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Abstract: Peak-current-mode (PCM) control was proposed in 1978. The observed peculiar behavior
caused by the application of PCM-control in the behavior of a switched-mode converter, which
operates in continuous conduction mode (CCM), has led to a multitude of attempts to capture the
dynamics associated to it. Only a few similar models have been published for a PCM-controlled
converter, which operates in discontinuous conduction mode (DCM). PCM modeling is actually
an extension of the modeling of direct-duty-ratio (DDR) or voltage-mode (VM) control, where the
perturbed duty ratio is replaced by proper duty-ratio constraints. The modeling technique, which
produces accurate PCM models in DCM, is developed in early 2000s. The given small-signal models
are, however, load-resistor affected, which hides the real dynamic behavior of the associated converter.
The objectives of this paper are as follows: (i) proving the accuracy of the modeling method published
in 2001, (ii) performing a comprehensive dynamic analysis in order to reveal the real dynamics of the
buck converter under PCM control in DCM, (iii) providing a method to improve the high-frequency
accuracy of the small-signal models, and (iv) developing control-engineering-type block diagrams to
facilitate the development of generalized transfer functions, which are applicable for PCM-controlled
DCM-operated buck, boost, and buck-boost converters.

Keywords: peak-current-mode control; dynamic modeling; duty-ratio constraints; discontinuous
conduction mode

1. Introduction

Peak-current-mode (PCM) control of switched-mode converters was publically introduced in
1978 [1,2], and it quickly became a very popular control method because of the beneficial features that
it provides in converter operation and protection, as discussed in [3]. A huge number of modeling
approaches has been proposed since the introduction of the PCM control in continuous conduction
mode (CCM), as discussed and referenced in [4]. It has been recently shown in [4] that the accurate
dynamic models of PCM-controlled converters, which operates in CCM, can be obtained by developing
such duty-ratio constraints that include the duty-ratio gain (Fm), which becomes infinite at the
mode-limit duty ratio (i.e., the maximum duty ratio after which the converter enters into harmonic
mode of operation). Such models can be found, for example, from [4–8]. Only a few similar analytical
models applicable for discontinuous conduction (DCM) are published [9–14].

The models in [9] are derived assuming that the inductor current does not exist as a state
variable (i.e., no feedback from the inductor current is considered), because all the energy in the
inductor is dissipated within the cycle, as assumed in [15]. This assumption is not valid, because the
time-averaged inductor current does exist and it is a continuous state variable as discussed explicitly
in [16]. A modeling technique is introduced in [10], which produces duty-ratio constraints with
infinite duty-ratio gain (Fm) at the mode limit between the DCM and CCM operation but the models
are load-resistor affected, which modifies the dynamics of the converter significantly, as discussed
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in [4,17]. The models presented in [11] are given in an implicit form including the load-resistor effect,
which makes the model validation a challenging task, because the unterminated small-signal transfer
functions cannot be recovered based on the given equivalent circuits. A discrete-time-modeling
approach is presented in [12] for a buck converter including also PCM control in DCM, but it does
not give any explicit transfer functions for comparison. The average and small-signal behavior of
PCM-controlled boost converter based on numerical analysis methods is provided in [18] but no
explicit analytic transfer functions are presented either. The unterminated PCM state spaces are given
in [13] (pp. 139–144) and in [14] (pp. 222–224) for a buck converter based on the method introduced
in [10], but the transfer functions are not solved for comparison.

As discussed in [4], the experimental verifications do not usually prove the validity of the
models especially at the high frequencies due to the existence of un-modeled circuit elements at
the input and/or output terminals, which affect the measurements either through the source or
load-effect phenomena [14] (pp. 38–40). A good example of such a phenomenon can be found,
for example, from [19] (cf. Figure 16 in [19]). Figure 1 shows the experimentally measured (red line),
the analytically predicted (black line), and the simulation-based (blue line) frequency responses of the
control-to-output-voltage transfer functions of a direct-duty-ratio (DDR) controlled buck converter
analyzed in this paper [20]. The effect of the external circuit elements is explicitly visible, especially,
in the behavior of the phase at the higher frequencies (cf. red line, >10 kHz). The predicted (black
line) and simulation-based (blue line) frequency responses have very good match with each other.
The ability to predict correctly the high frequency phase behavior (i.e.,≥1/10th of switching frequency)
is a quite important feature of the small-signal models from the control-design point of view. Therefore,
it is well justified to perform the model validation by using MatlabTM Simulink environment, where
all the circuit elements are perfectly known.

Energies 2018, 11, x FOR PEER REVIEW  2 of 18 

 

The models presented in [11] are given in an implicit form including the load-resistor effect, which 
makes the model validation a challenging task, because the unterminated small-signal transfer 
functions cannot be recovered based on the given equivalent circuits. A discrete-time-modeling 
approach is presented in [12] for a buck converter including also PCM control in DCM, but it does 
not give any explicit transfer functions for comparison. The average and small-signal behavior of 
PCM-controlled boost converter based on numerical analysis methods is provided in [18] but no 
explicit analytic transfer functions are presented either. The unterminated PCM state spaces are given 
in [13] (pp. 139–144) and in [14] (pp. 222–224) for a buck converter based on the method introduced 
in [10], but the transfer functions are not solved for comparison. 

As discussed in [4], the experimental verifications do not usually prove the validity of the models 
especially at the high frequencies due to the existence of un-modeled circuit elements at the input 
and/or output terminals, which affect the measurements either through the source or load-effect 
phenomena [14] (pp. 38–40). A good example of such a phenomenon can be found, for example, from 
[19] (cf. Figure 16 in [19]). Figure 1 shows the experimentally measured (red line), the analytically 
predicted (black line), and the simulation-based (blue line) frequency responses of the control-to-
output-voltage transfer functions of a direct-duty-ratio (DDR) controlled buck converter analyzed in 
this paper [20]. The effect of the external circuit elements is explicitly visible, especially, in the 
behavior of the phase at the higher frequencies (cf. red line, >10 kHz). The predicted (black line) and 
simulation-based (blue line) frequency responses have very good match with each other. The ability 
to predict correctly the high frequency phase behavior (i.e., ≥ 1/10th of switching frequency) is a 
quite important feature of the small-signal models from the control-design point of view. Therefore, 
it is well justified to perform the model validation by using MatlabTM Simulink environment, where 
all the circuit elements are perfectly known. 

 
Figure 1. Measured (red line), analytically predicted (black line), and simulation-based (blue line) 
control-to-output-voltage frequency responses of direct-duty-ratio (DDR)-controlled buck converter 
operating in discontinuous conduction mode (DCM) at the input voltage of 20 V. 

The investigations of this paper show that the modeling method in [10] will produce highly 
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account. If the parasitic elements are omitted then the accuracy of the simplified models is not 
acceptable, especially, at the low input-voltage levels. The investigations show clearly also that an 
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The load-resistor-affected instability will take place at M ≈ 2/3 as predicted earlier in [10] and [11] as 
well as demonstrated explicitly in [21]. The existence of the right-half-plane (RHP) pole requires to 
designing the output-voltage feedback-control loop to have the crossover frequency higher than the 
RHP pole for stability to exist. The RHP pole will move into higher frequencies along the increase in 
M and D (i.e., duty ratio) requiring careful selection of the feedback-loop crossover frequency for 

Figure 1. Measured (red line), analytically predicted (black line), and simulation-based (blue line)
control-to-output-voltage frequency responses of direct-duty-ratio (DDR)-controlled buck converter
operating in discontinuous conduction mode (DCM) at the input voltage of 20 V.

The investigations of this paper show that the modeling method in [10] will produce highly
accurate unterminated small-signal models, when the parasitic circuit elements are taken into
account. If the parasitic elements are omitted then the accuracy of the simplified models is not
acceptable, especially, at the low input-voltage levels. The investigations show clearly also that an
unterminated buck converter will become unstable in open loop at M ≈ 1/2, where M denotes V0/Vin.
The load-resistor-affected instability will take place at M ≈ 2/3 as predicted earlier in [10,11] as well as
demonstrated explicitly in [21]. The existence of the right-half-plane (RHP) pole requires to designing
the output-voltage feedback-control loop to have the crossover frequency higher than the RHP pole



Energies 2018, 11, 1267 3 of 18

for stability to exist. The RHP pole will move into higher frequencies along the increase in M and D
(i.e., duty ratio) requiring careful selection of the feedback-loop crossover frequency for ensuring the
stability of the converter. Therefore, the new findings concerning the location of the RHP pole have
real scientific as well as practical values.

The rest of the paper is organized as follows: Section 2 introduces briefly the PCM-modeling
method developed in [10] in a generalized unterminated form, and provides the corresponding
explicit transfer functions for a buck converter. Section 3 presents the validation of the
developed small-signal models by utilizing MatlabTM Simulink-based switching models, and the
pseudo-random binary-sequence-based frequency-response measurement technique introduced
in [22,23]. The conclusions are provided finally in Section 4.

2. PCM-Control Modeling

The accurate small-signal modeling method of DCM-operated direct-duty-ratio (DDR) or
voltage-mode (VM) controlled converters was establish in the late 1990s in [24,25] and later elaborated
in a more convenient form in [16]. It is claimed in [26] that the small-signal models in [25] are not
accurate enough, but the paper does not explicitly provide the required correction elements to improve
the model accuracy. The small-signal models in [24,25] are load-resistor affected, which will hide
the unterminated dynamic behavior of the converter, especially, at the low frequencies as well as
which affects also the location of the low-frequency system poles [17]. Therefore, we will apply the
methods presented in [16] for obtaining the small-signal DDR state space with the parasitic circuit
elements included, which is utilized also in the corresponding PCM modeling. Figure 1, in Section 1,
proves explicitly that the method described in [16] produces highly accurate unterminated small-signal
models, when all the parasitic elements are included in the model. The duty ratio is generated in
a DRR-controlled converter by means of a fixed pulse-width-modulator (PWM) ramp signal. In a
PCM-controlled converter, the duty ratio is generated by means of the up slope of the instantaneous
inductor current. As a consequence of this, the small-signal state space of a PCM-controlled converter
can be found by developing proper duty-ratio constraints of the form [4,10,14]:

d̂ = Fm(x̂c −
n

∑
i=1

qi x̂i) (1)

where Fm denotes duty-ratio gain,xc the control variable (i.e., control current (ico)), and qi the feedback
or feedforward gain related to variable xi, which can be either a state, or input variable of the converter
as well as n the number of input and state variables [4]. The modeling is finalized by replacing the
perturbed duty ratio (d̂) by (1) in the linearized state space of the corresponding DDR-controlled
converter [4,10,14]. The hat over the variables in (1) indicates that the corresponding variables are
small-signal variables. This notation method is applied in rest of the paper.

2.1. Generalized Duty-Ratio Constrains in DCM

Figure 2 shows the inductor-current waveforms, the control current (ico), and the inductor-current
compensating ramp (mc) during one switching cycle in DCM under dynamic conditions. According
to [16], the real state variables, which will produce the dynamic behavior of the converter up to half the
switching frequency, are the time-averaged values of the instantaneous variables (i.e., inductor currents
and capacitor voltages), where the averaging is performed within one cycle. The time-averaged
variables are denoted in this paper by 〈xi〉. Figure 2 shows that at the time instant t = (k + d)Ts) the
variables in Figure 2 are linked together by:

ico −mcdTs =
n

∑
i=1
〈iL〉+ ∆iL (2)
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which is known as the comparator equation, because the associated PWM comparator will change
state, when the condition determined by (2) is valid [13]. The only unspecified variable in (2) is ∆iL
(cf. Figure 2), which can be solved by applying the definition of the time-averaged inductor current
(i.e.,〈iL〉) at t = (k + d)Ts:

〈iL〉 =
m1d(d + d1)Ts

2
(3)

where d1 can be solved based on the inductor-current waveforms in Figure 2 as d1 = m1d/m2 [10].
Thus ∆iL can be given by:

∆iL = m1dTs − 〈iL〉 = m1dTs −
m1(m1 + m2)d2Ts

2m2
(4)

and the corresponding comparator equation in (2) by:

ico −mcdTs = 〈iL〉+ m1dTs(1−
d(m1 + m2)

2m2
) (5)

where m1 and m2 denote the absolute values of the up and down slopes of the inductor current as
denoted in Figure 2.
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Figure 2. Inductor-current waveforms in DCM including the control current (ico) and compensation
ramp (mc).

The coefficients in the small-signal duty ratio constraints in (1) can be found by substituting the up
and down slope of the inductor current with their topology-based values in (5) as well as linearizing
(5) at a certain operating point. The linearization requires to applying the partial-derivative-based
method due to the highly nonlinear nature of the comparator equation in (5) for obtaining the required
coefficients in (1) (cf. pp. 60, 61, [14]). Thus the duty-ratio gain (Fm) can be given in a generalized form
(Note: In this case, only the duty ratio (d) is a variable, and all the other variables are constant) by:

Fm =
1

Ts

(
Mc +

M1(M2−D(M1+M2))
M2

) (6)

which indicates that Fm becomes infinite, when the duty ratio (D) equals:

D =
M2

M1 + M2
+

M2

M1(M1 + M2)
·Mc (7)

Equation (7) defines the mode limit for the converter operation at the switching frequency, where
the first term denotes actually the mode limit between the DCM and CCM operation [14], because
the only operational condition in DCM, where DM1 − D′M2 equals zero, is the boundary between
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DCM and CCM (i.e., the boundary conduction mode (BCM) [11]). It equals symbolically the same
value, which defines the mode limit at D = 0.5 in the PCM-controlled converter in CCM, when
Mc = 0 [4]. Figure 3 shows the inductor-current waveforms, when the converter is driven into the
harmonic modes of operation. The figure shows definitively that the buck converter can adopt both
even and odd harmonic modes as discussed also in [10]. The reason for the existence of the odd
harmonics is actually the existence of an RHP pole in the converter open-loop dynamics. In case of
CCM operation, only the even harmonic modes are possible as explained in detail in [4]. In DCM
operation, the mode-limit duty ratio does not either equal the average duty ratio of the harmonic
operation as it does in CCM operation [4].
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Equation (5) can be developed in terms of duty ratio (D) for a second-order converter with Mc = 0
as [13]:

M1(M1 + M2)Ts

2M2
· D2 −M1Ts · D− ∆IL = 0 (8)

where ∆IL = Ico − IL. According to (8), we can compute that ∆IL−min will be limited to:

∆IL−min =
M1M2Ts

2(M1 + M2)
(9)

at the duty ratio of:

Dmax =
M2

M1 + M2
(10)

which equals D in (7) (i.e., the first term). At the higher duty ratios, Equation (8) does not have any
more real-valued solutions indicating that the converter enters into harmonic operation mode as
shown in Figure 3.

The steady-state comparator equation in (8) can be developed further in terms of the
input-to-output gain (M) (i.e., M = Vo/Vin), and K (i.e., K = 2L/Ts/Req and Req = Vo/Io). It
should be observed that M1 and M2 denote the inductor current up and down slopes as absolute
values, and they have to be expressed as a function of M according to the behavior of the corresponding
converter. In addition, the duty ratio (D) has to be replaced by the converter specific formula, which
can be given for the buck converter as D = M

√
K/(1−M) [11]. These procedures yield for the buck

converter as:

M3 −M2 + K
(

IcoRL

2Vin

)2
= 0 (11)
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Equation (11) can be further developed as:(
M− 2

3

)2
(

M−
(

3IcoRL

4Vin

)2
)

= 0 (12)

which indicates that there exists a double root at M = 2/3 in (11), which means that there are no
real-valued solutions for M > 2/3 in open loop, as discussed also in [11,12] as well as explicitly
demonstrated in [21]. It is explicitly proved in [10] that the mode limit at M = 2/3 does not exist,
when the output-voltage feedback loop is closed. The dynamic analysis will reveal that the mode limit
at M = 2/3 produces an RHP pole (i.e., the converter is unstable), which does not take place in the
CCM converter. Therefore, the output-voltage feedback can remove the RHP pole when its control
bandwidth is higher than the RHP pole. The boost and buck-boost converters do not have similar
anomalies as the buck converter has in the open-loop behavior as discussed also in [11]. Equation (11)
is actually load-resistor affected, and therefore, it does not correctly predict the location of the actual
RHP pole in a buck converter as will be shown later in Section 2.3.

2.2. Small-Signal Model of DDR-Controlled Buck Converter in DCM

The averaged complete (i.e., including all parasitic elements) state space of a DDR-controlled
buck converter shown in Figure 4, which operates in DCM, can be given according to [14,16] by:

d〈iL〉
dt = d(〈vin〉+(R1−R2)〈iL〉+VD)

L − 2〈iL〉
dTs
· R1〈iL〉+〈vC〉−rC〈io〉+VD
〈vin〉−R2〈iL〉−〈vC〉+rC〈io〉

d〈vC〉
dt = 〈iL〉

C −
〈io〉
C

〈iin〉 = d2Ts
2L (〈vin〉 − R2〈iL〉 − 〈vC〉+ rC〈io〉)

〈vo〉 = 〈vC〉+ rCC d〈vC〉
dt

R1 = rL + rd + rCR2 = rL + rds + rC

(13)

from which the operating point can be derived by setting the derivatives to zero and denoting the
circuit variables (i.e., voltages and currents) by capital letters yielding:

IL = Io Iin = ((rL+rd)Io+Vo+VD)
(Vin+(rd−rds)Io+VD)

· Io

Vo = VC

D =
√

2LIo
Ts
· Vo+VD+(rL+rd)Io
(Vin−Vo−(rL+rds)Io)(Vin+VD+(rd−rds1)Io)

(14)

The small-signal state space can be derived by linearizing the averaged state space in (13) by
applying the partial-derivatives-based method (cf. pp. 60, 61, [14]) at a certain operating point (14)
yielding (15):

dîL
dt = − A1

L îL − A2
L v̂C + A3

L v̂in + A4
L îo + Ve

L d̂

dv̂C
dt = îL

C −
îo
C

îin = −B1R2 îL − B1v̂C + B1v̂in + B1rC îo + Ied̂

v̂o = v̂C + rCC dv̂C
dt

(15)
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where:

A1 = D(R2 − R1) +
2L

DTs

(
Vo+VD+(2R1−rC)Io
Vin−Vo−(R2−rC)Io

− R2 Io(Vo+VD+(R1−rC)Io)

(Vin−Vo−(R2−rC)Io)
2

)
A2 = 2LIo

DTs

Vin+VD+(R1−R2)Io

(Vin−Vo−(R2−rC)Io)
2

A3 = D + 2LIo
DTs

(
Vo+VD+(R1−rC)Io

(Vin−Vo−(R2−rC)Io)
2

)
A4 = 2LIorC

DTs

Vin+VD+(R1−R2)Io

(Vin−Vo−(R2−rC)Io)
2

B1 = D2Ts
2L

(16)

and:
Ve = Vin + VD + (R1 − R2)Io +

2LIo
D2Ts

(
Vo+VD+(R1−rC)Io
Vin−Vo−(R2−rC)Io

)
Ie = DTs

L (Vin −Vo − (R2 − rC)Io)

R1 = rL + rd + rC

R2 = rL + rds + rC

(17)
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2.3. Small-Signal Models of PCM-Controlled Buck Converter in DCM

The power stage of the PCM-controlled buck converter including the resistive load and the values
of components are given in Figure 5, where the power stage equals the power stage in Figure 4. The
generalized comparator equation for the second-order converters has been given earlier in (5), and the
inductor-current up and down slopes, which are valid for a buck converter, are given explicitly in (18).
According to (5) and (18), the corresponding unterminated duty-ratio constraints can be computed to
be as given in (19) and in (20), respectively:

m1 = 〈vin〉−R2〈iL〉−〈vC〉+rC〈io〉
L

m2 = R1〈iL〉+〈vC〉−rC〈io〉+VD
L

(18)

d̂ = Fm(îco − qL îL − qCv̂C − qinv̂in − qo îo) (19)
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where:

Fm = 1

Ts

(
Mc+

(Vin−Vo−(R2−rC)Io)(Vo+VD−DVin+(D′R1+DR2−rC)Io)
L(Vo+VD+(R1−rC)Io)

)

qL = 1− DTs
L R2 +

D2Ts
2L(Vo+VD+(R1−rC)Io)

(
(R1 − R2)Vo − (R1 − R2)(2R2 − rC)Io

+ R1(Vin+(R1−R2)Io)(Vin−Vo−(R2−rC)Io)
Vo+VD+(R1−rC)Io

)

qC = −DTs
L (1− D

2
(Vin+VD+(R1−R2)Io)(Vin+(R1−R2)Io)

(Vo+VD+(R1−rC)Io)
2 )

qin = DTs
L (1− D

2 ·
2Vin−V0+(R1−2R2+rC)Io

Vo+VD+(R1−rC)Io
)

qo = DTsrC
L (1− D

2 ·
(Vin+(R1−R2)Io)(Vin+VD+(R1−R2)Io)

(Vo+VD+(R1−rC)Io)
2 )

(20)

Energies 2018, 11, x FOR PEER REVIEW  9 of 18 

 

 

Figure 5. The power stage of the PCM-controlled buck converter in DCM. 

Usually, the DCM state spaces are given omitting all the parasitic circuit elements as a function 
of M  and K  (cf. pp. 222–224, [14]). We will show later in Section 3 that the simplified transfer 
functions do not represent correctly the dynamic behavior of the buck converter analyzed in this 
paper, and therefore, they are not given here. We will use the simplified transfer functions, however, 
in certain cases for providing better physical insight into the converter dynamics, when performing 
approximate analyses. 

The three transfer functions comprising the output dynamics of the PCM-controlled buck 
converter in DCM are given in (22). The unterminated denominator ( ∆ ) of the transfer functions is 
given in (23). The load-resistor-affected denominator is given in (24): 

PCM 1 4 m e L o
o-o C

PCM 3 m in e
io-o C

PCM m e
co-o C

A A ( )
(1 )

A
(1 )

(1 )

sL F V q q
Z sr C

LC
F q V

G sr C
LC

F V
G sr C

LC

+ − + +
∆ = +

−
∆ = +

∆ = +

 (22) 

where the unterminated denominator ∆  equals: 

2 1 m L e 2 m C eA F q V A F q V
s s

L LC
+ +

+ +  (23) 

As discussed in [11], the PCM-controlled converters are highly damped converters, which means 
that the poles of the system are highly separated (i.e., the low-frequency pole ( p-LFω ) lies close to 

origin, and the high-frequency pole ( p-HFω ) lies close to infinity). Thus the poles can be approximated 

from (22) with quite high accuracy by utilizing the properties of a second-order polynomial, and the 
high separation of the poles, which yield (Note: the last simplified terms in (24) are computed 
assuming c 0M = ): 

2 m C e
p-LF

1 m L e eq

eq1 m L e
p-HF

1 2 1
( ) 1

A F q V M
A F q V C M R C

RA F q V D
L M D L

ω

ω

+ −
≈ − ≈ − ⋅

+ −

+
≈ − ≈ − ⋅

−

 (24) 

where o in/M V V=  and eq o o/R V I=  as well as / (1 )D M K M= −  and s eq2 / /K L T R=  (cf. p. 164, 
[14]). 

Figure 5. The power stage of the PCM-controlled buck converter in DCM.

In Equation (20), R1 and R2 are defined in (17), and Mc denotes the inductor-current compensation
ramp in A/s. As discussed in the beginning of this section, the PCM state space can be obtained
from the DDR state space in (15) by replacing the perturbed duty ratio by (19). As an outcome of this
process, the small-signal state space valid for a PCM-controlled buck converter operating in DCM can
be given by:

dîL
dt = − A1+FmqLVe

L îL − A2+FmqCVe
L v̂C + A3−FmqinVe

L v̂in + A4−FmqoVe
L îo + FmVe

L îco

dv̂C
dt = îL

C −
îo
C

îin = −(B1R2 + FmqL Ie)îL − (B1 + FmqC Ie)v̂C + (B1 − Fmqin Ie)v̂in + (B1rC − Fmqo Ie)îo + Fm Ie îco

v̂o = v̂C + rCC dv̂C
dt

(21)

where A1−4 and B1 are defined explicitly in (16) and Ve, and Ie in (17) as well as Fm, q1, qc, qin and q0

in (20), respectively.
The transfer functions representing the dynamics of the converter can be solved by applying

proper software packages such as, for example, MatlabTM Symbolic Toolbox. The symbolic-form
transfer functions representing the input-side dynamics (i.e., the control-to-input-current transfer
function, the output-current-to-input-current transfer function, and the input impedance) are
very long, and thus only the transfer functions representing the output-side dynamics (i.e.,
the control-to-output-voltage transfer function (Gco−o = v̂o/îco), audiosusceptibility (Gio−o = v̂o/v̂in),
and output impedance (Zo−o = v̂o/îo)) are given explicitly in this paper in (22).
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Usually, the DCM state spaces are given omitting all the parasitic circuit elements as a function
of M and K (cf. pp. 222–224, [14]). We will show later in Section 3 that the simplified transfer
functions do not represent correctly the dynamic behavior of the buck converter analyzed in this
paper, and therefore, they are not given here. We will use the simplified transfer functions, however,
in certain cases for providing better physical insight into the converter dynamics, when performing
approximate analyses.

The three transfer functions comprising the output dynamics of the PCM-controlled buck
converter in DCM are given in (22). The unterminated denominator (∆) of the transfer functions
is given in (23). The load-resistor-affected denominator is given in (24):

∆ZPCM
o−o = sL+A1−A4+FmVe(qL+qo)

LC (1 + srCC)

∆GPCM
io−o = A3−FmqinVe

LC (1 + srCC)

∆GPCM
co−o = FmVe

LC (1 + srCC)

(22)

where the unterminated denominator ∆ equals:

s2 + s
A1 + FmqLVe

L
+

A2 + FmqCVe

LC
(23)

As discussed in [11], the PCM-controlled converters are highly damped converters, which means
that the poles of the system are highly separated (i.e., the low-frequency pole (ωp-LF) lies close to origin,
and the high-frequency pole (ωp-HF) lies close to infinity). Thus the poles can be approximated from
(22) with quite high accuracy by utilizing the properties of a second-order polynomial, and the high
separation of the poles, which yield (Note: the last simplified terms in (24) are computed assuming
Mc = 0):

ωp-LF ≈ − A2+FmqCVe
(A1+FmqLVe)C

≈ − 1−2M
1−M ·

1
ReqC

ωp-HF ≈ − A1+FmqLVe
L ≈ − D

M−D ·
Req

L

(24)

where M = Vo/Vin and Req = Vo/Io as well as D = M
√

K/(1−M) and K = 2L/Ts/Req

(cf. p. 164, [14]).
Equation (24) shows explicitly that ωp-LF becomes an RHP pole, when M > 0.5 (i.e., the minus

sign becomes a plus sign), and it moves into higher frequencies in RHP, when M and D increases.
ωp-HF stays always as a left-half-plane (LHP) pole, because M ≥ D, and it moves towards infinity,
when M and D increases.

The full-order load-resistor-affected denominator can be given according to (25) but it does not
give enough information to understand the effect of the load resistor on the system poles:

s2(1 + rC
RL

) + s( 1
RLC + A1+FmqLVe

L + (A1−A4+FmVe(qL+qo))rC
RLL )+

A2+FmqCVe
LC + A1−A4+FmVe(qL+qo)

LCRL

(25)

Equation (26) is derived from (25) by omitting the parasitic circuit elements as well as by
transforming it into a more customary form according to [10]:

s2 + s

 1
RLC

+
Req

√
K

1−M + 2FmVin

L

+
1

LC
(

Req

RL
+

1
1−M

)

√
K

1−M
+ 2FmVin(

1
RL

+ qC)) (26)
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from which the simplified system poles can be solved at fully resistive load (i.e., RL = Req) as:

ωp-LF ≈ −
1

LC ( 2−M
1−M )

√
K

1−M +2FmVin(
1

Req +qC))

1
ReqC +

Req
√

K
1−M +2FmVin

L

≈ −
(2−3M)D

(M−D)(1−M)
L

Req +
D

M−D ·ReqC
≈ − (2−3M)

ReqC(1−M)

ωp-HF ≈ −
(

1
ReqC +

Req

√
K

1−M +2FmVin

L

)
≈ −

(
1

ReqC + D
M−D ·

Req
L

)
≈ − D

M−D ·
Req

L

(27)

Equation (27) shows that the load-resistor-affected low-frequency pole moves into RHP, when
M > 2/3, which complies with the instability condition predicted by Equation (12) in Section 2.1.
The high-frequency pole equals the high-frequency pole in (24) and stays an LHP pole.

The load-resistor-affected denominator of transfer functions derived from the equivalent circuit
representing the dynamics of the buck converter in [11] is explicitly given in [10] as:

s2 + s
(

1
ReqC

+
Req(1−M)

L(1− 2M)

)
+

1
LC
· 2− 3M

1− 2M
(28)

from which the system poles can be approximated to be as:

ωp-LF ≈ − 2−3M
ReqC(1−M)

ωp-HF ≈ −( 1
ReqC +

Req(1−M)

L(1−2M)
) ≈ − Req(1−M)

L(1−2M)

(29)

When studying carefully the system poles in (29) then it is obvious that the high-frequency pole
becomes an RHP pole when M > 0.5, and the low-frequency pole becomes an RHP pole when M > 2/3.
In practice, this means that the converter should be unstable under resistive load already when M >
0.5 but the converter has not been observed to behave like that. This means that the modeling method
introduced in [11] does not provide correct second-order transfer functions.

The behavior of the system poles is presented in Table 1 in case of the converter in Figure 5, where
the high separation of the poles is clearly visible. In addition, the table shows that the instability
will take place already at the input voltage of 21.6 V, where M < 0.5 due to the contribution of the
power-stage losses. The determining factor in the appearing of the open-loop instability is that the
zeroth-order coefficients in (23) and (25) become negative, which indicates that one of the roots of (23)
and (25) lies in RHP. This happens, because the feedback gain qC (i.e., the output-capacitor-voltage
feedback gain) (cf. Equation (20)) is negative. Actually, the missing of the negative sign of the
first-order term indicates that the low-frequency pole is an RHP pole. It is obvious that the appearance
of the instability can be controlled by the inductor-loop compensation (Mc), which will reduce Fm

(cf. Equation (20)). This form of instability has not been reported earlier even if comprehensive analyses
have been performed, for example, in [12]. The reason for this is that the load resistor affects the
location of the poles as is visible in the load-resistor-affected poles given in (27) as well as in Table 1
(i.e., two right most columns) [17]. The investigations of this paper show that the load-resistor-affected
RHP pole appears in vicinity of M = 2/3 as discussed in [10–14] and derived explicitly in Section 2.1
(Equation (12)) and in (27). The power-stage losses will shift the appearance of the instability into an
operating point, where M < 2/3 as clearly visible in Table 1. The instability in vicinity of Vin ≈ 17 V is
also clearly visible in Figure 3 as the second-harmonic mode of operation.

The entries in Table 1 are computed by using the complete models. The coarsely approximated
load-resistor-affected system poles in (27) (i.e., the last terms) yield ωp-LF = −126 Hz and ωp-HF =

−307 kHz at the input voltage of 20 V. The coarsely approximated unterminated system poles in
(24) (i.e., the last terms) yield ωp-LF ≈ 0 Hz and ωp-HF = −307 kHz. These figures indicate that the
simplified models will not predict accurately the location of the system poles.
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The input-to-output transfer function (GPCM
io−o ) (known also as audiosusceptibility in [11]) in (22)

can be nullified by providing Mc such that A3 − FmqinVe = 0. The approximate value of Mc can be
computed to be:

Mc =
M(1−M)

2−M
Vin

L
(30)

which complies with the value given in [12] (note: the definition of Mc in [12] differs from the definition
of Mc in this paper; when the difference is taken into account, the values are equal).

Table 1. Behavior of the system poles (ωp-LF & ωp-HF) as a function of M and D with Mc = 0, Vo = 10 V,
and Io = 2.5 A.

Vin M D ωp-LF ωp-HF ωRL
p-LH ωRL

p-HF

50 V 0.2 0.117 −87 Hz −160 kHz −210 Hz −160 kHz
30 V 0.333 0.218 −56 Hz −188 kHz −180 Hz −188 kHz

21.6 V 0.463 0.344 1.2 Hz −233 kHz −123 Hz −233 kHz
20 V 0.5 0.388 10 Hz −253 kHz −67 Hz −253 kHz

17.5 V 0.57 0.489 114 Hz −311 kHz −12 Hz −311 kHz
17.2 V 0.58 0.505 133 Hz −323 kHz 5.7 Hz −323 kHz

2.4. Generalized Small-Signal Transfer Functions Applicable for Buck, Boost, and Buck-Boost Conveters

The set of PCM transfer functions, which are valid for the buck, boost, and buck-boost converters,
can be developed in a generalized form from the block diagrams presented in Figure 6 based on the
generalized duty-ratio constraints in (31). In Figure 5, the transfer functions denoted by the superscript
‘DDR’ corresponds to the set of transfer functions of the corresponding DDR-controlled converter. The
coefficients of (31) do not equal exactly the coefficients given in (20), because the output voltage is used
as such in computing the inductor-current slopes as Figure 6 explicitly implies. The coefficient Hsr

denotes a series resonant circuit, which is placed in the inductor-current feedback loop, for correcting
the high-frequency phase behavior of the transfer functions (cf. [4]). Hsr is given in (32), where
ωsr = 2π fs and ζ = 0.5 in case of buck converter. The series-resonant circuit in (32) differs significantly
from the series-resonant circuit utilized in [4], where ωsr = π fs and ζ = 0. The validity of the proposed
Hsr in case of PCM-controlled DCM buck converter is discussed in more detail in Section 3.
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Figure 6. The control-engineering-type block diagrams for computing the general transfer functions
representing (a) the output dynamics, and (b) the input dynamics of the basic second-order converters
in DCM.
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d̂ = FB
m(îco − qB

LHsr îL − qB
inv̂in − qB

o v̂o) (31)

Hsr = 1 + s
2ζ

ωsr
+

s2

ω2
sr

(32)

The general set of transfer functions, which is valid for the buck, boost, and buck-boost converters,
can be given as shown in (33) (the output dynamics) and (34) (the input dynamics), respectively:

GPCM
io−o = v̂o

v̂in
=

(1+
FmqB

L HsrB
A )GDDR

io−o−Fm(qB
in+

qB
L HsrC

A )GDDR
co−o

1+Lc+Lv

ZPCM
o−o = v̂o

îo
=

(1+
FmqB

L HsrB
A )ZDDR

o−o +
FmqB

L Hsr
A GDDR

co−o
1+Lc+Lv

GPCM
co−o = v̂o

îco
=

FB
mGDDR

co−o
1+Lc+Lv

(33)

YPCM
in−o = îin

v̂in
= YDDR

in−o −
FB

mGDDR
ci−o

1+Lc+Lv
(qB

in +
qB

L HsrC
A + (qB

o +
qB

L Hsr
AZC

)GDDR
io−o)

TPCM
oi−o = îin

îo
= TDDR

oi−o +
FmGDDR

ci−o
1+Lc+Lv

((qB
o +

qB
L Hsr
AZC

)ZDDR
o−o −

qB
L Hsr
A )

GPCM
ci−o = îin

îco
=

FmGDDR
ci−o

1+Lc+Lv

(34)

where Lc and Lv denote the inductor-current and output-voltage loop gains (i.e., GDDR
cL−o and

GDDR
co−o denote the control-to-inductor-current and control-to-output-voltage transfer functions of the

DDR-controlled converter) given in (35):

Lc = FmqB
LHsrGDDR

cL−o

Lv = FmqB
o GDDR

co−o

(35)

and ZC denotes the impedance of the output capacitor, as well as A = 1, B = 0, and C = 0 for a buck
converter, and A, B, and C are defined in (36) for boost and buck-boost converters, respectively:

A = 1− D2Ts

2L
(rL + rds) B =

DTs

L
Vin C =

D2Ts

2L
(36)

The duty-ratio constrains applicable for (32) and (33) can be obtained from (19) by setting rC = 0 as:

FB
m ≈ Fm

qB
L ≈ qL

qB
in ≈ qin

qB
o ≈ qC

(37)

as well as GDDR
cL−o and GDDR

co−o for computing GPCM
co−o in (33) can be given for a buck converter as:

GDDR
cL−o =

îL
îco

=
Ves

L(s2 + s A1
L + A2

LC )
GDDR

co−o =
v̂o

îco
=

Ve(1 + srCC)

LC(s2 + s A1
L + A2

LC )
(38)

where the coefficients A1,2 are given in (16) and Ve in (17), respectively.

3. Simulink-Based Model Validation

As stated earlier, the applied Simulink models for a buck converter are explicitly given in [27].
The principles of the frequency-response-measuring method is described in [22,23]. The method is
realized as a Simulink m-file for measuring the frequency responses from the switching models based
on Simulink. The pseudo-random binary-sequence technique [22,23], which is utilized in measuring
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the frequency responses, will produce increased distribution in the data points, when the injection
frequency approaches half the switching frequency [4]. The used component values are defined in
Figure 5 (Section 2.3). In the presented frequency responses, the inductor-current sensing resistor (Rs) is
assumed to be 1 Ω instead of 36 mΩ (cf. Figure 5) (note: Rs affects the gain of the control-related transfer
functions by multiplying the corresponding transfer functions with 1/ Rs [4]), and the inductor-current
compensation Mc = 0. As stated in [10,12], the inductor-current-loop compensation is not required
in a DCM-operated converter similarly as it is a necessity in CCM-operated converter, because the
absolute mode limit will take place in the boundary between the DCM and CCM operation, and the
DCM converter has to be designed accordingly. The converter in Figures 4 and 5 is designed to operate
in DCM up to D = 0.75 (i.e., Kcrit = D′ = 2L fs/Req = 0.25; cf. [11]).

3.1. Open-Loop Validation

Figure 7 shows the set of control-to-output-voltage transfer functions, where the simulated
transfer functions are denoted by dashed lines (i.e., unterminated: red and load-resistor affected: blue).
The solid black lines denote the predicted transfer functions, respectively. The operating point of
the converter corresponds to M = 0.5. The red responses in Figure 7 indicate that the unterminated
converter would be unstable in open loop due to the existence of an RHP pole (i.e., the zeroth-order
term in the denominator has become negative, which has caused a change of 180 degrees in the
phase behavior at the low frequencies). The dashed blue line (i.e., the load-resistor-affected response)
indicate that the load resistor has shifted the appearance of the RHP pole to the higher values of M
compared to the unterminated case. Figure 7 shows also that the simulated phase behavior deviates
from the averaged-model-based prediction as it does in PCM-controlled CCM converter as well [4].
The phase deviation starts already in vicinity of 10 kHz (i.e., at 1/10th of switching frequency). In CCM,
the phase deviation is observed to start at 1/5th of the switching frequency [4]. This kind of phase
deviation has not been reported earlier to take place in a PCM-controlled DCM-operated converter.
As Figure 7 indicates, the predicted and simulated responses match very well. The unterminated Gco−o

is solved computationally according to Gco−o = (1+ Zo−o/RL) ·GRL
co−o by means of the corresponding

simulated responses (i.e., Zo−o and GRL
co−o) [4].
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Figure 7. The control-to-output-voltage transfer function as unterminated (Gco−o) (red dashed line)
and as resistor-load-affected (GRL

co−o) (blue dashed line) at the input voltage of 20 V. The predicted
responses are denoted by solid black line and the simulated by dashed line, respectively.

Figure 8 shows the simulated (dashed red line) and predicted (solid black line) control-to-
output-voltage transfer functions, when the high-frequency extension (Hsr) in Equation (32) with
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ωsr = 2π fs (i.e., fs denotes the switching frequency) and ζ = 0.5 (i.e., ζ denotes the damping factor)
have been taken into account in the prediction.
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The match between the simulated and predicted responses is very good. In case of PCM control
in CCM, the ωsr = π fs and ζ = 0, respectively, for obtaining similar match between the simulated and
predicted responses as in [4].

Figure 9 shows the simulated (dashed lines) and predicted (solid black lines) output impedances
of the converter at the input voltages of 20 V (read color) and 30 V (blue color). The figure shows that
the average-model-based prediction matches well also at the high frequencies. The same phenomenon
takes place also in PCM-controlled CCM converter as shown in [4]. The absence of the excess phase
shift is caused by the output-terminal capacitor, which removes the internal high-frequency behavior
from the output impedance (cf. [4]). The open-loop instability at M = 0.5 is also clearly visible in the
output impedance. The output impedance can be measured directly even if the converter is loaded
with a resistor or whatever load impedance.
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Energies 2018, 11, 1267 15 of 18

Figure 10 shows the comparison of the predicted frequency responses of the control-to-output-
voltage transfer functions when the predictions are based on the simplified models (solid lines:
20 V (red) and 50 V (blue)) and on the complete models (dashed lines: 20 V (red) and 50 V (blue)).
The responses show that both the models predict the responses with equal accuracy at high input
voltage but the prediction accuracy of the simplified model is quite poor at the low input voltages.
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means of the simplified models and the dashed lines the responses predicted by the complete models.

3.2. Closed-Loop Validation

The output-voltage loop was designed to have the crossover frequency of 10 kHz and the phase
margin (PM) of 60 degrees by using Type-2 controller shown in (39). The controller design was
performed at the input voltage of 50 V. The controller zero (ωz) was placed at 1/

√
LC, and the

high-frequency pole (ωp) at π fs/4, which require to use the controller gain (Kcc) of 851,138 to obtain
the crossover frequency of 10 kHz, respectively:

Gcc =
Kcc(1 + s/ωz)

s(1 + s/ωp)
(39)

Figure 11 shows the simulated (dashed lines) and predicted (solid black lines) output-voltage loop
gains at the input voltage of 20 V (magenta color), 30 V (blue color), and 50 V (red color). The figure
shows also that the converter is stable at 20 V, because the crossover frequency is much higher than
the frequency of the RHP pole (cf. Table 1 for the low-frequency-pole locations). The figure shows
clearly that the crossover frequency and PM does not change along the changes in the input voltage.
This behavior is characteristic to the PCM control as discussed in [4]. Figure 7 indicates that the
control design can be performed by using the load-resistor-affected GRL

co−o, when the output-voltage
feedback-loop crossover frequency is placed at the frequencies of 1/10th of switching frequency or
higher. In case of output-current-feedback control, it is required to use unterminated models, because
the load resistor affects, especially, the high-frequency part of the transfer function as discussed and
demonstrated in [4,17].
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Figure 11. The simulated (dashed lines) and predicted (solid black lines) output-voltage loop gains
at the input voltage of 20 V (magenta color), 30 V (blue color), and 50 V (red color), respectively.
The high-frequency extension (Hsr) (Equation (32)) is added into the prediction.

4. Conclusions

The investigations of this paper show evidently that the method to model the dynamic behavior
of a PCM-controlled converter in DCM, which was published in 2001 [10], yields very accurate
predictions, when the parasitic circuit elements and the high-frequency extension proposed in this
paper are included. In addition, the investigations show that the phase behavior of the DCM-operated
PCM-controlled converter exhibits also excess phase shift at the high frequencies but the phase-shift
behavior differs from that of the CCM-operated converter [4]. In addition, the buck converter
will be unstable in open loop (i.e., an RHP pole appears), when M > 0.5, which differs from the
earlier predicted instability condition at M > 2/3. The stability can be ensured in closed loop by
designing the crossover frequency of the feedback control loop to be higher than the RHP pole.
The PCM-controlled DCM-operated converter does not need to be compensated either, because the
mode limit between the basic switching frequency and the second-harmonic modes of operation will
take place at the boundary between the DCM and CCM mode of operation. The mode limit will take
place, because the duty-ratio gain becomes infinite at the DCM-CCM-mode boundary similarly as the
CCM converter at D = 0.5 without the inductor-current-loop compensation. This paper proposes also
useful control-engineering-type block diagrams for solving the generalized transfer functions, which
are applicable for buck, boost, and buck-boost converters in DCM similarly as presented in [4,13,14]
for the PCM-controlled converters operating in CCM.
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