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Abstract: In the context of large-scale wind power integration and rapid development of electric
vehicles (EVs), a joint operation pattern was proposed to use a centralized charging station (CCS)
to address high uncertainties incurred by wind power integration. This would directly remove the
significant indeterminacy of wind power. Because the CCS is adjacent to a wind power gathering
station, it could work jointly with wind farms to operate in power system as an independent
enterprise. By combining the actual operational characteristics of the wind farm and the CCS,
a multidimensional operating index evaluation system was created for the joint system. Based on
the wind farm’s known capacity, a multi-target capacity planning model was established for CCS to
maximize the probability of realizing diverse indices of the system based on dependent-chance goal
programming. In this model, planning and dispatching are combined to improve the feasibility of
results in the operational stage. This approach takes the effects of randomness into account for wind
power and battery swapping. The model was solved through combining Monte Carlo simulation
and a genetic algorithm (GA) based on segmented encoding. As shown in the simulation results, the
proposed model could comprehensively include factors such as initial investment, wind power price,
battery life, etc., to optimize CCS capacity and to ultimately improve the operating indices of the
joint system.

Keywords: power system; wind farm; centralized charging station; dependent chance programming;
capacity optimization

1. Introduction

The safe operation of the power system is based on a reliable power supply and accurate load
forecasting. However, substantial indeterminacy caused by large-scale wind power integration presents
the power system with significant challenges [1–4]. As the scale of wind power integration continues
to increase, fossil energy power generation is gradually subjected to certain constraints. The traditional
method of using only fossil energy generators to passively manage the significant indeterminacy of
wind power no longer works. This has led to a need to explore regulated means to completely or
partially eliminate the uncertainties of wind power before the wind farm becomes integrated into
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the power system. This initiative can help reduce the impact that wind power integration has on the
power grid.

Building a matching energy storage station (ESS) for a wind farm improves wind power
controllability [5]. Nevertheless, the investment cost of an ESS is prohibitive, which limits its promotion
and application [6,7]. With the rapid development of electric vehicles (EVs), scholars have begun
investigating ways to use EVs to store energy to help control the random fluctuations of wind power
and to coordinate scheduling between wind power and EVs [8–10]. Dramatic uncertainties resulting
from EV users’ driving behavior and subjective demands have given rise to strong indeterminacy
of EVs as flexible load or energy storage devices, which further affects their coordination with wind
power [11]. The battery swapping pattern of centralized charging and unified distribution realizes
geographical decoupling between EV battery replacement and charging [12], making it possible to
collaborate between a centralized charging station (CCS) and a wind farm. On one hand, the CCS
serves as an ESS to provide back-up energy for wind farms to enhance the controllability of wind
power and reduce the impact on the power grid. On the other hand, the CCS acts as the flexible load
to be charged by wind power directly, thus facilitating local consumption of wind power and avoiding
indirect carbon emissions caused by EVs charging from the power grid [13,14]. In this scenario case,
zero emissions in its true sense can be realized for EVs. Cooperation between the wind farm and CCS
exerting its multiple benefits (energy storage and flexible load) is an effective solution to wind power
integration issues.

CCS provides multiple benefits based on its capacity. Excessive redundancy in capacity increases
investment cost, as well as operation and maintenance cost, incurring resource waste. In comparison,
insufficient redundancy is not conducive to realizing the multiple benefits of CCS, Consequently,
collaborative effects of the CCS and the wind farm can be jeopardized; in severe cases, failure in
satisfying battery swapping demands may occur. Therefore, CCS capacity optimization is directly
associated with the application of its multiple benefits and the revenues gained through its joint
operation with the wind farm.

At present, CCSs are mostly constructed and financed by electric power companies [15]. On this
basis, research on CCS capacity optimization is typically driven by the internal interests of electric
power enterprises, while the benefits to other investors are rarely considered. Based on CCS and
transmission line construction cost minimization, a CCS capacity planning model was established [16].
Pan et al. [17] developed a bi-level capacity optimization model to address economic efficiency and
power network structure strength. Combining CCS planning with the dispatch of a distribution
network, a capacity planning model considering load shifting of CCS was also built to optimize grid
load curves and elevate both the security and reliability of power system operation [18]. However, due
to the unceasing advances in power market reform and the gradual release of competitive power gird
services, CCS is no longer confined to investment from electric power companies. Investment sources
now include wind power operators, petroleum companies, and other social capital [19]. If all investors
pursue maximization of their own benefits, differences in benefits pursued by different investors
have significant influences on their investment decision-making and operation control strategies [20].
Therefore, incorporating investment source variations into CCS capacity planning contributes to
effective guidance for CCS investment and construction under the current background of power
market reform.

Based on the battery swapping pattern of centralized charging and unified distribution, this paper
proposes a collaboration pattern between the CCS and the wind farm, and the corresponding capacity
optimization issue of CCS is investigated. The main creative concepts are as follows. (1) Rather than
the traditional approach of passively dealing with wind power integration, a joint operation pattern
is proposed to directly eliminate significant uncertainties of wind power and to actively cope with
its indeterminacy. (2) A multi-objective capacity optimization model of CCS is also presented as part
of the proposed joint operation pattern. In addition to battery swapping demands, the model also
accounts for the influence of external factors such as wind power consumption and annualized profit of
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the joint system on capacity optimization results of CCS. (3) To improve the feasibility of the planning
results in practical operation, the probability of the joint system realizing its operating indices are
maximized, and the impact of uncertainties caused by wind power and battery swapping demand on
the planning results is considered simultaneously.

The remainder of this paper is organized as follows: the joint operation mode of the wind farm
and the CCS is proposed in Section 2, along with the operating indices. The proposed capacity
optimization model of CCS is described in Section 3, simulation analysis is addressed in Section 4, and
the conclusions are presented in Section 5.

2. Joint Operation of Wind Farm and CCS

2.1. The Battery Swapping Pattern of Centralized Charging and Unified Distribution

The battery swapping pattern of centralized charging and unified distribution separates battery
charging from battery replacement, as shown in Figure 1. In this approach, battery charging and
replacement should be implemented at different sites, with separate CCS and battery distribution
stations (BDSs).
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Figure 1. Operational structure of the centralized charging and unified distribution pattern.

As regards the BDSs providing battery replacement services and covering a small area, since
there is no need to charge batteries, the problem of grid access does not exist. Therefore, BDSs are
principally located in the downtown area, much closer to EV users. Empty batteries replaced in BDSs
are delivered to the CCS via a logistics system.

The CCS is responsible for unified charging and maintenance of batteries and implements
large-scale centralized battery management. It is mainly constituted by a battery system, a power
conversion system (PCS), and a smart charge/discharge control system. The PCS is bidirectional, so it
can charge batteries or send the power stored in the battery system back to the power grid. The smart
charge/discharge control system allows for intelligent optimization of the charge/discharge power of
the CCS. As the CCS usually occupies a large area and has a high charge power, it is built adjacent
to a transformer substation in the suburbs at a relatively low land price. Fully charged batteries are
delivered to BDSs to meet their battery swapping demands.

This a battery swapping pattern can be further classified into four categories, in line with the
affiliations and responsibilities of investors, namely, C pattern, M pattern, R pattern and 3P pattern [21].
For example, the CCS and BDSs have the same investors in C pattern. According to M and R patterns,
the CCS and BDSs belong to different investors, and battery distribution tasks in two such patterns are
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respectively assumed by the CCS and the BDSs. For the 3P pattern, the CCS and BDSs also belong to
different investors, but the battery distribution work is performed by a third party.

2.2. Joint Operation Pattern

In this analysis, the R battery swapping pattern mentioned above is employed. Therefore, the
BDSs and CCS belong to different investors. In addition to providing battery swapping services to
users, the BDSs are also responsible for battery delivery. BDSs send empty batteries from EV users
to CCS and bring back an equal number of charged replacement batteries. In this battery swapping
scenario, some charged batteries can be stored in the BDSs, which is conducive to increasing the
number of batteries in the entire battery swapping operation system.

The CCS is constructed based on the wind power gathering station and coordinates with the
wind farms to constitute a joint system so that both systems participate in power grid operation as
independent enterprises. Examples of such a joint system are presented in Figure 2.
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Figure 2. Structure diagram of the joint system.

Since the joint system has some schedule flexibility, it can be deemed as a special power plant in
the power grid. The joint system must formulate a generation schedule for the next day according to
the day-ahead predicted values of power from diverse wind farms and the battery swapping demands
submitted by various BDSs; then the joint system must declare the schedule to the power system
operator. Combining load predictions and the power grid security assessment, the power system
operator modifies the generation schedule described above and sends the final schedule back to the
joint system. At the same time, generation schedules are also agreed upon for other thermal power
plants. The joint system should track its generation schedule. If any deviation occurs, economic
penalties are imposed according to the magnitude of the deviation and the time that it occurs.

Due to low wind power forecasting precision, the output power of the joint system is uncertain.
CCS not only takes advantage of wind power to provide battery replacement services to BDSs, but
it also serves as an energy storage system. On the one hand, CCS provides a reserve for wind farms
to improve the controllability of wind power so that both the output deviation the corresponding
economic penalties can be decreased. On the other hand, CCS plays the role of “peak-shaving and
valley-filling” for wind power based on wind power price in different time intervals. This allows the
wind power to be moved from low to high price time intervals in order to increase the electricity sale
revenue of the joint system.
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2.3. Operating Indices of the Joint System

The joint system of the wind farm and the CCS has the following operation targets: (1) to satisfy
the BDS battery swapping demands to the greatest extent and to improve service satisfaction, (2) to
improve the wind power utilization rate and decrease wind curtailment, and (3) to elevate the overall
operation revenue of the joint system. The operation targets of the joint system were determined based
on three objectives: service satisfaction, environmental benefits, and economic benefits.

Index of battery swapping demand curtailment

The randomness of EV battery swapping demands results in the randomness of battery swapping
demands in the BDSs. When the residual capacity of the CCS is insufficient, then BDS battery swapping
demands cannot be met, which leads to a failure in satisfying the EV users’ battery swapping needs.
Consequently, user satisfaction declines, which is unbeneficial for EV promotion.

Therefore, the index of battery swapping demand curtailment can be defined according to service
satisfaction; that is, the unsatisfied battery swapping demand should be no more than the allowable
maximum value denoted by Qds, which is expressed in Equation (1):

Nt

∑
t=1

Qt
q ≤ Qds (1)

where Nt refers to the number of time frames partitioned, and Qt
q refers to the battery swapping

demand unsatisfied at time t.

Index of wind curtailment

Requirements for mandatory energy conservation and emission reduction have been raised
specific to China’s electric power industry. If the precise prediction of wind power is excessively low
or if the generation schedule is irrational, then the CCS cannot absorb the excess wind power, and
wind curtailment takes place. It is apparent that excessive wind curtailment does not conform with the
concept of energy conservation and emission reduction.

To improve the wind power utilization rate, the index of wind curtailment was defined according
to environmental benefits, in which wind curtailment should be no more than the allowable maximum
wind curtailment denoted by Qws, as written in Equation (2):

Nt

∑
t=1

Pt
wq × ∆t ≤ Qws (2)

where ∆t is the length of unit time interval, and Pt
wq is the wind curtailment power at time t.

Index of annualized profit

With a defined wind farm capacity, the annualized cost of the joint system only covers equivalent
annual values CEVB and CPCS of the battery system investment and the PCS investment separately, as
well as the annualized operation and maintenance cost Cope of the joint system:

CEVB = βEVBQEVB
r0(1 + r0)

LEVB

(1 + r0)
LEVB − 1

(3)

where QEVB is the rated capacity of the battery system, βEVB is the unit price of the battery capacity,
r0 is the discount rate of funds, and LEVB is the service life of batteries.

Discharging batteries to the power grid accelerates battery aging. The increased electricity-selling
revenues gained through the method of “charge when low and discharge if high”, together with the
discharge cost of batteries, should be qualitatively analyzed to determine whether it is profitable for
CCS to join the scheme of “charge when low and discharge if high”. In this study, battery life was used
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to link the charge/discharge energy of batteries to its charge/discharge costs. High charge/discharge
energy corresponds to short battery life and an increase in the equivalent annual values of the initial
investment of battery system. This leads to an increase in the investment cost in the joint system.
Battery life can be expressed as shown in Equation (4):

LEVB =
Ncir × DoD×QEVB

Nday
Nt
∑

t=1
Pt

c∆tηc

(4)

where Ncir is the rated charge/discharge cycles of batteries, DoD is the corresponding depth of
discharging, Pt

c is the charging power of CCS at time t, Nday is the number of days in one year, and ηc

is the charge efficiency of CCS.
Expression of the equivalent annual value for initial investment in PCS is shown in Equation (5):

CPCS = βPCSPPCS
r0(1 + r0)

L

(1 + r0)
L − 1

(5)

where PPCS is the rated power of PCS, βPCS is the unit price of PCS, and L is a constant value
representing the service life of PCS.

Operation and maintenance cost Cope of the joint system is written into Equation (6) below:

Cope = Bpen + MEVBβEVBQEVB + MPCSβPCSPPCS (6)

where Bpen is the economic penalty incurred by the joint system output deviation, and MEVB and MPCS

are the annual maintenance costs of the unit investment of a battery system and the PCS, respectively.
Equation (6) includes (1) the economic penalty caused by output deviation of the joint system, (2) the
annual maintenance cost of the battery system, and (3) the annual maintenance cost of PCS.

If the joint system fails to track its generation schedule, it should be subjected to corresponding
economic penalties according to the magnitude of the power deviation and the occurrence time. Such
economic penalties are expressed in Equation (7):

Bpen = Nday

Nt

∑
t=1

∣∣∣Pt
Plan − Pt

Plan

∣∣∣× ∆t× α× ρt (7)

where Pt
Plan and Pt

Plan stand for scheduled output and the actual output of the joint system at time t
respectively, ρt is the grid purchase price of wind power at time t, and α is the penalty coefficient of
power deviation. The expression of Pt

Plan is shown below:

Pt
Plan = Pt

w − Pt
ev (8)

where Pt
w is the day-ahead predicted value of wind power. Furthermore, Pt

ev represents the scheduled
charge/discharge power of CCS, and it should be a positive value in the event of charge, or otherwise
it should be a negative value.

Annual income of the joint system comprises annual power selling income Bsold, annual battery
swapping services income Bev, and the equivalent annual value BEVB of the income gained by
battery scrap:

Bsold = Nday

Nt

∑
t=1

Pt
Plan × ∆t× ρt (9)

Bev = Nday

Nt

∑
t=1

Qt
dt ×ωev (10)
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BEVB = βEVB0QEVB
r0

(1 + r0)
LEVB − 1

(11)

where Qt
dt is the battery swapping demand fulfilled at time t, ωev is the unit price of battery swapping,

and βEVB0 is the unit price of battery scrap.
The index of annualized profit is defined as follows: Annualized Profit of Joint System ≥

Allowable Minimum Annualized Profit Bs, as presented in Equation (12):

Bsold + Bev + BEVB − CEVB − CPCS − Cope ≥ Bs (12)

3. CCS Capacity Optimization Based on Dependent-Chance Goal Programming

According to the CCS-wind farm cooperation framework proposed in this paper, CCS not only
provides battery swapping services to BDSs, but it also provides multiple other benefits. As a result,
CCS capacity optimization should not only account for internal factors such as battery swapping
demands, but it also should account for many external factors, such as whether the battery capacity
can satisfy the reserve demand of wind power, whether the matching between generation schedule
and peak-valley price of wind power can be realized for the joint system, and so on. Due to the high
investment cost of batteries, excess redundancy enormously increases costs of investment, as well as
operation and maintenance. However, very low redundancy reduces the CCS’s capability to charge
when low and discharge if high. Consequently, it becomes less likely for the generation schedule of
the joint system to match the peak-valley price. This in turn lowers the benefits earned by electricity
selling. As a result, trade-off between the initial investment and the operation revenues should be
conducted for the joint system to optimize the CCS’s capacity.

During capacity programming, failure to effectively consider emergencies—including random
fluctuations in wind power and battery swapping demands—frequently leads to a decline in the
feasibility of joint system optimization outcome in actual operation, and it may even lead to infeasibility.
As a consequence, failure to consider emergencies further lowers the cooperation effect of a joint wind
farm and CCS. Therefore, the decision-maker of the joint system should focus on optimizing operating
indices such as wind curtailment while giving more importance to the relevant risks to realizing
operating indices. The dependent-chance programming model [22] clearly conforms to the modeling
thoughts presented in this paper.

To sufficiently consider the randomness of wind power and battery swapping demands, a CCS
capacity optimization model was developed based on dependent-chance programming. This approach
would maximize the realization probability of three operating indices. The operating indices are
incompatible with each other, which signifies that the improvement of one index could only be
achieved by sacrificing other indices. In such a case, such indices should be balanced. Therefore, a
priority structure should be established for the model according to the difference of index importance
and the decision-makers’ risk tolerance to these indices. Moreover, by the merit of goal programing,
decision-makers can set target values for the operating indices so that their realization probability can
reach their target values to the greatest extent.

3.1. Mathematical Modeling

The CCS capacity optimization model is expressed in Equation (13) below:

Lexmin{d−1 , d−2 , d−3 }

s.t.Pr{
Nt
∑

t=1
Qt

q ≤ Qds}+ d−1 − d+1 = PQds

Pr{
Nt
∑

t=1
Pt

wq × ∆t ≤ Qws}+ d−2 − d+2 = PQws

Pr
{

Bsold + Bev + BEVB − CEVB − CPCS − Cope ≥ Bs
}
+ d−3 − d+3 = PBs

d−i , d+i ≥ 0, i = 1, 2, 3
g(QEVB, PPCS, Pt

Plan, Pt
wn, Qt

dn) ≤ 0

(13)
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where Lexmin{·} means that target vectors are minimized lexicographically; Pr{·} refers to the probability
of operating index realization; PQds, PQws and PBs are the target values of three indices realization
probabilities defined by decision-makers in combination with their own risk preferences; d+i and d−i
are the positive and negative deviations, respectively, denoting that realization of the probability of
index ranking i has deviated from its target value, and both should be nonnegative numbers. Decision
variables of the model cover the rated capacity QEVB of the battery system, the rated power PPCS of the
PCS, and the generation schedule Pt

Plan of the joint system. By contrast, the actual wind power Pt
wn

and the practical battery swapping demands Qt
dn at each time interval are random variables.

Given the reality in China, a company with large wind farms and CCS is more likely to be a
state-owned enterprise, with decision-makers often focusing primarily on national policy and social
responsibility. Therefore, in this model, the priority order of the three indices from high to low is
battery swapping demand curtailment index, wind curtailment index and annualized profit index.
Of course, the priority order can also be reasonably established according to the actual situation of the
joint system, which will not affect the applicability of the model.

Constraint condition g(·) ≤ 0 mainly consists of the following five aspects:
(1) Maximum capacity constraints over the battery system and PCS

0 ≤ QEVB ≤ Qmax
EVB (14)

0 ≤ PPCS ≤ Pmax
PCS (15)

where Qmax
EVB is the maximum constraint over the rated capacity of the battery system, and Pmax

PCS is the
maximum rated power of the PCS. Both of these are under the constraints of multiple conditions,
including the area, the cost, the transformer capacity, etc.

(2) Charge/discharge power constraint

− PPCS ≤ Pt
ev ≤ PPCS (16)

(3) CCS power constraint
Qmin ≤ Qt ≤ QEVB (17)

where Qt is the energy storage of CCS at time t. Because over discharge shortens the battery life,
the energy storage of the CCS should be no less than the minimum value Qmin according to the
requirement. It is assumed that specifications of the batteries in the CCS were identical and that the
charge/discharge strategy of a single battery satisfies the battery capacity constraint, so the iterative
formula for the energy storage Qt of CCS is similar to that of ESS, that is:

Qt = Qt−1 −Qt
dt + Pt

cηc∆t− Pt
d∆t/ηd (18)

where ηd is discharge efficiency of CCS, and Pt
c is the charge power and Pt

d is the discharge power at
time t, which can be expressed as follows:

Pt
c =

{
Pt

ev, Pt
ev ≥ 0

0, Pt
ev < 0

(19)

Pt
d =

{
−Pt

ev, Pt
ev < 0

0, Pt
ev ≥ 0

(20)

(4) CCS energy storage constraint at the end of a decision-making cycle

QNt = Qini (21)

where Qini is the initial energy storage of CCS. To realize decoupling of various decision-making cycles,
energy storage at the end of a decision-making cycle QNt should be the same as that of Qini.

(5) Zero emission constraint over EVs

Pt
Plan ≥ 0 (22)
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To realize zero emissions of EVs, the CCS is only charged by wind power.
Satisfied battery swapping demand Qt

dt and unsatisfied battery swapping demand Qt
q of CCS at

time t can be written in the two equations below, respectively:

Qt
dt = min{Qt −Qmin, Qt

dn} (23)

Qt
q = Qt

dn −Qt
dt (24)

At time t, actual output Pt
Plan of the joint system can be expressed as follows:

Pt
Plan = min{Pt

Plan, Pt
wn − Pt,min

ev } (25)

Minimum value Pt,min
ev for available CCS charge/discharge power at time t is expressed as follows:

Pt,min
ev = max{−PPCS,

Qmin − (Qt −Qt
dt)

∆t
ηd} (26)

Expression of wind curtailment power Pt
wq at time t is as follows:

Pt
wq = max{Pt

wn − Pt,max
ev − Pt

Plan, 0} (27)

The maximum value Pt,max
ev for the available CCS charge/discharge power at t is written as follows:

Pt,max
ev = min{PPCS,

QEVB − (Qt −Qt
dt)

∆t× ηc
} (28)

At time t, the charge/discharge power Pt
ev of CCS can be expressed as follows:

Pt
ev = Pt

wn − Pt
wq − Pt

Plan (29)

3.2. A Solving Method Combining Monte Carlo Simulation and Genetic Algorithm (GA)

In practice, it is difficult to solve the multi-target stochastic optimization problems presented
above. This is mainly due to the need to predict variations in wind power and battery swapping
demand and the complexity of resolving a model involving probability calculation.

Even though it is difficult to predict wind power and battery swapping demands, many research
findings have demonstrated that errors of relevant predicted values obey normal distribution [23,24].
Therefore, Monte Carlo simulation can be used for this effort using the law of large numbers to
determine the realization probability of all indices if the probability distribution has been mastered for
predictive errors related to wind power and battery swapping demands.

The flow chart of the Monte Carlo simulation is shown in Figure 3. Based on the probability
distribution functions, m groups of scenarios are generated randomly to simulate the fluctuations of
wind power and battery swapping demand:
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For each scenario, the unsatisfied battery swapping demand, wind curtailment and annualized
profit are calculated. When m is large enough, the realization probabilities of each index could be
expressed as:

Pr{hi(QEVB, PPCS, Pt
Plan, Pt

wn, Qt
dn) ≤ 0} = mi

m
, i = 1, 2, 3 (31)

Furthermore, the global optimization of the model has been implemented by a genetic
algorithm (GA).
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Any changes in the rated capacity of the battery system, the rated power of the PCS, or the
generation schedule will influence the index of battery swapping demand curtailment, the index
of wind curtailment, and the index of annualized profit. To increase the diversity of each group
of variables in chromosomes and improve the search efficiency and local search ability of the GA,
the segmented chromosome operation was used, and the three groups of variables were adjusted
separately in the process of optimization.

The chromosome is logically divided into three segments; the segmented coding of the
chromosomes is shown in Figure 4. Segment 1 is the rated capacity of the battery system, and
segment 2 is the rated power of PCS, and both of these segments are planning variables. Segment 3 is
the joint system generation schedule, which is an operating variable. The planning variable prescribes
a limit to the decision space of the operating variable, and the operating variables affect the planning
variables by exerting influence on the realization probability of the joint system’s operating indices.Energies 2018, 11, x 11 of 18 

 

Initialize m� m1� m2� m3

Whether or not Index 1 is 
satisfied

N

N

m1=m1+1

Y

m2=m2+1

Y

m3=m3+1

Y

Calculate the realization probabilities of each 
index according to Formula (30)

Y

m=m+1
N

Start

End

Whether or not Index 2 is 
satisfied

Whether or not Index 3 is 
satisfied

Whether or not
maximum number of simulation

reached
scenarios has been

Based on the prediction error distribution, battery swapping 
demand and wind power are randomly generated

Calculation of unsatisfied battery swapping demand，wind 
curtailment and annualized profit

N

Initialize m� m1� m2� m3

Whether or not Index 1 is 
satisfied

N

N

m1=m1+1

Y

m2=m2+1

Y

m3=m3+1

Y

Calculate the realization probabilities of each 
index according to Formula (30)

Y

m=m+1
N

Start

End

Whether or not Index 2 is 
satisfied

Whether or not Index 3 is 
satisfied

Whether or not
maximum number of simulation

reached
scenarios has been

Based on the prediction error distribution, battery swapping 
demand and wind power are randomly generated

N

Calculation of unsatisfied battery swapping demand, wind 
curtailment and annualized profit

Initialize m, m1, m2, m3

Whether or not Index 1 is 
satisfied

N

N

m1=m1+1

Y

m2=m2+1

Y

m3=m3+1

Y

Calculate the realization probabilities of each 
index according to Formula (31)

Y

m=m+1
N

Start

End

Whether or not Index 2 is 
satisfied

Whether or not Index 3 is 
satisfied

Whether or not
maximum number of simulation

reached
scenarios has been

Based on the prediction error distribution, battery swapping 
demand and wind power are randomly generated

N

Calculation of unsatisfied battery swapping demand, wind 
curtailment and annualized profit

 
Figure 3. Flowchart of the Monte Carlo simulation. 

 









      



EVB PCS

EVB PCS

EVB PCS

(1)(1) (1)
1(1) (1) 1 2

plan plan plan

(2)(2) (2)
1(2) (2) 1 2

plan plan plan

( )( ) ( )
1( ) ( ) 1 2

plan plan plan

2 :

 :

chromosome 

chromosome 

chrom

1: | |

| |

| |

osom | |e

t

t

t

N

N

nn n
Nn nn

Q P P P P

Q P P P P

Q P P P P
 

Figure 4. Segmented coding of the chromosome. 

4. Simulation Analysis 

4.1. Simulation Parameter Setting 

Data of a real CCS in Shandong Province were used for reference to construct the CCS presented 
in this paper. The actual battery swapping demand on one day was selected as the predicted value 
of battery swapping demand on a typical day, as presented in Figure 5. The parameter of the CCS is 
presented in Table 1. The initial energy storage Qini and the minimum energy storage Qmin of the CCS 
occupied 30% and 10% in the rated capacity of battery system, respectively. 

Multiple wind farms could be aggregated into one wind farm in the model. Data of an equivalent 
wind farm were selected from those of an actual wind farm in Shandong Province. The installed 

Figure 3. Flowchart of the Monte Carlo simulation.

Energies 2018, 11, x 11 of 18 

 

Initialize m� m1� m2� m3

Whether or not Index 1 is 
satisfied

N

N

m1=m1+1

Y

m2=m2+1

Y

m3=m3+1

Y

Calculate the realization probabilities of each 
index according to Formula (30)

Y

m=m+1
N

Start

End

Whether or not Index 2 is 
satisfied

Whether or not Index 3 is 
satisfied

Whether or not
maximum number of simulation

reached
scenarios has been

Based on the prediction error distribution, battery swapping 
demand and wind power are randomly generated

Calculation of unsatisfied battery swapping demand，wind 
curtailment and annualized profit

N

Initialize m� m1� m2� m3

Whether or not Index 1 is 
satisfied

N

N

m1=m1+1

Y

m2=m2+1

Y

m3=m3+1

Y

Calculate the realization probabilities of each 
index according to Formula (30)

Y

m=m+1
N

Start

End

Whether or not Index 2 is 
satisfied

Whether or not Index 3 is 
satisfied

Whether or not
maximum number of simulation

reached
scenarios has been

Based on the prediction error distribution, battery swapping 
demand and wind power are randomly generated

N

Calculation of unsatisfied battery swapping demand, wind 
curtailment and annualized profit

Initialize m, m1, m2, m3

Whether or not Index 1 is 
satisfied

N

N

m1=m1+1

Y

m2=m2+1

Y

m3=m3+1

Y

Calculate the realization probabilities of each 
index according to Formula (31)

Y

m=m+1
N

Start

End

Whether or not Index 2 is 
satisfied

Whether or not Index 3 is 
satisfied

Whether or not
maximum number of simulation

reached
scenarios has been

Based on the prediction error distribution, battery swapping 
demand and wind power are randomly generated

N

Calculation of unsatisfied battery swapping demand, wind 
curtailment and annualized profit

 
Figure 3. Flowchart of the Monte Carlo simulation. 

 









      



EVB PCS

EVB PCS

EVB PCS

(1)(1) (1)
1(1) (1) 1 2

plan plan plan

(2)(2) (2)
1(2) (2) 1 2

plan plan plan

( )( ) ( )
1( ) ( ) 1 2

plan plan plan

2 :

 :

chromosome 

chromosome 

chrom

1: | |

| |

| |

osom | |e

t

t

t

N

N

nn n
Nn nn

Q P P P P

Q P P P P

Q P P P P
 

Figure 4. Segmented coding of the chromosome. 

4. Simulation Analysis 

4.1. Simulation Parameter Setting 

Data of a real CCS in Shandong Province were used for reference to construct the CCS presented 
in this paper. The actual battery swapping demand on one day was selected as the predicted value 
of battery swapping demand on a typical day, as presented in Figure 5. The parameter of the CCS is 
presented in Table 1. The initial energy storage Qini and the minimum energy storage Qmin of the CCS 
occupied 30% and 10% in the rated capacity of battery system, respectively. 

Multiple wind farms could be aggregated into one wind farm in the model. Data of an equivalent 
wind farm were selected from those of an actual wind farm in Shandong Province. The installed 

Figure 4. Segmented coding of the chromosome.



Energies 2018, 11, 1164 11 of 18

4. Simulation Analysis

4.1. Simulation Parameter Setting

Data of a real CCS in Shandong Province were used for reference to construct the CCS presented
in this paper. The actual battery swapping demand on one day was selected as the predicted value
of battery swapping demand on a typical day, as presented in Figure 5. The parameter of the CCS is
presented in Table 1. The initial energy storage Qini and the minimum energy storage Qmin of the CCS
occupied 30% and 10% in the rated capacity of battery system, respectively.

Multiple wind farms could be aggregated into one wind farm in the model. Data of an equivalent
wind farm were selected from those of an actual wind farm in Shandong Province. The installed
capacity of the wind farm is 99 MW, and predicted values selected for the wind power on a typical day
are presented in Figure 6. As assumed, relative predictive errors of wind power and battery swapping
demands conform to normal distribution of N(0, 0.12) [11].

The grid purchase price of wind power is known, and the peak-valley price was adopted as given
in Figure 7. The penalty coefficient α for the joint system’s power deviation was defined to be 0.3.

Energies 2018, 11, x 12 of 18 

 

capacity of the wind farm is 99 MW, and predicted values selected for the wind power on a typical 
day are presented in Figure 6. As assumed, relative predictive errors of wind power and battery 
swapping demands conform to normal distribution of N(0, 0.12) [11]. 

The grid purchase price of wind power is known, and the peak-valley price was adopted as given 
in Figure 7. The penalty coefficient α for the joint system’s power deviation was defined to be 0.3. 

 

 
Figure 5. Prediction of battery swapping demand in a typical day. 

 

 
Figure 6. Prediction of wind power in a typical day. 

 

 
Figure 7. Pool purchase price of wind power. 

  

Figure 5. Prediction of battery swapping demand in a typical day.

Energies 2018, 11, x 12 of 18 

 

capacity of the wind farm is 99 MW, and predicted values selected for the wind power on a typical 
day are presented in Figure 6. As assumed, relative predictive errors of wind power and battery 
swapping demands conform to normal distribution of N(0, 0.12) [11]. 

The grid purchase price of wind power is known, and the peak-valley price was adopted as given 
in Figure 7. The penalty coefficient α for the joint system’s power deviation was defined to be 0.3. 

 

 
Figure 5. Prediction of battery swapping demand in a typical day. 

 

 
Figure 6. Prediction of wind power in a typical day. 

 

 
Figure 7. Pool purchase price of wind power. 

  

Figure 6. Prediction of wind power in a typical day.



Energies 2018, 11, 1164 12 of 18

Energies 2018, 11, x 12 of 18 

 

capacity of the wind farm is 99 MW, and predicted values selected for the wind power on a typical 
day are presented in Figure 6. As assumed, relative predictive errors of wind power and battery 
swapping demands conform to normal distribution of N(0, 0.12) [11]. 

The grid purchase price of wind power is known, and the peak-valley price was adopted as given 
in Figure 7. The penalty coefficient α for the joint system’s power deviation was defined to be 0.3. 

 

 
Figure 5. Prediction of battery swapping demand in a typical day. 

 

 
Figure 6. Prediction of wind power in a typical day. 

 

 
Figure 7. Pool purchase price of wind power. 

  

Figure 7. Pool purchase price of wind power.

Table 1. Parameters of the centralized charging station.

No. Parameters Quantity 1

1 Qmax
EVB 270 MWh

2 Pmax
PCS 42 MW

3 βEVB 1,950,000 ¥/MWh
4 βEVB0 507,000 ¥/MWh
5 βPCS 390,000 ¥/MW
6 ωev 315 ¥/MWh
7 ηc 95%
8 ηd 92%
9 MEVB 1%
10 MPCS 1%
11 Ncir 5300
12 DoD 95%
13 L 10 years
14 r0 6%

1 In this paper, RMB is used as the monetary unit. RMB ¥1 is equal to US $0.16.

The decision-making cycle consists of 24 time intervals in a typical day. The decision-maker sets
the priority order and target values for the realization probabilities of three operating indices according
to the importance of these indices, including the decision-maker’s risk tolerance, as shown in Table 2.

Table 2. The joint system operating indices and the target values for their realization probabilities.

Priority Order Index Desired Value of Index Target Value for
Realization Probability

1 battery swapping demand curtailment 0.2 MWh 95%

2 wind curtailment 35 MWh 95%

3 annualized profit 219 million ¥ 85%

4.2. Optimization Result Analysis

Based on the conditions presented above as optimized by the model proposed in this paper,
the rated capacity of the battery system was 123 MWh, and the rated power of the PCS was 25 MW.
In accordance with optimization results, the realization probability of the first two operating indices
reaches the target values of 95%. However, the realization probability of the annualized profit index
is only 78%, failing to arrive at the 85% target value. Such phenomena reflect that decision-maker is
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risk averse. He or she attach different degrees of importance to diverse indices. Being risk averse,
high target values are set for the probability of realizing the first two indices described above. In other
words, the index of annualized profit is sacrificed for the purpose of ensuring that the first two indices
will be satisfied.

Sensitivity analysis of battery unit price

According to the principle of “charge when low and discharge if high”, the revenue of electricity
increases, which in turn incurs the corresponding increase in cost. The cost increase consists of two
aspects. First, it involves additional investment and operation and maintenance costs caused by the
need for configuration of the redundant battery capacity. Second, the annualized investment cost is
increased because of shortened battery life due to battery discharge. The rated capacity optimization
results of the battery system at different battery unit prices are presented in Figure 8.Energies 2018, 11, x 14 of 18 
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As shown in Figure 8, the cost required by “charge when low and discharge if high” of the CSS
is low when the unit price of battery is low. Hence, the CCS is configured with a higher redundant
capacity to achieve the excess returns gained by selling electricity according to the price difference
between peak and valley electricity levels. The unit price increase of batteries is accompanied by an
increase in the initial investment, as well as an increase in the operation and maintenance costs of the
joint system. Therefore, the cost required by the “charge when low and discharge if high” approach
continues to increase as the unit price increases. In this case, additional returns gained by selling
electricity based on a principle of “charge when low and discharge if high” are insufficient to offset the
additional costs. Consequently, the discharged energy of the CCS declines continuously, and the extra
capacity configured for “charge when low and discharge if high” decreases along with the decline
in energy. If the unit price of battery exceeds ¥4 million/MWh, however, then the capacity of such a
battery system nearly no longer drops with the rise of such a unit price. This is because the CCS needs
the necessary battery capacity to provide a reserve for battery swapping demands and wind power in
order to satisfy the first two indices of joint system.

Table 3 presents implementation situations of indices corresponding to different battery unit
prices. Table 3 shows that realization probabilities for first two indices reach the target values (95%)
prescribed by the decision-maker when the battery unit prices differ. When analyzed in combination
with Figure 8, it can be seen that the rated capacity of the battery system does not always decrease
with the rise of unit prices to guarantee that first two indices can be realized. In fact, the rated capacity
drops to a certain value and no longer changes. This reserves sufficient redundant capacity for battery
swapping demands and wind power. However, this leads to a constant reduction in the annualized
profit of the joint system, and the realization probability for this index also goes down accordingly.
If the unit price of the battery increases beyond ¥3 million/MWh, then it becomes impossible for
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the annualized profit of the joint system to reach its target value (¥219 million), indicating that the
probability of realizing the index of annualized profit reduces to 0.

Table 3. Effects of battery unit prices on indices.

Unite Price
(million ¥/MWh)

Realization Probability
of Index 1

Realization Probability
of Index 2

Realization Probability
of Index 3

Annualized Profit
Expectation
(million ¥)

1.95 95% 95% 78% 220
3.0 95% 95% 0% 206
4.0 95% 95% 0% 193
5.0 95% 95% 0% 180

Sensitivity analysis of PCS unit price

The rated power of the PCS and the annualized profit of the joint system were obtained through
optimization and are given in Table 4 under conditions of different PCS unit prices. The rise of the
PCS unit price results in the decrease of its rated power. Nevertheless, when the unit price of the PCS
exceeds ¥2 million/MW, the rated power reduces to 20.2 MW, after which it no longer declines. This
illustrates that, in order to satisfy the first two indices of the joint system, the economic efficiency of
the system should be abandoned to provide reserve energy for battery swapping demands and wind
power. This should be accomplished by configuring the necessary rated power of the PCS. Moreover,
with the increase in the unit price of the PCS, both the probability for annualized profit of the joint
system to be satisfied and the expected value of annualized profit drop accordingly.

Table 4. Effect of PCS unit price on its rated power and the index of annualized profit.

PCS Unit Price
(million ¥/MWh) Rated Power (MW) Annualized Profit

Expectation (million ¥)
Realization Probability

of Index 3

0.39 25.1 220 78%
0.7 23.6 219 70%
1.0 20.8 218 40%
2.0 20.2 215 0%
3.0 20.2 212 0%

Sensitivity analysis of wind power price

The grid purchase price of wind power affects the capacity optimization by exerting its influence
on the electricity-selling revenue of the joint system. To analyze the influence of peak and off-peak
wind power price differences on joint system capacity optimization, wind power price in the peak
hours was altered (¥300/MWh), while the prices of wind power in the valley and average hours
remained unchanged (¥600/MWh). Relevant results are presented in Table 5.

Table 5. Effect of peak and valley difference of wind power price on optimization result.

Wind Power Price
in Peak Hours

(¥/MWh)

Battery System
Rated Capacity

(MWh)

PCS Rated Power
(MW)

Realization
Probability of

Index 3

Discharged
Energy (MWh)

800 88 22.0 0% 31
900 123 25.1 78% 70

1000 132 26.5 100% 95

Clearly, as the wind power price rises in the peak hours, the peak and off-peak wind power price
difference goes up so that the CCS can acquire higher returns from selling electricity based on the
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principle of “charge when low and discharge if high”. The result is that the discharged energy of the
CCS keeps increasing, and correspondingly, more standby batteries are configured in the joint system
with the increase in the PCS’s rated power.

Analysis of generation schedule optimization results

Not only can the rated capacity of the battery system and the rated power of the PCS be
optimized by the optimal capacity planning model proposed here, but the model could also obtain
generation scheduling of the joint system and could schedule the charge/discharge power of the CCS
simultaneously, as shown in Figures 9 and 10.

Figure 9 clearly indicates that the CCS implements charge at a high power level during wind
power price valley periods as seen in time intervals 0–6. This serves to prepare for upcoming battery
swapping demands and to store wind power. In periods of wind power price peaks as seen in time
frames 18–22, the CCS releases the wind power that was previously reserved, using the price difference
between the peak and valley of electricity to improve the electricity selling revenue of the joint system.
During time interval 11–17, the wind power price is at an intermediate level, and the charge power of
CCS is lower than that in valley price periods. This serves to meet battery swapping demands.Energies 2018, 11, x 16 of 18 
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The charge/discharge power of the CCS has been closely correlated to the grid purchase price of
wind power. Figure 10 illustrates that the CCS discharges, and the joint system output power is higher
than the predicted wind power when the wind power price is high. By contrast, if the price is low,
then the CCS goes into the mode to charge, and the output power of joint system becomes lower than
the predicted wind power. On this basis, the grid purchase price can be rationally set, directing the
joint system to generate more power during peak load hours but less power during the load valley.
In this way, the joint system pursues self-interest and brings down the load-shifting pressure of the
power grid. Meanwhile, the collaborative unification of joint system and power grid dispatching is
realized. Additionally, the fact that the output power of the joint system in all time intervals is above 0
indicates that the CCS could meet battery swapping demands without purchasing energy from power
grid, which makes zero emission of EVs a reality.

Energy storage in the CCS is plotted over one day in Figure 11. In all time intervals, the
residual energy of the CCS is far above its minimum value allowable (12.3 MWh), signifying that
the decision-maker gives priority to the index of battery swapping demand curtailment. To prevent
unfulfilled battery swapping demands, the CCS must reserve sufficient back-up energy to meet battery
swapping demands. Reserve for the wind power should be provided to accommodate both capacity
and power. Figure 11 illustrates that energy storage of the CCS is lower than the rated capacity of the
battery system, with an aim to avoid wind curtailment and provide standby capacity for wind power.
Furthermore, as shown in Figure 9, it has been found that the charge/discharge power of the CCS is
always below the rated power of the PCS because standby power should be provided to prediction
errors of wind power. This would help prevent random fluctuations of wind power that cause the joint
system’s actual output to deviate from its generation schedule. Consequently, the associated economic
penalties are lowered.

Energies 2018, 11, x 17 of 18 

 

This would help prevent random fluctuations of wind power that cause the joint system’s actual output 
to deviate from its generation schedule. Consequently, the associated economic penalties are lowered. 

 

 
Figure 11. Energy storage in the centralized charging station. 

5. Conclusions 

To achieve cooperation between the CCS and the wind farm, a joint operation pattern was 
proposed, and the capacity optimization issues of the CCS were subjected to the pattern. Relevant 
simulation analysis results demonstrate that the following: 

(1) Joint operation of the CCS and the wind farm generates a benefit in coordination. On one hand, 
the CCS provides a standby capacity for the wind farm to improve controllability of wind power 
and to reduce economic penalties incurred by joint system power deviation. On the other hand, 
the CCS takes advantage of the wind power to charge batteries so that zero emission of EVs can 
be realized. 

(2) The joint system responds to the grid purchase price of wind power to further improve its 
electricity selling revenue. The capacity optimization model proposed in this paper 
comprehensively accounts for investment cost, wind power price, battery life, and other factors, 
and then the system weighs whether a principle of “charge when low and discharge if high” can 
be adopted so that the CCS will earn profits. On this basis, the optimal capacity of the CCS is 
determined, along with the optimal generation schedule of the joint system. 

(3) The generation schedule of the joint system is closely related to wind power price. The grid 
purchase price of the wind power should be rationally specified to effectively direct the output 
power of the joint system and to determine a win-win strategy between the power grid and the 
proposed joint system. 

To further improve the model proposed in this paper, the logistic distribution constraints of 
batteries and the uncertainties of the wind power price should be two research objectives worth 
investigating in the future. 

Author Contributions: Zhe Jiang completed major research tasks and wrote the paper. Xueshan Han directed 
the research. Zhimin Li and Guodong Liu put forward some important suggestions. Mingqiang Wang, Wenbo 
Li, Mengxia Wang and Thomas B. Ollis participated in the revision work. 

Acknowledgments: This paper is supported by the National Natural Science Foundation of China (51477091, 
51407111, 51407106). 

Conflicts of Interest: The authors declare no conflict of interest. 
  

Figure 11. Energy storage in the centralized charging station.

5. Conclusions

To achieve cooperation between the CCS and the wind farm, a joint operation pattern was
proposed, and the capacity optimization issues of the CCS were subjected to the pattern. Relevant
simulation analysis results demonstrate that the following:

(1) Joint operation of the CCS and the wind farm generates a benefit in coordination. On one hand,
the CCS provides a standby capacity for the wind farm to improve controllability of wind power
and to reduce economic penalties incurred by joint system power deviation. On the other hand,
the CCS takes advantage of the wind power to charge batteries so that zero emission of EVs can
be realized.
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(2) The joint system responds to the grid purchase price of wind power to further improve
its electricity selling revenue. The capacity optimization model proposed in this paper
comprehensively accounts for investment cost, wind power price, battery life, and other factors,
and then the system weighs whether a principle of “charge when low and discharge if high” can
be adopted so that the CCS will earn profits. On this basis, the optimal capacity of the CCS is
determined, along with the optimal generation schedule of the joint system.

(3) The generation schedule of the joint system is closely related to wind power price. The grid
purchase price of the wind power should be rationally specified to effectively direct the output
power of the joint system and to determine a win-win strategy between the power grid and the
proposed joint system.

To further improve the model proposed in this paper, the logistic distribution constraints of
batteries and the uncertainties of the wind power price should be two research objectives worth
investigating in the future.
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