potential faults successfully, they may have several
difficulties in isolating and diagnosing the faults.

As explained above, after the fault detection tasks, fault isolation and diagnosis should be
conducted to pinpoint the root causes of occurring faults. If there exist abundant historical faulty
samples whose class labels are associated with all possible fault categories, multi-class classifiers [19–22]
can be explicitly constructed. The designed classifiers assign the most similar fault categories to query
samples; faults are diagnosed without the fault isolation procedure. When designing such classifiers,
one might face the following difficulties. First, in general, the number of available faulty samples is
much fewer than that of normal samples. Actual industrial processes are carefully designed to prevent
abnormal events; the processes are equipped with closed-loop controllers compensating for the effects
of unpermitted changes and disturbances. In addition, to build multi-class classification models,
preparing complete training dataset encompassing all types of faults is nearly impossible; if all possible
faults occurred several times in the past and the corresponding fault dataset was stored in a database,
or if there are useful simulators that can emulate target processes as perfectly as possible, collecting
the complete dataset may be possible. Second, collected training dataset for classifier learning is
usually class-imbalanced [23]; the number of faulty samples may vary from class to class considerably.
Furthermore, high levels of expert experience and knowledge are required to assign proper class labels
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to historical faulty samples; these labeling procedures may also be time-consuming. Lastly, classifiers
based only on historical fault data do not function adequately when new types of faults develop.

When the faulty data samples encompassing all possible fault types are not enough, after isolating
faulty variables based on detection indices from fault detection models, the isolation results can be
used for fault diagnosis. In the fault detection models, normal samples are only needed for training,
and whether target processes fall outside normal operating regions is decided in real time; if detection
indices for query samples deviate from predefined threshold values, fault occurrence is declared,
and alarm signals are generated. After faults are detected, fault isolation should be performed to
determine which variables are responsible for the detected faults. Contribution plots [24,25] are the
most popular method for fault isolation; it is assumed that the contribution values of faulty variables
to detection indices are higher than those of non-faulty ones. In this method, monitored variables are
identified as faulty variables if their contribution values violate the confidence limits. Although the
contribution analysis can identify faulty variables quickly and easily without a historical fault dataset
and prior information on possible fault types, it has several limitations, as follows: first, the threshold
values derived only from normal data may be unsuitable for isolating faulty variables, because
contribution values of each variable within in-control regions may follow different distributions from
those outside the regions. Second, it is well-known that isolation results from contribution plots
confuse process operators and engineers due to the smearing effect [26–28]; smearing is a phenomenon
that contribution values of non-faulty variables are enlarged by faulty variables. When complicated
faults, rather than simple faults, have happened, fault isolation with contribution analysis may lead to
an ambiguous diagnosis.

In this paper, we propose a fault isolation method via classification and regression tree
(CART)-based variable ranking for a drum-type steam boiler in TPP; it is assumed that some
proper fault detection algorithms were already designed, and after possible faults are detected
by the algorithms, the proposed fault isolation method is triggered. CART algorithm [29] with a
divide-and-conquer mechanism, splits the entire input space repeatedly and builds binary trees.
CART has been successfully applied to various fields [30–33] for which data mining techniques are
necessary, since it can tackle multivariate data efficiently, and the constructed trees are transparent.
In the proposed method, after designing classification trees by applying CART algorithm to training
dataset composed of normal and faulty samples, variable ranking is performed by extracting
importance values of each input variable from the trees. In the training dataset, Normal and Abnormal
class labels are assigned to the normal and faulty samples, respectively; the faulty samples are relevant
to the regions where the detection indices are larger than or equal to threshold values. In this paper, as
will be explained in Section 3, we propose two approaches (see Figure 1) for fault isolation; the goal of
the first approach is to locate faulty variables in entire fault regions, and the second approach (with
time window sliding) aims to monitor how occurring faults propagate and evolve.

The proposed method, based on the nonparametric CART algorithm, can be applicable to fault
isolation of nonlinear processes; the method can locate faulty variables even when normal and faulty
samples cannot be linearly separated from each other. Above all, the proposed isolation method does
not suffer from the smearing effect, since it is based on CART algorithm defining decision boundaries
only in the original input space. To verify the performance, the proposed method and comparison
methods are applied to two benchmark problems and a 250 MW drum-type steam boiler. Experimental
results show that the proposed method can effectively identify faulty variables without suffering from
fault smearing, and can properly tackle nonlinearities of target processes.

The remainder of this paper is organized as follows: Section 2 explains CART-based tree growing,
pruning, and variable ranking. Section 3 describes the proposed isolation method via the variable
ranking. Section 4 presents the experimental results and discussion, and finally, we give our conclusions
in Section 5.
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Figure 1. Proposed fault isolation method based on CART-based variable ranking: (a) fault isolation
for the entire fault region (denoted as Method 1); (b) fault isolation using time window sliding (denoted
as Method 2).

2. Classification and Regression Tree

The CART algorithm [29] builds binary decision trees by recursively dividing a given training
dataset into several subsets; the entire input space is partitioned into mutually exclusive rectangular
regions. In the constructed trees, nodes without any child nodes are named terminal nodes
(i.e., external or leaf nodes); they form a partition of all the training samples. The remaining nodes
except for the terminal nodes are called internal nodes, which have only two child nodes; especially,
the nodes located at the top of the trees are defined as root nodes. In classification trees, out of several
class labels, only one label is assigned to each terminal node.

The advantages of CART algorithm can be summarized as follows [29,34]: first, without any prior
domain knowledge, classifiers can be constructed only from input-output training dataset; multivariate
data collected from complex target systems can be efficiently handled by its divide-and-conquer
approach. Second, one does not need to be concerned about target data properties in advance
(e.g., linear or nonlinear) because of its nonparametric nature. Third, the algorithm is robust against
statistical outliers and mislabeled training samples. Lastly, final tree structures and if-then rules taken
from the trees explicitly describe predictive principles of target problems; one can clearly understand
how the classification procedures are conducted by the trees. The following CART-based tree growing,
pruning, and variable ranking steps explained in Sections 2.1–2.3 are based on [29].

2.1. Tree Growing

In the CART algorithm, splitting a note t into two child nodes, tL and tR, is achieved by selecting an
optimum binary split point that makes the child nodes purer than the parent node; here, the subscripts
L and R denote Left and Right, respectively. There are several criteria (i.e., impurity function i(t)),
such as Gini diversity index, cross entropy, and twoing rule, used for impurity measures; in [29], it was
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reported that the properties of constructed trees do not depend highly on the types of criteria. In this
study, to measure node impurities, we use Gini diversity index defined as:

i(t) = ∑
l 6=k

p(l|t)p(k|t) =
(
∑l p(l|t)

)2
−∑l p2(l

∣∣t) = 1−∑l p2(l
∣∣t) , l, k = 1, . . . , C, (1)

where C is the number of assignable class labels, and p(l|t) is the ratio of samples with lth class label
among all samples at node t, i.e., ΣC

l=1 p(l
∣∣t) = 1 . In two-class problems (i.e., C = 2), Equation (1) can

be rewritten as i(t) = 2p(1|t)p(2|t). In (1), the cost, c(k|l), k 6= l, of misclassifying a sample with lth label
into kth label is set to 1; the cost may vary from label to label. Gini diversity index with c(k|l) 6= 1,
k 6= l, is calculated as:

i(t) = ∑
l,k

c(k|l)p(k|t)p(l|t) , (2)

where c(k|l) = 0 for k = l. In two-class problems, Equation (2) can be written as i(t) = (c(2|1) +
c(1|2))p(1|t)p(2|t).

Let s denote a candidate split point dividing a node t into tL and tR, and let pL and pR be the ratios
of training samples entering tL and tR, respectively, by the split point among all samples at node t.
The candidate split points of jth continuous input variable xj are obtained from averaging all possible
adjacent pairs of training samples with respect to xj. The goodness of split point s at node t, ∆i(s, t),
is defined as a decrease in impurity:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR). (3)

Let S be a set that consists of all possible candidate split points for all input variables. The best
split point s* that gives the largest decrease in impurity is obtained by:

s∗ = argmax
s∈S

∆i(s, t). (4)

For example, when the split point s* divides a node t into tL and tR on the j*th input variable xj∗ ,
training samples belonging to tL and tR are satisfied with the conditions xj∗ < s∗ and xj∗ ≥ s∗, respectively.

By the above principles, root node t1 is split into descendant nodes t2 and t3, and then, partitioning
is continuously applied at each node separately. If ∆i(s∗, t) is smaller than a predefined value, then
node splitting is stopped and the node t is regarded as a terminal node; the class label of the terminal
node can be determined by plurality rule [29].

2.2. Tree Pruning

In tree growing, it may be unhelpful for the performance of final trees to consider complicated
rules for stopping node division. Instead of stopping node splits when reaching a tree with right-sized
terminal nodes, after continuing the splits until the number of training samples at each terminal node is
very small (i.e., constructing a very large tree with many terminal nodes), it is much better to decide the
final tree structure through selective upward pruning. A decreasing sequence of subtrees can be obtained
by applying sequential tree pruning to the large tree in the direction of the root node; the tree with the
minimum misclassification rate can be finally selected from the subtrees. In this paper, after obtaining
the sequence of subtrees through minimal cost-complexity pruning, the final trees with optimal number
of terminal nodes are selected using cross-validation. This recursive pruning process is computationally
efficient; this process requires only a small fraction of the total tree construction time [29].

2.3. Variable Ranking Based on Surrogate Splits

Assume that node t is divided into tL and tR by best split point s* on best split variable xj∗ .
Surrogate splits are defined as split points that behave most similarly to s* on the remaining input
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variables, except for xj∗ . Suppose that node t can also be partitioned into t′L and t′R by candidate splits
sj on input variables xj, j ∈ {1, . . . , m}\j*. Let NLL(t) and NRR(t) be the number of training samples
going to the left and right nodes by both s* and sj, respectively; NLL(t) and NRR(t) are the number of
samples that meet the conditions xj∗ < s* and xj < sj, and the conditions xj∗ ≥ s* and xj ≥ sj, respectively.
The probability that sj correctly predicts the action of s* is defined as:

p(sj, s∗) =
NLL(t) + NRR(t)

N(t)
, (5)

where N(t) is the number of training samples belonging to node t. If the probability values are larger,
sj closely mimics s*; if s* sends a sample to tL, then the likelihood of sj sending the sample to t′L is high.
The best surrogate split s̃j on xj can be obtained through:

s̃j = argmax
sj

p(sj, s∗). (6)

If there are no split points on some input variables in final trees, we may think that these variables
are useless for classification; however, this is a misinterpretation of the final trees when the effects of
the variables are masked by other variables. In other words, although node splits on some variables do
not appear in the final trees, the importance of those variables may be high; this may be the evidence
of the masking. For example, for convenience of explanation, let us assume that two input variables x1

and x2 have greater effects on classification than other variables; here, the effects of x1 and x2 are similar
but the effect of x1 is a little larger than that of x2. In this case, node splits may be performed only on
the masking variable x1 (i.e., x2 may be masked by x1); if x1 is removed, x2 may be prominently used
as split variable. In summary, under the above situations, instead of determining variable importance
only by examining split variables in final tree structures, we should decide variable importance through
the variable ranking based on the surrogate splits [29]. The masking may occur when input variables
are highly correlated to each other. For CART users, it is essential to confirm which variables are
the most significant for classification and to rank variables according to their importance. Based on
the surrogate splits explained above, one can calculate the importance values of each input variable.
After calculating the goodness of split ∆i(s, t) for best split s* and surrogate splits s̃j relevant to all input
variables at all internal nodes, the importance of the jth variable can be measured by:

M(xj) = ∑
t∈T′

∆i(s, t)p(t), (7)

where T′ is a set composed of all internal nodes in the final trees, and p(t) is the ratio of samples at
node t to entire training samples. If xj corresponds to the best split variable at node t, then the best
split s* is substituted into Equation (7) (i.e., in Equation (7), ∆i(s, t) ≡ ∆i(s*, t)); otherwise, the value
of s takes surrogate splits s̃j of xj instead of s* (i.e., in Equation (7), ∆i(s, t) ≡ ∆i(s̃j, t)). Since we are
usually interested in the relative importance of input variables, variable ranking is performed through
the normalized importance values as follows:

M(xj) = 100M(xj)/max
j

M(xj). (8)

After extracting variable importance values via Equation (8) from constructed trees, faulty
variables can be isolated by comparing these values. In the fault region, faulty variables have great
explanatory powers to discriminate normal and faulty samples; their importance values are nearly 100
(i.e., M(xj) ≈ 100). On the other hand, the values of non-faulty variables are much smaller than those
of faulty. In this paper, we decide monitoring variables whose importance values are larger than 80
(i.e., M(xj) ≥ 80) as faulty variables. After sorting monitoring variables according to their importance
values, we can also confirm the priority of variables responsible for occurring faults.
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3. CART-Based Fault Isolation

This section provides the proposed fault isolation method via CART-based variable ranking as
explained in Section 2.3. The purpose of fault isolation is to identify which monitored variables are
closely related to occurring faults, and then to support process operators and engineers in deciding on
correct fault types. In this paper, two kinds of approaches are employed for fault isolation. In the first
approach, we check how much each variable contributes to the occurring faults in the entire fault
region. In the second approach, time window sliding is used to track how the faults evolve and
propagate over time. The first approach is suited to offline analysis of process anomalies; the second
approach aids in understanding fault evolution and propagation mechanisms online. Figure 1a,b
describe the proposed first and second fault isolation approaches, respectively.

From now on, let us take a close look at the first approach (see Figure 1a). In Step 1, we prepare
normal data matrix Xnormal composed of normal samples x(tnormal

start ), . . . , x(tnormal
end ), and fault data

matrix Xfault composed of fault samples x(tfault
start ), . . . , x(tfault

end ). The normal samples may correspond
to training samples used to build fault detection models such as PCA and ICA; the fault samples are
brought from a fault region where alarm signals are consistently generated. And then, training matrix
X for tree construction is organized by augmenting Xnormal and Xfault; class labels (Normal or Abnormal)
are assigned to the last column in X, based on whether input vectors are normal or faulty. Finally,
after building a classification tree based on X, the importance values of each variable are calculated, as
explained in Section 2.3. In Step 3, after constructing a large tree with many terminal nodes, a sequence
of subtrees is obtained through the minimal cost-complexity pruning; then, the optimal tree is selected
by cross-validation, and the importance values are computed by Equation (8). The input variables with
high importance values are dominant to separate normal and faulty samples in the original input space;
they have great explanatory powers when classifying normal and faulty samples. The importance
values of non-faulty variables are small, because their behaviors are similar in both normal and fault
regions. On the other hand, faulty variables have high importance values, since their patterns are
significantly different in the two regions. In summary, the first approach identifies the input variables
with high importance values as faulty variables in the entire fault region. This approach cannot confirm
how faults evolve and propagate from start time tfault

start to end time tfault
end .

In the second approach in Figure 1b, calculations of the importance values are repeated by sliding
time window with size w along the time axis, i.e., from tfault

start to tfault
end . The matrix Xfault, composed of w

fault samples, changes every moment; except for this, the remaining procedures are same as those of
the first approach. For example, at time t = tfault

start + w − 1, Xfault consists of faulty samples x(tfault
start ), . . . ,

x(tfault
end +w− 1), and at time t = tfault

start + w, Xfault consists of faulty samples x(tfault
start + 1), . . . , x(tfault

end +w),
and so on. Whenever Xfault changes, a new tree should be constructed and variable importance values
are extracted from the newly constructed tree; computation time in this approach is longer than
the first approach because many final trees are constructed. In this case, to save time, the pruning
process may be skipped; the importance values before and after the process may not be considerably
different. The importance values obtained through the window sliding from time t = tfault

start + w − 1
to t = tfault

end enable proper monitoring of fault evolution and propagation effects. From now on, for
convenience of explanation, the two approaches presented in Figure 1a,b are referred to as Method 1
and Method 2, respectively.

4. Experimental Results and Discussion

In this section, to verify the performance, the proposed method (i.e., Method 1 and Method 2)
is applied to two benchmark problems (i.e., a simple linear process and a three variable nonlinear
process), and 250 MW drum-type steam boiler. In the first and third problems, contribution plots
based on PCA and AAKR are employed as comparison methods; in the nonlinear process, since PCA
cannot detect bias and drift faults accurately, it is excluded. Before applying fault detection and
isolation methods, each monitored variable is normalized to zero mean and unit variance. In PCA,
to reduce dimensions in principal component (PC) subspace, PCs capturing more than 85 percent
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of variations are only retained; contribution analysis for detection indices (i.e., T2 and Q statistics) is
performed for fault isolation; kernel density estimation (KDE) [35] is employed to define threshold
values for fault detection and contribution analysis. In the case of AAKR [11], squared prediction
error (SPE) is used as a detection index, and contribution values of monitored variables for SPE are
also calculated; in common with PCA, thresholds for fault detection and contribution analysis are
determined by KDE. In both PCA and AAKR, level of significance α is set to 0.01. To construct CART
classifiers and to extract variable importance values from the classifiers, we employee the ‘fitctree’
and ‘predictorImportance’ MATLAB functions built into the Statistics and Machine Learning Toolbox;
the ‘ksdensity’ function in the same toolbox is used to estimate cumulative distribution functions of
detection indices and contribution values via KDE.

Method 1 uses the impurity function in Equation (1) to measure node impurities. To take into
account imbalance between normal and abnormal classes, Method 2 employs Equation (2) instead of
Equation (1). In the case of Method 2, there are much more samples with Normal class labels than those
with Abnormal in the training matrix X (see Figure 1) for CART classifiers. In Equation (2), c(1|2) and
c(2|1) denote misclassification costs associated with classifying an abnormal sample into a normal
sample and vice versa; for example, c(1|2) and c(2|1) can be set to 10 and 1, respectively. In Method 2,
the size of time window w is set to 10.

4.1. Simple Linear Process

First, let us describe the results of applying the proposed and comparison methods to the
simple linear process, also used in [28]. Simulation data is obtained from the following multivariate
linear system: 

x1

x2

x3

x4

x5

x6


=



−0.1681 0.2870 −0.2835
0.4354 0.3812 0.1455
0.0247 −0.0235 0.4096
−0.1173 −0.1763 0.4382
0.0825 0.1398 0.3204
−0.3825 0.1250 0.4836


 s1

s2

s3

+ e (9)

where x1, . . . , x6 are directly measurable variables, s1, . . . , s3 are source variables that follow normal
distributions with mean of 0 and variances of 1, 0.8, and 0.6, respectively, and e is white noise with
mean of 0 and variance of 0.04. From Equation (9), the six monitored variables are calculated through
the linear combination of three source variables. To train PCA and AAKR, 3000 samples are generated;
these samples are also used to form the normal data matrix Xnormal in Figure 1. Faulty samples are
obtained through the addition of the term ξf (t), reflecting the effects of anomalies, into normal samples
x*(t) as follows:

x(t) = x∗(t) + ξ f (t), (10)

where the normal sample x*(t) at time t is corrupted by ξf (t), and ξ and f (t) denote the fault direction
vector and fault magnitude, respectively. In this paper, in common with [28], we consider two types
of fault (i.e., simple and multiple faults) to verify the fault isolation performance. In the simple fault,
the fault direction vector and its magnitude are set to ξ = [0 0 0 1 0 0]T and f (t) = 10−5t2, respectively,
and 1000 faulty samples are generated. The multiple fault is represented with ξ = [1 0 1 0 0 0]T and
f (t) = 6 × 10−6t2, and the corresponding 1200 faulty samples are also generated.

Figure 2 shows the fault isolation results of the comparison methods and Method 2 (see Figure 1b)
for the simple and multiple faults. In the figures related to the comparison methods, if variable
contribution values at a certain time are larger than or equal to thresholds, the relevant entries display
as black; otherwise, the entries are marked with white. In the figures associated with Method 2,
variable importance values at a certain time are indicated through different colors; as the values are
close to 100 (or 0), the colors for relevant entries are close to black (or white). The simple and multiple
faults start to be detected by PCA and AAKR at about time t = 300; the monitoring charts of PCA and
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AAKR for fault detection are omitted due to space constraints. As presented in Figure 2, PCA-based
contribution plots suffer terribly from smearing effect. In the simple fault, in addition to faulty variable
x4, contribution values of normal variables x1, x2, x3, and x5 deviate from confidence limits. In the
multiple fault, we can confirm severe smearing over non-faulty variables x2, x5, and x6. In AAKR-based
contribution analysis, smearing over normal variables appears consistently, although its severity is
less than PCA. In the case of Method 2, importance values of non-faulty variables are not equal to zero
only in the early stages of the faults. However, faulty variables of the simple and multiple faults are
clearly identified after approximately time t = 370. Contrary to comparison methods, as the magnitude
of the faults becomes larger over time, importance values of normal variables obtained by Method 2
become closer to zero.
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Figure 2. (Simple linear process) Fault isolation results of comparison methods (PCA- and AAKR-based
contribution plots) and Method 2: (a) (simple fault) PCA-based contribution plot; (b) (simple
fault) AAKR-based contribution plot; (c) (simple fault) variable importance values with Method 2;
(d) (multiple fault) PCA-based contribution plot; (e) (multiple fault) AAKR-based contribution plot;
(f) (multiple fault) variable importance values with Method 2.

Figure 3 shows variable importance values related to the simple and multiple faults, which are
calculated by Method 1 (see Figure 1a). For the simple fault, faulty samples from time t = 301 to
t = 1000 constitute the fault data matrix Xfault; for the multiple fault, the matrix Xfault consists of faulty
samples from time t = 301 to t = 1200. As shown in the figure, variable importance values of faulty
variables are much larger than those of normal (i.e., close to 100); the values of non-faulty variables
are close to zero. In other words, in this benchmark problem, Method 1 can locate faulty variables
accurately in the entire fault regions.
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4.2. Three Variable Nonlinear Process

Second, let us look at the results of fault isolation for the nonlinear process (also used in [36,37])
with three monitored variables and one latent variable described as follows:

x1 = s + e1

x2 = s2 − 3s + e2

x3 = −s3 + 3s2 + e3

(11)

where x1, . . . , x3 are the monitored variables, s ∈ [0.01, 2] is the source variable, and e1, . . . , e3 follow
independent Gaussian distributions with mean and variance of 0 and 0.01, respectively. We obtain
100 normal samples from Equation (11), used to build fault detection models and to form the normal
data matrix Xnormal. To validate the performance of fault isolation, two fault cases, where each case is
composed of 300 test samples, are generated as follows:

• Case 1: A step change of x2 by −0.4 was introduced starting from sample 101.
• Case 2: x1 was linearly increased from sample 101 to 270 by adding 0.01(t − 100) to the x1 value

of each sample in this range, where t is the sample number.

Figure 4 shows the fault isolation results of applying AAKR-based contribution analysis and
Method 2 to the two fault cases.
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AAKR-based contribution analysis starts to identify the faulty variable x2 in Case 1 at time t = 101,
but its contribution values fluctuate constantly, and alarms are repeatedly generated and halted over
time; contribution values of x2 do not steadily deviate from thresholds but depart from and return
to normal regions again and again. Also, smearing over normal variable x3 is frequently observed.
These phenomena may cause confusions to root cause analysis for uncovering the fundamental causes
and/or sources of occurring faults. In Case 2, contribution values of faulty variable x1 consistently
violate thresholds from about time t = 160 to 270, but smearing over non-faulty variables x2 and x3

becomes larger as the magnitude of the fault increases. With Method 2, the importance values of faulty
variables in Cases 1 and 2 are very close to 100 in the fault regions. In Case 1, importance values of
non-faulty variables x1 and x3 fluctuate widely over time; this is not due to smearing effect but is
due to the fact that the fault magnitude is not very large. Although the fault occurred only in faulty
variables, to determine decision boundaries for dividing normal and faulty samples in the original
input space, non-faulty variables as well as faulty variables are needed when the fault magnitude is
small. If the magnitude is large enough, it is possible to establish the boundaries using only faulty
variables. In Case 2, the importance values of normal variables are slightly large when the fault
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magnitude is not large enough; as the magnitude becomes larger, the importance values of non-faulty
variables decrease gradually.

Now, let us look more carefully into fault isolation results using Method 1. Figure 5 depicts
the results of applying Method 1 into Cases 1 and 2. In Case 1, to construct CART classifiers, faulty
samples from time t = 201 to 300 constitute the fault data matrix Xfault in Figure 1a; in Case 2, Xfault is
composed of faulty samples from time t = 171 to 270. As can be seen from Figure 5, the importance
values of faulty variables are nearly 100; the values of non-faulty variables are relatively smaller than
those of faulty. Examining the results for Methods 1 and 2 synthetically may greatly help field experts
diagnose developing faults in target processes.
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Figure 6 shows the constructed trees from which the importance values in Figure 5 are extracted
and the scatter plots for normal and faulty samples used to build the trees.
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In Figure 6b,d, normal and faulty samples are denoted by black circles and red asterisks,
respectively; faulty samples in Figure 6b,d correspond to samples at time t = 201 to 300 and t = 171 to
270 in Cases 1 and 2, respectively. Index numbers are marked at the bottom of each terminal node in
Figure 6a,c, and the corresponding rectangle regions in Figure 6b,d are also indexed by the numbers.
In the constructed trees, not only faulty variables but also non-faulty variables have been partitioned;
it is important to note that identifying faulty variables via variable importance values in (8) is more
reasonable than doing this only through checking split variables in the final trees. In Figure 6b,d,
it is obvious that non-faulty variables as well as faulty variables are required to define the decision
boundaries for classifying normal and faulty samples. In other words, if the magnitude of mean shifts
is small, both faulty and non-faulty variables are needed to derive the boundaries. As the magnitude
of the bias and drift faults becomes larger, the need for non-faulty variables shrinks.

4.3. Drum-Type Steam Boiler in Thermal Power Plant

In this subsection, we present the results of applying the proposed fault isolation method to a
250 MW drum-type steam boiler. Figure 7 [11] describes the simplified schematic diagram of the target
drum-type boiler.
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Figure 7. Simplified schematic of the target drum-type boiler [11].

The boiler raises steam by boiling feedwater using thermal energy converted from fossil fuel.
After being preheated by extraction steam from the turbines at feedwater heaters, the feedwater is
supplied to the economizer. The feedwater, heated again by flue gas at the economizer, flows into
the drum. The feedwater and saturated water in the drum are fed into the evaporator through
a downcomer. The evaporator raises saturated steam by absorbing radiant heat of the furnace.
The saturated water and steam are separated at the drum. The superheater converts the main steam
from the drum into high-purity superheated steam supplied to the high pressure turbine. Working in
the high-pressure turbine, the main steam is reheated by reheater and provided to the intermediate
pressure turbine. The main steam that exits from the low-pressure turbine is condensed into condensate
water. After being boosted by pumps and preheated by feedwater heaters, the water is fed into the
boiler again. For more details regarding TPPs, refer to the books of Sarkar [38], Basu and Debnath [39],
Kitto and Stultz [40], and Singer [41].

In the target boiler, key process variables such as main steam temperature, furnace pressure,
drum water level and condenser make-up flow need to be closely monitored to check whether they
deviate from specified limits. For example, main steam temperature may show abnormal variations
due to the following several factors: malfunction of attemperators, excess air ratio, fouling formed
on outer surfaces of superheater, and slag attached to outer surfaces of waterwall. To avoid the
failures due to extremely high metal temperature, it is indispensable to control the steam temperature
precisely [6]. When the steam temperature is lower than its rated value, moisture content in the main



Energies 2018, 11, 1142 13 of 19

steam may increase; this may cause erosion of steam turbines. Also, if there are some problems with
feedwater supply, drum water level may increase or decrease. The unusual rises of drum level may
result in carryover of water into superheaters or steam turbines. On the other hand, if the level is too
low, the amount of feedwater supplied into waterwall tubes declines. In this case, the tubes cannot
readily absorb radiation energy generated in the furnace; this may reduce the life expectancy of the
tubes due to overheating, and may lead to catastrophic disasters. Table 1 lists process variables for
condition monitoring of the target boiler in Figure 7.

Table 1. Summary of monitored variables for target drum-type steam boiler.

Variable Description Unit

x1 Generator output MW
x2 Steam flow t/h
x3 Main steam pressure kg/cm2

x4 Main steam temperature ◦C
x5 Reheater pressure kg/cm2

x6 Furnace pressure kg/cm2

x7 Drum level m
x8 Condenser make-up flow t/h
x9 Feedwater flow t/h

4.3.1. Artificial Fault Cases

From now on, we describe the results for fault isolation of artificially generated two fault cases in
the target boiler. For the simulation study, 2500 historical normal samples from the target system are
prepared; each sample is recoded in 5-min intervals. Among the normal samples, 2000 samples are
used to train fault detection models (i.e., PCA and AAKR) and to form the normal data matrix Xnormal

in Figure 1a; the remaining 500 samples are considered as test dataset. In the test dataset, we generate
artificial drift and bias faults, respectively, starting at 201th samples as follows:

• Case 1: x4 was linearly increased from t = 201 to the end by adding 0.1(t − 200) to the x4 value of
each sample in this range, where t is the sample number.

• Case 2: Step changes of x6 and x7 by 10 were introduced starting from t = 201 to the end.

Figure 8 shows the trajectories of faulty variables relevant with the Cases 1 and 2; blue and red
solid lines describe normal and abnormal behaviors of the faulty variables without and with the
artificial fault effects, respectively.

As shown in Figure 8a, if the drift fault has occurred, main steam temperature (x4) starts to
gradually increase from 201th sample by 0.1 ◦C. In Figure 8b,c, furnace pressure and drum level have
risen steeply at time t = 201, respectively.

Figure 9 summarizes the fault isolation results obtained by applying comparison methods (PCA-
and AAKR-based contribution plots) and Method 2 into Cases 1 and 2. In Figure 9a,d, Q and T2

statistics-based contribution plots are used for fault isolation, respectively. First, let us look into the
isolation results related with Case 1. As can be seen from Figure 9a, contribution plot for Q statistic
suffers from smearing effect; it is observed that severe smearing arises at non-faulty variables x1, x2,
x5, x6, x7, and x9. In Figure 9b, contribution values of x4 start to consistently depart from in-control
region at about time t = 230; although the magnitude of the drift fault becomes larger, minor fault
smearing in some normal variables (i.e., x2, x5, x8, x9) is observed in Figure 9b. In the case of Method 2,
normal variables as well as faulty variable x4 have relatively high importance values in the early stage
of the drift fault (from about time t = 210 to 290); in the time period from t = 300 to the end, we can
confirm that Method 2 can isolate faulty variable x4 more precisely than comparison methods.
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Figure 8. (Artificial fault cases) Behaviors of faulty variables: (a) (Case 1) main steam temperature (◦C)
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Figure 9. (Artificial fault cases) Fault isolation results of comparison methods and Method 2: (a) (Case 1)
Q statistic-based contribution plot; (b) (Case 1) AAKR-based contribution plot; (c) (Case 1) variable
importance values with Method 2; (d) (Case 2) T2 statistic-based contribution plot; (e) (Case 2)
AAKR-based contribution plot; (f) (Case 2) variable importance values with Method 2.

In Case 2, contribution plot for T2 statistic of PCA isolates faulty variables x6 and x7 more
clearly than that of AAKR; but contribution values for x6 deviate from threshold values insignificantly.
In Figure 9e, it is observed that fault smearing in normal variables x5, x8, and x9 has happened. It is
apparent from Figure 9d,e,f that Method 2 achieves clearer isolation results than comparison methods.

Next, let us take a look at the isolation results based on Method 1, which are presented in Figure 10.
In Cases 1 and 2, the values of tfault

end are set as 500 and 400, respectively, and the value of tfault
start is set as

301 in both cases; here, 2000 normal samples (also used to train PCA and AAKR) constitute the normal
data matrix Xnormal. As presented in Figure 10a, importance value of main steam temperature (x4) is
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nearly 100, and the values of the others are less than 30; as a result, we can decide x4 as major variable
for discriminating normal and faulty samples of Case 1 in the original input space. In Figure 10b,
it can be observed that the variable importance values of furnace pressure (x6) and drum level (x7) are
extremely higher than those of others.
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Figure 10. (Artificial fault cases) Variable importance values obtained by Method 1: (a) Case 1;
(b) Case 2.

Figure 11 shows the constructed tree from which the importance values in Figure 10b are extracted
and the corresponding scatter plot of normal and faulty samples (from tfault

start = 301 to tfault
end = 400).

Only faulty variables x6 and x7 are used as split variables in Figure 11a; the other variables do not
appear in the final tree. As shown in Figure 11b, the classification tree based on nonparametric CART
algorithm can successfully define decision boundaries for separating normal and faulty samples.
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4.3.2. Failure Data Due to Waterwall Tube Leakage

In this subsection, we provide the results of applying Methods 1 and 2 to failure data (also
investigated in [5,11]) due to waterwall tube leakage, which is gathered from the target boiler in
Figure 7. Failure from one or more tubes in the boiler can be detected by sound and either by an
increase in the make-up water requirement (indicating a failure of the water-carrying tubes) or by
an increased draft in the superheater or reheater areas (due to failure of the superheater or reheater
tubes) [38]. The boiler tubes can be influenced by several damage processes such as inside scaling,
waterside corrosion and cracking, fireside corrosion and/or erosion, stress rupture due to overheat
and creep, vibration-induced and thermal fatigue cracking, and defective welds [42]. Tube leakage
from a pin-hole might be tolerated because of an adequate margin of feedwater and the leakage



Energies 2018, 11, 1142 16 of 19

can be corrected after suitable scheduled maintenance [43]. However, if the boiler is continuously
operated with the leakage, much of the pressurized fluid will eventually leak and cause severe damage
to neighboring tubes. Tube leakage of boiler, superheater and reheater could result in a serious
efficiency decline.

Target failure dataset consists of 4273 training and 1054 test samples, respectively; sampling
interval is equal to 5 min, and monitored variables are same as those listed in Table 1. The matrix
Xtraining is composed of the training samples and they should be collected from the target boiler under
normal operating conditions. The tube leakage occurred at 911th test sample, and after about 12 hours,
unplanned shutdown procedures were initiated. Figure 12 shows the fault isolation results for the
failure dataset based on Methods 1 and 2; here, tfault

start and tfault
end are set as 951 and 1050, respectively.

As can be seen from Figure 12a, importance values of condenser make-up flow (x8) and feedwater flow
(x9) are larger than 80 in the time interval (from t = 951 to t = 1050); those of others in the interval are
smaller than 40. In Figure 12b, normal variables such as x2, x4, and x5 exhibit high importance values
temporarily at the beginning of the leakage; as the strength of leakage becomes larger, faulty variables
x8 and x9 are precisely isolated. Figure 13 describes the trajectories of the faulty variables (x8 and x9)
in the test period; it can be observed that condenser make-up flow and feedwater flow start to rise
sharply at the time t = 911.
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Figure 13. (Failure data due to waterwall tube leakage) Trajectories of faulty variables related to
waterwall tube leakage: (a) condenser make-up flow (t/h) (x8); (b) feedwater flow (t/h) (x9).

4.4. Discussion

In this subsection, we summarize the strengths of the proposed fault isolation method, which are
confirmed from the experimental results in Sections 4.1–4.3. The main strength of the proposed method
is that it does not suffer from smearing effect. As shown in Figure 2, Figure 4, and Figure 9, PCA- and
AAKR-based contribution plots are troubled with smearing effect; in contrast, the proposed isolation
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method (i.e., Method 2) can clearly locate faults without the smearing as the fault magnitude becomes
larger. In PCA, the contribution values are obtained through projecting query samples in the original
space onto a reduced latent space; latent variables are linear combinations of all original variables.
Therefore, contribution values of non-faulty variables are also influenced by faulty variables. In AAKR,
each component of predicted vectors is a function of both non-faulty and faulty variables; contribution
analysis based on the predicted vectors also suffers from fault smearing. The proposed method locates
faults by selecting original input variables with higher explanatory powers to discriminate normal and
faulty samples. In other words, the proposed method does not suffer from smearing effect because it
is based on CART classifiers with decision boundaries only in the original input space. The second
strength is that, as described in Figures 4 and 5, the proposed method can properly identify faulty
variables of nonlinear process. PCA with the assumption of process linearity is unsuitable for fault
detection and isolation of nonlinear processes. As shown in Figure 4, although fault isolation with
nonparametric AAKR is troubled with fault smearing, the proposed method can accurately identify
faulty variables of the nonlinear process. Except for the strengths mentioned above, the proposed
method does not require historical faulty dataset and any prior knowledge and experience.

5. Conclusions

In complex and nonlinear industrial processes, data-driven fault detection and isolation for
process monitoring has become more important than ever before; compared with fault detection,
fault isolation methods have not been studied very much. In this paper, we proposed a fault isolation
method for a drum-type steam boiler via CART-based variable ranking. Method 1 is intended to
identify faulty variables in entire fault regions, and it is proper for post analysis of occurring faults
offline. In Method 2, fault isolation is carried out through time window sliding; Method 2 is suitable for
monitoring fault evolution and propagation. To validate the fault isolation performance, the proposed
method and comparison methods were applied to two benchmark problems and 250 MW drum-type
steam boiler. The experimental results showed that the proposed method can locate faults more clearly
than comparison methods without being affected by smearing effect. The proposed method, based on
nonparametric CART, can properly deal with nonlinear processes, and can correctly identify faulty
variables, even when normal and faulty samples are linearly inseparable from each other.

In future research, we will consider the following three topics. The first topic is to verify the
performance of proposed method for time-varying processes. For example, since the process equipment
is gradually degraded over time, it usually shows time-varying behaviors. If components of the matrix
Xnormal (see Figure 1) are updated with the latest normal samples at every moment, the proposed
method may take the time-varying characteristics of target systems into consideration for fault
isolation. Second, we will also perform comparative studies between the proposed method and
recently developed methods in [27,28,44,45]; this will further ensure the validity of the proposed
method. Lastly, to improve the isolation performance, we will develop variable ranking methods with
consideration for structural properties (described in [46]) of binary decision trees.
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