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Abstract: This paper presents a novel three-level voltage source converter for AC–DC–AC conversion.
The proposed converter based on H-bridge structure is studied in detail. The control method with
traditional double-closed-loop control strategy and voltage balancing algorithm is applied to the
rectifier side. Correspondingly, a simplified modulation algorithm is applied to the inverter side,
and the voltage balancing of inverter side is realized through the optimal selection of switching
combination. Then, the application of the proposed topology is assessed in general and ideal operation
conditions. Furthermore, the proposed topology with a variable voltage variable frequency (VVVF) is
verified in experimental conditions. The performance of the proposed converter and control strategy
is evaluated by experimental and simulation results.

Keywords: three-level converter; simplified PWM strategy; redundant switching combination;
voltage balance control

1. Introduction

With the development of the multilevel converter (MC), it has become a cost-effective solution
of medium-voltage AC drives [1]. Due to its merits compared with a conventional two-level voltage
source converter—such as lower voltage stress on switches, improved output waveforms, reduced
common mode voltage, and high voltage capability—MC has been applied to more emerging
fields [2–4]. The areas of applications include renewable energy generation, electric vehicle traction [5],
high-power energy storage system [6], micro-grids [7], high-voltage ac or dc transmission [8–10],
and some newly-developing fields.

In general, there are two conventional types of AC–DC–AC multilevel converters in view
of whether it has common dc-links. The diode-clamped MC (DCMC) [11] and fly-capacitor MC
(FCMC) [12] are widespread adopted structures with common dc-links, which can operate in four
quadrants and be supplied by single rectifier. Besides, there are some other topologies, such as
five-level active neutral-point-clamped MC (5L-ANPC) [13], modular MC (MMC) [9,10], and some
newly-developed MC [14–16]. However, these kinds of MCs, except MMC, are hard to extend towards
higher output voltage levels and power grades because of the complicated structures. The other
drawback of these types is the poor ability to deal with some special systems which have different
voltage grades, e.g., connection of two grids with different voltage grades [16–18]. Separated dc-links
are the features of the other types of MCs, including cascaded H-bridge MC (CHBMC) [17], five-level
H-bridge NPC (5L-HNPC) [18], and some hybrid and asymmetrical cascaded H-bridge MCs with
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different sub-modules [19] or dc-link voltages [20]. It has the advantage of flexible extending of the
output levels and power rating. However, the bulky and expensive phase-shifting transformers for
isolated dc sources make it hard to increase the power density. A back-to-back CHB converter without
any isolating device [21] can avoid these problems. However, short-circuits caused by the hardware
topology are difficult to solve and the proposed topology cannot be expanded to a three phase system.

In this paper, a new three-level voltage source converter for AC–DC–AC conversion is proposed.
It can be used in three-phase system and more easily to extend to higher voltage level than a
back-to-back NPC converter. Compared to the back-to-back CHB converter proposed in [21], a half
H-bridge cell used in the new topology provides more redundant vectors and makes it overcome
the short-circuit problem, which simplifies the control method. In addition, the proposed topology
utilizes fewer switches at the cost of increasing the number of dc-link capacitors, the separated dc links
will decrease the total dc voltage of the system, which is beneficial for the insulation design in many
fields [22].

The rest of the paper is organized as follows. In Section 2, the circuit configuration, characteristics
and working principles of the proposed topology are studied in detail. The overall control strategy
and pulse-width modulation strategy considering the voltage balance control is given in Section 3.
In Section 4, two operation conditions are analyzed, and the simulation and experimental results
demonstrate the effectiveness of the proposed control strategies. Section 5 concludes the paper.

2. Circuit Configuration of Proposed Three-Level Voltage Source Converter

2.1. Circuit Configuration

The proposed three-level converter is presented in Figure 1. It includes two basic submodules,
power unit I and power unit II. Port 2 of power unit II in the three-phase topology is connected together,
forming the neutral point N of the converter.
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Figure 1. Circuit configuration of the proposed three-level voltage source converter. 

For convenience, the rectifier side, common part, inverter side I, and inverter side II can be 
defined as shown in Figure 1. The rectifier side connects in series with three-phase inductors and the 
grid through three phase electrical terminals A, B, and C. The three electrical terminals A, B, and C 
of inverter side connect with the three-phase load. 

2.2. Working Principle of Rectifier Side 

All the dc-link voltage values are assumed to be equal to Udc. Obviously, the output voltage 
levels relative to neutral point N are determined by S1/ S1  and S2/S2 . uX_rec (X = A, B, C) is defined 
as the output voltage of rectifier side, which can be obtained as Equation (1). 
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Figure 1. Circuit configuration of the proposed three-level voltage source converter.

For convenience, the rectifier side, common part, inverter side I, and inverter side II can be defined
as shown in Figure 1. The rectifier side connects in series with three-phase inductors and the grid
through three phase electrical terminals A, B, and C. The three electrical terminals A, B, and C of
inverter side connect with the three-phase load.

2.2. Working Principle of Rectifier Side

All the dc-link voltage values are assumed to be equal to Udc. Obviously, the output voltage levels
relative to neutral point N are determined by S1/S1 and S2/S2. uX_rec (X = A, B, C) is defined as the
output voltage of rectifier side, which can be obtained as Equation (1).

uX_rec = (S1− S2)Udc (1)
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2.3. Working Principle of Inverter Side I

Combined with the common parts shown in Figure 1, inverter side I can produce three level
voltages similar to uX_rec. uX_inv referenced to N is obtained as Equation (2).

uX_inv = (S3− S2)Udc (2)

2.4. Master–Slave Control Principle

Combining with common part, there will be no problem obviously when rectifier side or inverter
side I works independently. Due to the special structure, the operation principle of each side cannot be
analyzed independently when they work together. In other words, there is a coupling relationship
between two sides. Since any side can be chosen as the master control side, the rectifier side is chosen
as an example. Hence the switching command of S2 is decided by rectifier side. Output voltage levels
of uX_inv will be limited in some switching combinations. For example, if rectifier side is P, S2 should be
0. However, if the inverter side I needs to be N, S2 should be 1. Consequently, a contradiction appears.

In order to reduce the coupling relationship, a submodule power unit I is added on the right of
power unit II, which is defined as inverter side II, as shown in Figure 1. According to the switching
states, the switching commands of S3S4S5 can be decided after switching commands of S1S2 are
generated as shown in Table 1. The output voltage of inverter side, uX_inv can be rewritten as
Equation (3).

uX_inv = (S3− S2)Udc + (S5− S4)Udc (3)

Table 1. Switching states of rectifier side and inverter side.

Rectifier State S1 S2 Inverter State S3 S4 S5

P S1S2 = 10
P S3 = 1, S4 = S5 or S3 = 0, S4 = 0, S5 = 1
O S3 = 0, S4 = S5 or S3 = 1, S4 = 1, S5 = 0
N S3 = 0, S4 = 1, S5 = 0

O S1 = S2
P S3 = S2, S4 = 0, S5 = 1 or S2 = 0, S3 = 1, S4 = S5

O S2 = S3, S4 = S5 or S2 = 1, S3 = 0,S4 = 0, S5 = 1 or
S2 = 0, S3 = 1, S4 = 1, S5 = 0

N S2 = S3, S4 = 1, S5 = 0 or S2 = 1, S3 = 0, S4 = S5

N S1S2 = 01
P S3 = 1, S4 = 0, S5 = 1
O S3 = 1, S4 = S5 or S3 = 0, S4 = 0, S5 = 1
N S3 = 1, S4 = 1, S5 = 0 or S3 = 0, S4 = S5

2.5. Comparison with Classic Multilevel Topologies

For better understanding of the proposed technology, it is necessary to make a comparison over
classic multilevel converter topologies. In order to achieve four-quadrant AC–DC–AC conversion,
NPC, FC, and CHB are arranged in a back-to-back (B2B) scheme [23]. As a matter of convenience,
the proposed topology is abbreviated as CMC. The state-of-the-art 4.5 kV, 450 A and 3.3 kV, 450 A
IGBTs are applied in aforementioned three level and five level topologies, respectively, with the
output line-to-line voltage Vll_rms = 3 kV and power rating of 600 kW. It is assumed that the voltage
rating of each clamping diode and flying capacitor is equal to the main switch device voltage rating.
A comprehensive list of the requested components number of each converter topology is shown in
Table 2 [24,25]. Obviously, the counts of active devices of these types are equal except the CMC,
which needs two extra switches in each phase. A total of 36 diodes are requested in a five level B2B
NPC converter, and the count will increase dramatically with the number of levels. Capacitors contain
dc-link capacitors and flying capacitors, so the number of capacitors—as an example—for 5L B2B FC
topology is 4 + 18. These large numbers of capacitors increase size and cost of the converter and reduce
the reliability. Through the total component amount, CHB topology is extremely advantageous in
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quantity in the Table, but it must be equipped with a transformer and PWM rectifier for four-quadrant
applications. In the rest of the topologies, CMC topology, without clamping diodes and capacitors,
has a lower number of components than other topologies with the improvement of voltage level.

Table 2. Comparison of different topologies (Vll_rms = 3 kV, Iph_rms = 115.5 A, P = 600 kW).

Level 3L 5L

Topology NPC FC CHB CMC NPC FC CHB CMC
Rated device voltage (IGBT) 4.5 kV 4.5 kV 4.5 kV 4.5 kV 3.3 kV 3.3 kV 3.3 kV 3.3 kV
Rated device current (IGBT) 450 A 450 A 450 A 450 A 450 A 450 A 450 A 450 A

IGBTs 24 24 24 30 48 48 48 54
Diodes 12 --- --- --- 36 --- --- ---

Capacitors 2 + 0 2 + 6 3 + 0 6 + 0 4 + 0 4 + 18 6 + 0 12 + 0
Total Components 38 32 23 36 88 70 54 66

To compare with the B2B 3L-NPC, the switching losses for both topologies are calculated and
normalized according to the method proposed in [26] and the datasheet of IGBT. The result is shown
in Figure 2 where the modulation index of the inverter side ranges from 0.5 to 1.15 and the power
factor of the load ranges from 0.7 to 1.
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3. Control Method of the Proposed Three-Level Voltage Source Converter

3.1. Control Method

Since this work focuses on testing the proposed three-level converter topology, a common control
method should be used. So dual close loop control structure in d–q synchronous reference frame
is adopted in rectifier side [20]. The voltage loop contains a conventional proportional-integral (PI)
controller to regulate the average value of capacitor voltage of CX_rec, Udc_ave_rec to reference value
Udcref_rec (=Udc). The reference current of the q-axis (i*q) is set to a certain value to adjust input
power factor of the whole converter. Then, the inner current loops generate the reference voltage of
rectifier side, u*

X_rec. Subsequently, the zero sequence voltage uz_rec generated by the voltage balancing
algorithm is injected to u*

X_rec to control voltage values of CX_rec. Then a simplified modulation
algorithm in [27] is adopted to calculate the duration time of switching states, P/O/N, in the rectifier
side and inverter side.

Due to the coupling relationship, proper switching commands of S2/S3/S4/S5 should be chosen
to achieve voltage balancing of the capacitors CX_inv. The optimal selection of switching combination
(OSSC) is introduced later to generate the converter switching commands of S1~S5. The whole control
block diagram of the proposed three-level converter is shown in Figure 3.
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3.2. Modulation Algorithm

A simplified PWM strategy [27] which is easier and more flexible to realize different targets was
used as modulation algorithm. Taking inverter side as an example and assuming that Udcref_inv = Udc,
uX_inv(t) consists of Udc and 0 when the reference voltage u*

X_inv > 0; otherwise, uX_inv(t) consists of
−Udc and 0. This divides the space vector diagram into six sectors, as denoted by S in Figure 4.Energies 2018, 11, x FOR PEER REVIEW  6 of 18 
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When S = 1, the voltage-second balancing principle can be represented by Equation (4), where
uz represents the equivalent zero-sequence voltage. The general solutions of (4) can be obtained as
Equation (5). 

u∗A_inv · Ts =
∫ Ts

0 uAN(t)dt +
∫ Ts

0 uz(t)dt
u∗B_inv · Ts =

∫ Ts
0 uBN(t)dt +

∫ Ts
0 uz(t)dt

u∗C_inv · Ts =
∫ Ts

0 uCN(t)dt +
∫ Ts

0 uz(t)dt
, (4)


TA_inv = (u∗A_inv − uz) · Ts/UdcA_inv

TB_inv = Ts + (u∗B_inv − uz) · Ts/UdcB_inv
TC_inv = Ts + (u∗C_inv − uz) · Ts/UdcC_inv

, (5)

TX_inv stands for the duration time of switching state P when (u*
X_inv − uz > 0) otherwise stands for

the duration time of O.

3.3. Voltage Balancing Algorithm of Rectifier Side

There is only one capacitor in each phase. It only needs to consider the voltage balancing of CX_rec

between three-phase. Assuming that uz_rec is the zero sequence voltage injected into u*
X_rec, which is

used to realize the targets of voltage balancing of CX_rec. The voltage-second balancing principle can
be represented by Equation (6).

TA_rec = (u∗A_rec − uz_rec) · Ts/UdcA_rec
TB_rec = Ts + (u∗B_rec − uz_rec) · Ts/UdcB_rec
TC_rec = Ts + (u∗C_rec − uz_rec) · Ts/UdcC_rec

, (6)

If UdcX_rec is imbalanced, uz_rec should be calculated to adjust the reference voltage u*
X_rec. As an

example, if voltage values of CX_rec satisfy UdcA_rec > UdcB_rec > UdcC_rec, it means that the magnitude
of charge change within Ts should be QA < QB < QC. uz_rec can be changed to adjust QX. Calculation
of uz_rec is as follows:

1. QX, u*
X_rec, and iX_rec are sorted according to UdcX_rec. In order to realize the voltage balancing,

QX should satisfy Equation (7).
Qmax < Qmid < Qmin, (7)

QX is defined as Equation (8).

QX = iX_rec ·
u∗X_rec − uz_rec

UdcX_rec
· Ts, (8)

If iX_rec > 0 and (u*
X_rec − uz_rec) > 0, uX_rec consists of P/O. The current paths of S1S2 are shown

in Figure 5. Obviously, QX > 0 and CX_rec is charged in this case. CX_rec is discharged within Ts

when iX_rec < 0 and (u*
X_rec − uz_rec) > 0.

2. Substituting (8) into (7) gives (9).

imax_rec ·
u∗max_rec−uz_rec

Udcmax_rec
· Ts < imid_rec ·

u∗mid_rec−uz_rec
Udcmid_rec

· Ts < imin_rec ·
u∗min_rec−uz_rec

Udcmin_rec
· Ts, (9)

a1 = imax_rec ·Udcmid_rec − imid_rec ·Udcmax_rec

b1 = imax_rec · u∗mid_rec ·Udcmid_rec − imid_rec · u∗mid_rec ·Udcmax_rec

a2 = imid_rec ·Udcmin_rec − imin_rec ·Udcmid_rec
b2 = imid_rec · u∗mid_rec ·Udcmin_rec − imin_rec · u∗min_rec ·Udcmid_rec

, (10)

utemp1 = b1/a1, and utemp2 = b2/a2.
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3. The range of uz_rec can be obtained from Equation (9), and uz_rec can take any value within the
range. However, it should satisfy Equation (11) to acquire a linear modulation.

−Udcmax_rec ≤ u∗max_rec − uz_rec ≤ Udcmax_rec

−Udcmid_rec ≤ u∗mid_rec − uz_rec ≤ Udcmid_rec

−Udcmin_rec ≤ u∗min_rec − uz_rec ≤ Udcmin_rec

, (11)

4. Calculating the limit value of uz_rec: the corresponding limitations of the injected zero-sequence
voltages are given in (12).

uzmax = max(u∗max_rec −Udcmax_rec, u∗mid_rec −Udcmid_rec,
u∗min_rec −Udcmin_rec)

uzmin = min(u∗max_rec + Udcmax_rec, u∗mid_rec + Udcmid_rec,
u∗min_rec + Udcmin_rec)

, (12)

Finally, uz_rec can be obtained to realize the targets of voltage balancing as shown in Table 3.
The voltage balancing algorithm is shown in Figure 6 in detail.Energies 2018, 11, x FOR PEER REVIEW  7 of 18 
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3.4. Voltage Balancing Method of Inverter Side

Maintaining voltage balancing of the flying-capacitors in the inverter side is the main aim of this
section. As introduced before, the coupling relationship shown in Table 1 can provide considerable
number of redundant switching combinations. These combinations can provide a charging or
discharging current paths for each flying-capacitors. The voltage balance control can be realized
by selecting a proper combination. The optimal selection of switching combination can be generated
as follows.

3.4.1. Effect of the Switching States on the Capacitors Voltages

According to Equation (3), the switching states of the inverter side P/O/N can be generated by
inverter side I or II. However, only the switching states produced by inverter side II (S4S5) have an
effect on the capacitors voltages UdcX_inv. Which inverter side is selected to generate the required
switching states is decided by the inverter state, the direction of iX_inv, and switching commands of S2
as listed in Table 4.

For example, when the inverter state is P, iX_inv > 0, and S2 = 0, the switching state can be
generated as marked in the Table 4. The discharging and keeping paths of capacitor CX_inv have been
shown in Figure 7, respectively.

Table 4. Switching states of rectifier side and inverter side.

Inverter
State iX_inv S2 Inverter

Side I
Inverter
Side II

Switch
Combinations

Charge
State

P

>0
1 O P S3S4S5 = 101 D

0
O P S3S4S5 = 001 D
P O S3 = 1, S4 = S5 K

≤0
1 O P S3S4S5 = 101 C

0
P O S3 = 1, S4 = S5 K
O P S3S4S5 = 001 C

O

>0
1

N P S3S4S5 = 001 D
O O S3 = 1, S4 = S5 K

0
O O S3 = 0, S4 = S5 K
P N S3S4S5 = 110 C

≤0
1

O O S3 = 1, S4 = S5 K
N P S3S4S5 = 001 C

0
P N S3S4S5 = 110 D
O O S3 = 0, S4 = S5 K

N >0

1
N O S3 = 0, S4 = S5 K
O N S3S4S5 = 110 C

0 O N S3S4S5 = 010 C

1
O N S3S4S5 = 110 D
N O S3 = 0, S4 = S5 K

0 O N S3S4S5 = 010 D

C: Charging; D: Discharge; K: Keeping.
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3.4.2. Optimal Selection of Switching Combination (OSSC)

To balance the voltage of CX_inv, OSSC is set to select proper switching combinations after
the previous step (1). Before selecting the switching combination, the duration of switching state
(TX_rec/TX_inv) is calculated through the simplified modulation algorithm in [27], thus the inverter
state and rectifier state are determined. The switching commands of S2 should be a certain state
0(1) if the rectifier side is P(N). While it cannot be decided when rectifier side is O. Based on the
actual situation, iX_inv can be measured. To analyze the working principle of OSSC, the two examples
are listed.

(u∗A_rec − uz_rec) < 0, (u∗A_inv − uz) >

UdcA_inv > Udcref_inv

{
Condition I : iX_inv > 0
Condition II : iX_inv > 0

, (13)

Condition I: UdcA_inv should be decreased with a proper switching combination. Referring to
Table 4, when the switching state of the rectifier and inverter sides are N (S2 = 1) and O, respectively,
there are two switching combinations to choose from the Table 4. It is obvious that the combination
S2S3S4S5 = 1001 is the optimal one to decrease the voltage deviation in condition I. In this way,
the combination of switch can be selected out at different switching states as shown in Figure 8a.

Condition II: Due to iX_inv < 0, the P state should be generated by the inverter side I as much
as possible. Similarly, the combination of switching can be acquired referring the Table 4. When the
calculation result of duration satisfied the inequality TA_rec < TA_inv, the situation that the switching
state of rectifier and inverter side are N (S2 = 1) and P will exist as shaded areas depicted in Figure 8b.
In this situation, no discharge switching combination can be found except a charge combination in
Table 4. Therefore, the deviation of CX_inv is uncontrollable. Those situations, defined as ‘uncontrollable
switching combination’ (USC), restrict the operation range of the converter.Energies 2018, 11, x FOR PEER REVIEW  10 of 18 
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synchronized to the input voltages, if Equation (14) is satisfied 

Figure 8. Converter state and switching commands. (a) (u*
A_rec − uz_rec) < 0, (u*

A_inv − uz) > 0,
and UdcA_inv > Udcref_inv; iX_inv > 0, TA_rec > TA_inv; (b) (u*

A_rec − uz_rec) < 0, (u*
A_inv − uz) > 0,

and UdcA_inv > Udcref_inv; iX_inv < 0, TA_rec < TA_inv.

3.5. Calculation of Duration Time of Each Arm

Based on the above analysis, the optimal selection of switching combination can be acquired.
Then the duration time of S1~S5 in the proposed three-level converter can be calculated easily in each
case as shown in Table 5. It should be noted that the high or low of S2 should be transformed as shown
in Figure 8b. Then the trigger signals of each switch can be generated easily according to Table 5 in the
proposed three-level converter.
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Table 5. Switching states of rectifier side and inverter side.

u*
A_rec − uz_rec u*

A_inv − uz UdcA_inv iA_inv tS1 tS2 tS3 tS4 tS5

>0

>0
UdcA_inv > Udcref_inv

>0 TA_rec 0 0 0 TA_inv

≤0 TA_rec 0 Ts Ts TA_inv

UdcA_inv ≤ Udcref_inv
>0

≤0 TA_rec 0 0 0 TA_inv

≤0
UdcA_inv > Udcref_inv

>0 Ts TA_rec 0 TA_rec TA_inv

≤0 TA_rec 0 TA_inv Ts 0

UdcA_inv ≤ Udcref_inv
>0
≤0 Ts TA_rec 0 TA_rec TA_inv

≤0

>0
UdcA_inv > Udcref_inv

>0 TA_rec Ts TA_inv 0 Ts

≤0

UdcA_inv ≤ Udcref_inv
>0 0 TA_rec Ts TA_rec TA_inv

≤0 TA_rec Ts TA_inv 0 Ts

≤0
UdcA_inv > Udcref_inv

>0 TA_rec Ts 0 0 TA_inv

≤0 TA_rec Ts Ts Ts TA_inv

UdcA_inv ≤ Udcref_inv
>0

≤0 TA_rec Ts 0 0 TA_inv

tS1~S5 is the duration time of each switch, S1~S5.

4. Simulation and Experimental Analysis

4.1. Operation of the Proposed Three-Level Voltage Source Converter

4.1.1. Ideal Operation Condition

The ideal operation condition of the proposed converter is that the sign of output voltages are
synchronized to the input voltages, if Equation (14) is satisfied

Sgn(u*
X_rec − uz_rec) = Sgn(u*

X_inv − uz), (14)

there will be no uncontrollable cases based on the above analyses in this operation condition. That is,
the voltage deviation of CX_inv will be kept under control completely. Although this condition can
balance the capacitor voltages well, the use of this structure is restricted in some applications such as
power electronic transformers and AC regulators.

4.1.2. General Operation Condition

In this condition, there is no connection between Sgn(u*
X_rec − uz_rec) and Sgn(u*

X _inv − uz),
the reference voltage of inverter side

(u*
X_inv − uz) can operate at the frequency and magnitude different with (u*

X_rec − uz_rec).
Figure 9a has been drawn to illustrate the extreme case when UdcX_inv < Udcref_inv, Sgn(u*

X_rec − uz_rec)
=−Sgn(u*

X_inv − uz). Based on Table 5, voltage deviation of CA_inv is enlarged in most areas. However,
the shadow areas can be removed under the condition that the modulation index of the rectifier side
and inverter side satisfy Equation (15). Then, voltage deviation can be controlled in this extreme case.

minv ≤ 1−mrec = 1− magnitude(u∗X_rec − uz_rec)

Udc
, (15)
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power IGBTs (TOSHIBA, Tokyo, Japan). The control method was implemented in a 150-MIPS float-
point 32-bit TMS320F28335 board, and XC3S500E-4PQ208C of XILINX Company (San Jose, CA, USA) 
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conversion. UAB_inv was measured by voltage probes directly. 

Figure 9. Analysis of voltage deviation with CA_inv. (a) When Sgn|(u*
A_rec − uz_rec)| = −Sgn|(u*

A_inv

− uz)|; (b) when minv < 1 − mrec.

Including this special case, the uncontrollable states can be eliminated absolutely when Sgn(u*
X_rec

− uz_rec) 6= Sgn(u*
X_inv − uz) and minv ≤ 1 − mrec as shown in Figure 9b. Although the time of

uncontrollable state can be quantified as shown in Figure 9b when minv ≥ 1 − mrec, the voltage
deviation of CX_inv still cannot be improved without efficient measures. Hence, the magnitude of
output voltage will be limited. DC voltage deviation and low-frequency fluctuation will exist in the
whole system.

4.2. Experimental Results

A low power prototype has been developed in lab conditions to verify the performance of the
proposed three-level converter, as depicted in Figure 10. The three-level converter was built by
using power IGBTs (TOSHIBA, Tokyo, Japan). The control method was implemented in a 150-MIPS
float-point 32-bit TMS320F28335 board, and XC3S500E-4PQ208C of XILINX Company (San Jose, CA,
USA) has been used to generate switching commands. The experimental parameter settings are shown
in Table 6. In order to observe necessary signals, two scopes were used to monitor the signals after DA
conversion. UAB_inv was measured by voltage probes directly.Energies 2018, 11, x FOR PEER REVIEW  12 of 18 
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Table 6. Parameter settings for simulation and experiment.

Parameter Value

Source voltage, eX_rec 55 V
DC-link voltage 100 V

DC-link capacitor 1200 µF
Filter-inductive 2.2 mH

Resistive-inductive load 20 Ω, 2.2 mH
Switching frequency 5 kHz

The experimental results obtained in Figure 11 show the voltage–current waveforms of the rectifier
side and inverter side at different modulation indexes minv and switching frequency f during the whole
working process. Figure 11a,c shows that the three-phase current iX_rec rectifier side and iX_inv inverter
side increase with the increase of modulation index and frequency. In Figure 11c, the waveforms of
line-to-line voltage uAB_inv have three-levels when f = 20 Hz, minv = 0.4 and f = 30 Hz, minv = 0.6, while
it changes to five-levels when f = 40 Hz, minv = 0.8 and f = 50 Hz, minv = 0.9. UdcX_rec and UdcX_inv are
shown in Figure 11b,d are the waveforms of three-phase capacity of CX_rec and CX_inv. It can be seen
that UdcX_rec and UdcX_inv do not change with the modulation index and frequency after the system is
working. Capacitor voltages can be balanced well, and better performance of the proposed multilevel
converter is verified in this process. Figure 12 shows the performance of the converter in transient-state
condition with the modulation index minv changing from 0.4 to 0.6 and output frequency f changing
from 20 Hz to 30 Hz. Figure 12a,b shows the input voltage–current waveforms and voltage waveforms
of CX_rec. Figure 12c show the waveforms of line-to-line voltage uAB_inv and three-phase currents
iX_inv. The capacitor voltages of CX_inv, UdcX_rec are shown in Figure 12d.Energies 2018, 11, x FOR PEER REVIEW  13 of 18 
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Figure 11. Experimental results of the whole working-process in transient-state condition; (a) Input
voltage–current waveforms, eA_rec and iX_rec; (b) voltages of CX_rec; (c) output voltage–current
waveforms, uAB_inv and iX_inv; (d) voltages of CX_inv.
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Figure 12. Experimental results of the whole working process in transient-state conditions; (a) Input
voltage–current waveforms, eA_rec and iX_rec; (b) voltages of CX_rec; (c) output voltage–current
waveforms, uAB_inv and iX_inv; (d) voltages of CX_inv.

As can be seen from Figure 11a, when the output frequency f and modulation index minv are
20 Hz and 0.4, the peak value of three-phases on the rectifier side current iX_rec has low-frequency
fluctuations, and the sine effect is not ideal; when switching to f = 20Hz and minv = 0.4, the three-phase
current iX_rec stabilizes rapidly after about 25 ms, the sine is good, and the amplitude is basically the
same. In the process of switching, the entire control system can achieve a balanced three-phase current
and unity power factor control, and show good robust performance. UdcX_rec and UdcX_inv shown in
Figure 11b,d have almost no change when the frequency and modulation index switching. They are
constantly maintained at a fixed value, showing strong anti-interference performance. As shown in
Figure 11c, after switching, the inverter side line-to-line voltage uAB_inv and three-phase currents iX_inv

are rapidly stabilized, and the three-phase current change trend remains the same.
Obviously, the inverter side of the converter performs well in this case. Figure 13 shows the

experimental results in transient-state conditions with the modulation index set at 0.8 and 0.9 and
the output frequency f set from 40 Hz to 50 Hz. Figure 13a,c shows the same results as Figure 12 and
will not be repeated here. According to Figure 13b,d, voltages of rectifier side and inverter side are
maintained at their given values. At the same time, it becomes more stable after switching. Thus, the
effectiveness of the proposed three-level converter to capacitor voltage equalization control is verified.

4.3. Simulation Results

Figure 14 shows the curves of the voltage weight total harmonic distortion WTHD with different
modulation indexes minv and switching frequency f switch based on MATLAB/Simulink.
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Figure 13. Experimental results of the multilevel converter in transient-state conditions; minv changes
from 0.8 to 0.9; (a) Input voltage-current waveforms, eA_rec and iX_rec; (b) voltages of CX_rec; (c) output
voltage–current waveforms, uAB_inv and iX_inv; (d) voltages of CX_inv.
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WTHD is defined in Equation (16), where V1 and Vn mean the fundamental and n order
harmonic components in line-to-line voltage respectively. As shown in Figure 14, WTHD of uAB_inv

increases with the decrease of switching frequency f switch and modulation index minv. It shows better
performance when minv > 0.4, while WTHD becomes taller when minv < 0.4 in some areas. In general,
the performance of the proposed converter can operate well.

WTHD =

√
∞

∑
n=2

V2
n

n2 /V1 , (16)

4.4. Simulation Analysis of 5/3 Level Voltage Source Converter

This new topology can be expanded asymmetrically, which means the rectifier side and inverter
side can work with different nominal voltages. It is possible to the proposed topology to connect the
asynchronous multi-scale power network. On the basis of the proposed three level voltage source
converter, the voltage level in rectifier side has been expended to five level. The circuit configuration
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of 5/3 level converter has shown in Figure 15. Due to the similar structure, the control methods of 5/3
level voltage source converter are as same as the aforementioned methods of the three-level converter.

Energies 2018, 11, x FOR PEER REVIEW  15 of 18 

m

W
TH

D
/%

fswitch/Hz

 
Figure 14. Harmonic characteristic results of WTHD curves of uAB_inv with fswitch and minv. 

4.4. Simulation Analysis of 5/3 Level Voltage Source Converter 

This new topology can be expanded asymmetrically, which means the rectifier side and inverter 
side can work with different nominal voltages. It is possible to the proposed topology to connect the 
asynchronous multi-scale power network. On the basis of the proposed three level voltage source 
converter, the voltage level in rectifier side has been expended to five level. The circuit configuration 
of 5/3 level converter has shown in Figure 15. Due to the similar structure, the control methods of 5/3 
level voltage source converter are as same as the aforementioned methods of the three-level converter. 

3

Rectifier 
SIde

iX_inv

n

N

O

RL loadLC

LA

LBeA

eB

eC

Phase A

U
A

B
C

Ｖ
Ｗ

CX_inv

S1 S2

CA1

S6 S7

CA3

Common
Part

Inverter 
Side I

S3 S4 S5

CA2

Inverter 
Side II

Phase B
Phase C

SMA1 SMA2 SMA3

Phase A
Phase B

Phase C

 
Figure 15. Circuit configuration of 5/3 level voltage source converter. 

The simulation result is shown in Figure 16. The whole working process shown in Figure 16a, is 
divided into three sections: uncontrollable precharge, controllable precharge, and inverter side 
working. In the uncontrollable precharge section, uncontrollable full wave rectification is achieved 
only by diodes with anti-parallel device. Then the rectifier side starts in Power Unit Ⅱ, and the 
voltages of modules SMX1 and SMX2 are selected as 50 V and 100 V, respectively. Figure 16b,c shows 
line-to-line voltages and three-phase currents of the rectifier side under the modulation index set at 
1. Obviously, the voltage reaches nine levels and the currents are undistorted sinusoidal waveforms. 

Figure 15. Circuit configuration of 5/3 level voltage source converter.

The simulation result is shown in Figure 16. The whole working process shown in Figure 16a,
is divided into three sections: uncontrollable precharge, controllable precharge, and inverter side
working. In the uncontrollable precharge section, uncontrollable full wave rectification is achieved only
by diodes with anti-parallel device. Then the rectifier side starts in Power Unit II, and the voltages of
modules SMX1 and SMX2 are selected as 50 V and 100 V, respectively. Figure 16b,c shows line-to-line
voltages and three-phase currents of the rectifier side under the modulation index set at 1. Obviously,
the voltage reaches nine levels and the currents are undistorted sinusoidal waveforms.Energies 2018, 11, x FOR PEER REVIEW  16 of 18 
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5. Conclusions 

In order to balance the voltage of flying-capacitors, a novel three-level voltage source converter 
for AC–DC–AC conversion was proposed in this paper. The circuit configuration and work principle 
of the proposed three-level voltage source converter were studied in detail. The dual double-closed-
loop control strategy and voltage balancing algorithm, especially the method of inverter capacitors 
with OSSC, were introduced to elaborate the control method of a three-level converter. Then, two 
operation conditions were analyzed to assess the operating characteristics of the proposed converter. 
Finally, the balanced control capabilities of this new topology to the three-phase suspension capacitor 
voltage of the rectifier side and inverter side was verified by simulations and experiments. 
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Figure 16. Simulation results of the whole working process; (a) Output voltage–current waveforms,
uxx and iX; (b) Output voltage–current waveforms, uxx and iX ; time from 0.24s to 0.3s;(c) Output
voltage–current waveforms, uxx and iX; time from 0.8 s to 0.86 s.
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5. Conclusions

In order to balance the voltage of flying-capacitors, a novel three-level voltage source converter
for AC–DC–AC conversion was proposed in this paper. The circuit configuration and work principle of
the proposed three-level voltage source converter were studied in detail. The dual double-closed-loop
control strategy and voltage balancing algorithm, especially the method of inverter capacitors with
OSSC, were introduced to elaborate the control method of a three-level converter. Then, two operation
conditions were analyzed to assess the operating characteristics of the proposed converter. Finally, the
balanced control capabilities of this new topology to the three-phase suspension capacitor voltage of
the rectifier side and inverter side was verified by simulations and experiments.
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