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Abstract: Maritime transportation is an economic form of mass transportation, but it is associated with
significant energy consumption and pollutant emissions. External forces such as tidal currents, waves,
and wind strongly influence the energy efficiency of ships. The effective management of external
forces can save energy and reduce emissions. This study presents a method to build an optimal speed
adjustment plan for a ship to navigate a given route. The method takes a dynamic programming
(DP)-based approach to finding such an optimal plan to utilize external forces. To estimate the
speed changes caused by external forces, the proposed method uses the mapping information from
a combined database of ship status, marine environmental conditions, and speed changes. For the
efficient manipulation of externally forced speed-change information, we used MapReduce-based
operations that can handle big data and support the easy retrieval of associated data in specific
situations. To evaluate the applicability of the proposed method, we applied it to real navigation
situations in the southwestern sea of the Korean Peninsula. In the simulation experiments, we used
real automatic identification system data and marine environmental data. The proposed method built
more efficient speed adjustment plans than the fixed-speed navigation in terms of energy savings and
pollutant emission reduction. The results also showed that the speed adjustment exploits external
forces in a beneficial manner.

Keywords: vessel traffic; energy saving; emission reduction; dynamic programming; MapReduce;
big data processing

1. Introduction

Maritime transportation has played an important role in international goods transportation.
Large ships have a massive load capacity and consume large amounts of fossil fuels to operate [1].
High energy consumption entails high pollutant emissions that have adverse impacts on the marine
and atmospheric environment and on public health [2]. Hence, in this study, we are concerned with
the efficient navigation of ships to save energy and reduce pollutant emissions.

Liner ships and passenger ships commute similar routes because of safety and regulations [3].
Therefore, a route change or an adjustment is not an option to save energy and reduce emissions,
which makes speed adjustment on navigation routes necessary. Marine environmental conditions
such as tidal currents, waves, and wind greatly affect navigation speeds, as external forces either in
a friendly or an aggressive manner assist or block a ship’s navigation. Hence, speed should be adjusted
to exploit friendly external forces and moderate the effects of aggressive forces.

External forces change a ship’s speed, which depends on the ship’s characteristics and geographic
position. To incorporate the effects of external forces into speed adjustment, it is necessary to

Energies 2018, 11, 1273; doi:10.3390/en11051273 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-7394-3841
http://www.mdpi.com/1996-1073/11/5/1273?type=check_update&version=1
http://dx.doi.org/10.3390/en11051273
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1273 2 of 15

have the mapping information regarding the ships’ characteristics, geographical position, and
marine environmental conditions [4]. In this paper, we present a method to extract such mapping
information from the ships’ automatic identification system (AIS) data and the marine environmental
data. To determine an optimal speed adjustment plan, we propose a dynamic programming (DP)-based
method that examines all possible adjustment plans under imposed constraints. As the performance
criteria, we use the total energy consumption along with the amount of pollutant emissions.
The proposed DP-based method can determine an optimal speed-change plan for voyages for which
there are sufficient AIS and marine environmental data.

The remainder of the paper is organized as follows: Section 2 presents the related work for route
optimization, and Section 3 presents a MapReduce-based processing method to estimate the externally
forced speed changes. Section 4 presents how to estimate the energy consumption and the quantity
of pollutant emissions. Section 5 proposes a DP-based method to identify optimal speed adjustment
plans for a given navigation route. Section 6 gives the experimental results to evaluate the effectiveness
of the proposed method, and Section 7 presents the conclusions.

2. Related Work

The representative data related to vessel route optimization are the AIS data and the marine
environmental data. AIS data consist of a ship’s ID, position, course, heading, speed, time, and more.
Ships broadcast their AIS messages on a regular basis (every 2–10 s) so that the shore-side monitoring
stations and neighboring ships can receive the messages [5]. When the AIS data are combined with the
ship’s registry and logistics data, the ship’s detailed specifications and loading status can be retrieved.
The marine environmental data contain the velocity (i.e., direction and speed) of tidal currents, waves,
wind, and other measurements, such as temperature. These are measured at the sensor buoys installed
offshore. The number of such buoys is limited, but they are important sources of data acquisition to
provide key information on external forces.

There has been some previous work on efficient navigation with optimal routes. Hanssen and
James proposed the isochrone method to determine an optimal route, which has been long used
owing to its easy computation [6]. Hagiwa proposed an enhanced version of the isochrone method
for efficient route computation [7]. Jung and Rhyu proposed a heuristic algorithm based on the A*
algorithm to determine an economical shipping route [8]. Zhang and Huang proposed a method to
determine an optimal route according to weather changes [9]. Choi et al. proposed an eight-point
Dijkstra algorithm based method to determine an economical shipping route by estimating the fuel
consumption with the ship’s speed reduction on the basis of the ship’s voyages and weather forecast
data [10]. All these methods attempt to find new routes to optimize given criteria such as safety and
energy consumption. Our interest is not in finding new routes, but to adjust the speed of ships on
a given route in situations for which route changes may cause new problems such as safety concerns
and regulation violations.

Wang et al. proposed a ship speed adjustment method that uses a wavelet neural network model
for predicting the next state of the wind speed and water depth with their six consecutive preceding
states and that determines an optimal speed on the basis of the predicted state [11]. Their method was
developed for river navigation, for which conditions do not severely change compared to the open sea.
It does not consider the navigation time constraint, and hence their energy-efficient speed adjustment
plan may fail to enable the ship to arrive at a destination in time. Du et al. proposed a mixed-integer
linear programming model to solve the berthing allocation problem; it determines a speed adjustment
plan with consideration of the tide height and required time of arrival [12]. Oil Companies International
Marine Forum proposed the “virtual arrival policy”, which adjusts the sailing speed in order to update
ship arrival times when there are known delays caused by berth availability at the destination port [13].
The above-mentioned methods do not consider the externally forced speed changes in their speed
adjustment plans. Dulebenets et al. proposed a hybrid evolutionary-algorithm-based method for
solving the berth scheduling problem, which minimizes the total service cost, including the carbon
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dioxide emission cost at a marine container terminal [14]. Their method concerns only the terminal
operations and does not consider the speed adjustment plan in the open sea.

Energy consumption and pollutant emissions are of concern in optimal speed adjustment during
navigation. Energy consumption is affected by various factors such as the engine, ship type and shape,
and loading state. Some methods have been developed to approximately estimate energy consumption
by ships. Browning and Bailey proposed a model that estimates energy consumption in terms of
maximum engine power, load factor, and activity hours [15]. The amount of pollutant emissions is
usually assumed to be proportional to the energy consumption. Several emission estimation models
have also been proposed. These can be categorized into top-down and bottom-up methods. Top-down
methods allocate the total fuel consumption to individual ships, shipping routes, or shipping areas
using statistical analysis methods [16]. Bottom-up methods gather information about individual ship
activities and sum this up to obtain the energy consumption.

3. MapReduce-Based Estimation of Externally Forced Speed Changes for Oceangoing Ships

The speed and course of ships are affected by environmental factors such as tidal currents, waves,
and wind. Tidal currents and waves are particularly important for ship passage plans, such as for
estimating the time of arrival and ship’s routes [17]. Therefore, maritime security agencies have
developed numerical models based on the environmental sensor data for tidal currents and waves
and use these for maritime safety and rescue services [18]. The external force estimation models are
numerical models developed from the sensor data of external forces or data generated by marine
environment models for tidal currents and waves [19]. The effect of external forces on external force
estimation models is important and is strongly dependent on the structure, type, and freight loading
state of a ship. In this section, we present a method to compute the external forces acting on a ship that
is based on a ship’s AIS data and marine environment sensor data. The MapReduce-based processing
method can handle the big data produced by a ship’s AIS and marine environmental monitoring
stations and estimates external forces (Figure 1).
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3.1. Identification of Reference Ships and Associated Information

The information on reference ships and their speed over water (SOW) is used to compute
the externally forced speed changes, where the SOW is assumed to have no external disturbances.
The changes in the externally forced speed due to marine environmental factors are estimated by
the difference between the SOW and the effective speed, called the speed over ground (SOG) [20].
The ship’s SOW data are measured by the Doppler speed log sensor installed at the bottom of the
vessel. The SOW data are not loaded into the AIS signal and are not usually delivered to the shore-side
monitoring stations or other ships. This means that the SOG data are extracted from the AIS data,
but the SOW data are only estimated. The method is employed to estimate the SOW data, where the
speeds over the sea are used with the marginal effect of conditions of tidal currents, waves, and wind.
Further, the mean and standard deviation of the speed are computed according to the vessel ID and
cargo status. On the basis of the computations, reference vessels are selected according to the small
standard deviations, also referred to as reference ships. The speeds of the reference ships are assembled
in a database along with the information on their length, cargo loading status, and reference speed
(Table 1). This information is later used to estimate the SOW for new vessels traveling over the region.
The most similar reference ship to a new vessel is determined on the basis of the ship type, length,
and cargo loading status. We use the speed of the most similar reference ship for the SOW of the
new vessel.

Table 1. Example of reference ship database.

Ship ID Length Cargo Status Reference Speed

1 174 Unloaded 15.970
2 133 Unloaded 13.032
3 132 Loaded 12.118
4 113 Loaded 12.573
5 143 Passenger ship 17.466
: : : :
: : : :

3.2. Estimation of Externally Forced Speed Changes

We need an efficient method to process marine environmental data and AIS data for extracting
important statistical information. We propose the MapReduce-based method, which parallelizes the
data processing tasks with the map and reduce operations. The map operations extract information
from raw data as key-value pairs, where the key is the identifier and the value is the associated value
of a specific attribute. The reduce operations aggregate the values with the same key in the number
of key-value pairs. The MapReduce-based method is efficiently executed in a distributed computing
environment such as Hadoop [21], which is an open-source platform for big data processing on a large
number of commodity computers.

To estimate the externally forced speed changes, we collect the speed-change data based on
the ship characteristics and marine environmental factors. Such characteristics and factors contain
some continuous attribute values, which makes it difficult to use the MapReduce-based parallel
processing. Hence, we discretize their domain into a finite number of partitions. We call the partitioned
representation of ship characteristics the “ship index” and the partitioned marine environmental
factors the “marine environment index”.

AIS data contain both static and dynamic information of a ship [22]. The static information
consists of the ship’s identifiers, such as the call sign, length, tonnage, fore and aft draft, destination
port of the current voyage, and freight loading status. The dynamic information contains the speed,
course, and the location of the ship. Almost every ship, except for small fishing boats, broadcasts
its AIS data nearly every 2–10 s. The shore-side maritime monitoring authorities transfer these
AIS data into their own databases. For MapReduce processing, important ship characteristics are
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encoded in the ship index (Table 2), which is assigned a combination of eight discretized attributes:
the ship type, length, tonnage, height, draft mark, position, course, and speed. The ship type attribute
is one of the following seven categories: general cargo ship, dangerous goods carrier, container,
car carrier, passenger ship, towing vessel, or miscellaneous vessels. The value domain of the length
attribute is partitioned into equal lengths of 75 m, for example, (0, 75], (75, 150], (150, 225], and so
on. The value domain of the tonnage attribute is partitioned into equal weights of 1 kiloton(K/T):
(0, 1], (1, 2], (2, 3], and so on. The value domains of the height and draft marks are partitioned
into equal intervals of 5 and 2 m, respectively. The location in longitude and latitude is represented
using Geohash level 4, where Geohash is a geocoding system that encodes a geographic location into
a short string of letters and digits. Geohash level 4 has a code for each block with an approximate
size of 39.4 km × 19.5 km [23]. The course attribute has a value from eight directions: E, NE, W, SW,
S, SE, N, and NW. The value domain of the speed attribute is partitioned into equal intervals of
1 knot (kt) starting from 10 kt. A ship index is assigned to a combination of these attribute values,
whose occurrence is larger than the specified threshold hold.

Table 2. Ship indices and their associated attribute values.

Ship
Index

Ship
Type

Length
(m)

Tonnage
(K/T)

Height
(m)

Depth
(m)

Location
(Geohash)

Course
(Direction)

Speed
(kt)

1 Cargo 0–75 0–1 0–5 2–4 wvcy N 10
2 Cargo 0–75 0–1 5–10 2–4 wvcz NE 11
3 Cargo 75–150 7–8 5–10 6–8 wvfn E 12
4 Container 75–150 8–9 0–5 6–8 wy1b SE 13
5 Container 75–150 9–10 5–10 8–10 wy1c E 14
: : : : : : : : :

The ship speed and course are affected by tidal currents, waves, and wind. These factors have both
direction and magnitude components. The possible combinations of these environmental factors are
partitioned into a finite number of groups. We use eight directional symbols with respect to the course
direction. The speed of tidal currents is represented by 0.5 kt unit intervals, wave height is represented
by 1 m unit intervals, and wind speed is represented by 5 kt intervals. A marine environmental index
is assigned to a combination of environmental factors (Table 3).

Table 3. Example of marine environment index.

Marine Environment Index Current (Direction, kt) Wave (Direction, m) Wind (Direction, kt)

1 N, 0–0.5 N, 0–1 N, 0–5
2 N, 0–0.5 N, 1–2 NE, 0–5
3 N, 0–0.5 N, 2–3 NE, 5–10
4 N, 0–0.5 N, 3–4 NE, 10–15
5 N, 0–0.5 NE, 0–1 NE, 15–20
6 N, 0–0.5 NE, 1–2 E, 0–5
57 N, 0–0.5 NE, 2–3 E, 5–10
: : : :

To estimate the externally forced speed changes for various locations and environmental
conditions, the following MapReduce tasks are carried out: The map and reduce functions take
and return key-value pairs [24]. From the reference ship database, the reference ship and the reference
speed corresponding to the course of the vessel are retrieved. The difference between the reference
speed and the current speed of the ship is the externally forced speed change at the position of the ship,
which is stored in the externally forced speed-change database. The externally forced speed-change
database is organized as a key-value store, where the key is the ship index and marine environmental
index, and the value is the speed change caused by external forces.
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Figure 2 shows the MapReduce operations to produce pairs of the keys (ship index and marine
environmental index) and their associated speed-change value. The mapper generates keys and their
value by retrieving the relevant records from the AIS and marine environmental databases and encodes
them using the discretizing indexing methods. The input data consist of the marine environmental
index, ship index, and speed change. The two indexes are combined into a character string key,
and their associated speed change is treated as its value to the key. The reducer aggregates values with
the same key to a single quantity. For instance, in the reducing phase of Figure 2, when the reducer
receives the key “12_4” and its associated speed changes [1; 1.1; 0.8; 0.8; 0.9; 1.1; . . . ], it sends out the
pair of the key “12_4” and the average value 0.95 of the speed changes. The mapper and reducer are
parallelized and distributed; hence, the MapReduce processing method can handle a large volume of
AIS and marine environmental data.
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4. Energy Consumption and Emission Quantity Estimation

We aim to find an optimal speed adjustment plan for a route that minimizes the emissions
and energy consumption. There are some numerical models for estimating energy consumption and
emissions [15]. Energy consumption for a vessel navigation is modeled as a function of the maximum
continuous rating power Pmcr of the engine, load factor LF, and activity A, as follows:

C = Pmcr × A× LF, (1)

where Pmcr is the maximum engine power (kW) of the ship, which is a unique characteristic of a ship; A
is the operating hours of the ship (h); and LF is the load factor, which is expressed as a percentage of the
ship’s total power. At the service or cruise speed, the load factor is 83%. At lower speeds, the propeller
law is used to estimate the load factor as follows:

LF =

(
VSOG
Vmax

)3
, (2)

where VSOG is the speed over ground (kt), and Vmax is the maximum speed (kt), which is 1.064 times
Lloyd’s service speed.

The amount of emissions from an engine is proportional to the energy consumption. Emissions
can be estimated using the following numerical model:

E = C× EF× FCF, (3)

where E is the amount of pollutant emissions (g), C is the energy consumption (kWh) computed using
Equation (3), EF is the emissions factor (g/kWh), and FCF is the fuel correction factor.
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Figure 3 shows the components of emission calculations and the sources of information.
The information for Pmcr was collected from the Korean Register of Shipping [25], a classification
society to verify and certify the services for ships and marine structures in Korea, and from the Port
Management Information System (PORT-MIS) [26], a port logistics information system to manage
the entry and departure of ships, using facilities within ports, port traffic control, cargo entering and
carrying, and tax collection in Korean trade ports. The load factor LF is computed using Equation (2)
with the SOG and SOW estimated using the MapReduce-based operations presented in Section 3. The
load factor for the voyage of a ship is determined using the AIS data for the ship, marine environmental
data, externally forced speed-change data, and reference ship data.
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The emissions of pollutants such as particulate matter (PM), nitrogen oxides (NOx), carbon oxides
(COx), sulfur oxides (SOx), hydrocarbons (HC), methane (CH4), and nitrous oxide (N2O) are computed
using Equation (3). The emission factors EF are reported in previous studies [27]. Residual oil is used
to operate the vessel’s main engine and is considered an intermediate fuel with an average sulfur
content of 2.7%. The emission factors using residual oil in oceangoing ships are shown in Table 4 [15].

Table 4. Emission factors for oceangoing ships (g/kWh) [15].

Engine PM NOx SOx CO HC CO2 CH4 N2O

Diesel 1.2 13.0 11.5 1.1 0.5 683 0.010 0.031

The emission rates are adjusted by the correction factors for engines and residual fuel with
1.5% sulfur content (Table 5) [28].

Table 5. Fuel correction factors [28].

Fuel PM NOx SOx CO HC CO2 CH4 N2O

Heavy Fuel Oil 0.82 1.00 0.56 1.00 1.00 1.00 1.00 1.00

5. The Proposed Optimal Navigation Search Method for Emission and Energy

Emissions and energy consumption during the navigation of an oceangoing vessel depend on the
vessel’s speed. The navigation route for a voyage is prespecified on the basis of the regulations and
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environmental conditions. The speed of an oceangoing vessel is affected by external forces such as
tidal currents, waves, and wind. Tidal currents show some patterns according to the lunar calendar
time and date, and wind shows seasonal patterns. Section 3 shows how to extract the patterns of
externally forced speed changes for days of the year in regions from big marine environmental data.
The effective speed of a navigating vessel is computed by combining the SOW and the externally
forced speed change. The effective speed allows us to compute the real emissions and energy use
over the voyage. The vessels usually navigate an ocean route at a fixed speed; it is, however, possible
to save emissions and energy by adjusting the speed. An optimal speed adjustment plan should be
computed by considering the SOW, externally forced speed changes, and the arrival time.

Here, we propose a DP-based method that efficiently computes an optimal speed adjustment plan
along with total emissions. DP is a means for solving a complex problem by breaking it into smaller
subproblems, solving each of them once and storing their solutions, and using them to construct the
solution to the original problem [29].

In DP, we use the following settings and notations: A navigation route R is expressed in a sequence
of positions, R = (P1, P2, . . . , PN), where Pk is the location of index k and N is the number of position
indices; tk indicates the time at which a vessel is at position Pk, and it has a value from the set t1

k ,

t2
k , . . . , t

ui
k

k ; t1
k is the earliest time at which the vessel arrives at location Pk starting from time t1

k−1,
and ti

k = t1
k + ∆(i− 1), where ∆ is the time interval of considered arrival times at each position; τmin

k−1
indicates the minimum time taken for the vessel to travel from Pk−1 to Pk with the fastest speed
allowed [30]. Therefore, the following relationship holds:

t1
k =t1

k−1 + τmin
k−1, i = 1, . . . , ui

k. (4)

In Equation (4), ui
k denotes the index of the most recent time at which the vessel can depart from

Pk−1 to reach Pk within the considered time, that is, ui
k = max{l|tl

k−1 ≤ ti
k + τmax

k−1 }, where τmax
k−1 is the

minimum time taken for the vessel to travel from Pk−1 to Pk; e
ti
k

k denotes the externally forced speed at

time ti
k at position Pk; fk−1(v

j,i
k−1) indicates the energy consumption to travel from Pk−1 to Pk with SOW

vj,i
k−1 and externally forced speed e

ti
k−1

k−1 ; and Tk(vk, e
ti
k

k ) is the time for the vessel to travel from Pk−1 to Pk

with speed vk and externally forced speed e
ti
k

k at time ti
k. Therefore, τmin

k−1 is computed as follows:

τmin
k−1 = Tk−1(Vmax, e

t1
k−1

k−1). (5)

The accumulated energy consumption (Figure 4) for a vessel to arrive at position Pk at time ti
k can

be recursively calculated as follows:

C
(

Pk, ti
k

)
= minj

{
C
(

Pk−1, tj
k−1

)
+ fk−1(v

j,i
k−1)

}
(6)

1 ≤ j ≤ ui
k, where ui

k = max{l|tl
k−1 ≤ ti

k + τmin
k−1}

To determine an optimal speed adjustment plan, the proposed DP method uses Equation (6) for
computing the accumulated energy consumption. It uses two-dimensional arrays C and B, where C[k, i]
stores the value of C

(
Pk, ti

k
)

and B[k, i] stores index l that satisfies the following relationship for
Equation (6):

C
(

Pk, ti
k

)
= C

(
Pk−1, tl

k−1

)
+ fk−1(v

l,i
k−1). (7)

The following procedure, DP-for-Energy-Consumption-Computation, is a DP algorithm to compute
the accumulated energy consumption:

procedure DP-for-Energy-Consumption-Computation (E, maxS, minS, Pmcr, ∆, P)
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input: E[1..N, 1..M] for externally forced speed changes, where E[k, i] = e
ti
k−1

k−1
maxS for the maximum SOW
minS for the minimum SOW
Pmcr for maximum continuous rating power
∆ for the time interval of considered arrival time
P[1..N] for positions P1, P2, . . . , PN

output: C[1..N, 1..M] for accumulated energy consumption, where C[k, i] = C
(

Pk, ti
k
)

B[1..N, 1..M] for preceding position’s time index of value used for C
(

Pk, ti
k
)

U[1..N, 1..M] for speech adjustment for C
(

Pk, ti
k
)

A[1..N] for the earliest arrival time at each position
L[1..N] for the latest arrival time at each position

begin
1. initialize C[1..N, 1..M] to be zero
2. initialize B[1..N, 1..M] to be zero
3. initialize U[1..N, 1..M] to be zero
4. A[1] ← 0
5. L[1] ← 0
6. for k = 2 to N
7. travelDist← distance between P[k− 1] and P[k]
8. highest-speed← maxS +E[k− 1, 1]
9. elapsed-time1← travelDist / highest-speed
10. A[k] ← A[k− 1] + elapsed-time1
11. LF← (highest-speed/maxS)3

12. consumed-energy← Pmcr × LF × elapsed-time1
13. C[k, 1]← consumed-energy
14. slowest-speed← minS +E[k− 1, 1]
15. elapsed-time2← travelDist / slowest-speed
16. num-intervals← floor(elapsed-time2 − elapsed-time1)/∆
17. for i = 2 to num-intervals
18. bmax← max-prior-index(A, P, k, i, A[k] + i× ∆)
19. C[k, 1]← maxValue
20. for j = 1 to bmax
21. elapsed-time← A[k]− A[k− 1]+ (i− j) ×∆
22. u← travelDist / elapsed-time −E[k− 1, j]
23. LF← (U/maxS)3

24. consumed-energy← Pmcr × LF × elapsed-time
25. candidate-energy← C[k− 1, j] + consumed-energy
26. if C[k, i] < candidate-energy then
27. C[k, i]← candidate-energy
28. U[k, i]← u
29. B[k, i]← j
30. end if
31. end for
32. end for
33. L[k]← A[k]+ (num-intervals − 1) ×∆
34. end for
end

The following procedure, max-prior-index, determines the last index to be considered at the preceding
position when the accumulated energy consumption is computed:
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procedure max-prior-index(L, P, k, j, t)

input: B[1..N] for the latest arrival time at each position
P[1..N] for positions P1, P2, . . . , PN
k for position index
i for time index
t for the time

output: l for the last index to be considered at the preceding position
begin
1. d(P[k− 1], P[k]) ← distance between P[k− 1] and P[k]
2. elapsed-time ← d(P[k− 1], P[k])/maxS
3. l← floor(t − elapsed-time − L[k− 1])/∆
end
Once DP-for-Energy-Consumption-Computation is executed, we can extract an optimal speed adjustment
plan using the following procedure, Find-Optimal-Plan:

procedure Find-Optimal-Plan(C, B, U, T)

input: C[1..N, 1..M] for accumulated energy consumption, where C[k, i] = C
(

Pk, ti
k
)

B[1..N, 1..M] for preceding position’s time index of value used for C
(

Pk, ti
k
)

U[1..N, 1..M] for speech adjustment for C
(

Pk, ti
k
)

T for the time index for the arrival time
output: Plan[1..N − 1] for the recommended speed adjustment plan

consumed-energy for the estimated energy consumption for the plan
begin
1. for k = N to 1
2. prev ← B[k, T]
3. Plan[k− 1]← U [k− 1, prev]
4. end
5. consumed-energy← C[N, T]
end

The time complexity of DP-for-Energy-Consumption-Computation is O(NM), and the time complexity of
Find-Optimal-Plan is O(N).
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6. Experiments

To evaluate the applicability of the proposed DP-based optimal speed adjustment method,
we applied it to a real dataset. For the experiments, we collected the vessel traffic data and marine
environmental data for the southwestern sea of the Korean Peninsula in 2016 (Figure 5). Figure 5a
shows the trajectories from the vessel traffic data and the locations of sensor buoys that collect tidal
current, wave, and wind data. Figure 5b shows a liner route of 82 nautical miles between Jeju and
Mokpo, which are the ports in the region; the proposed DP-based optimal speed adjustment method
was applied to this route. In the figures, the grids correspond to Geohash level 4 grids.

In the study area, the number of sensor buoys is limited, and available sensor values were
interpolated to provide environmental data for grids with no sensor buoys (Figure 5a). For each traffic
data point to travel a route, the environmental data were acquired or interpolated from the marine
environmental database, and their corresponding key-value pairs and speed changes were stored
into the externally forced speed-change database. When searching for an optimal speed adjustment
plan, the externally forced speed-change information was retrieved by referring to the reference ship,
the environmental situation, and the vessel position.Energies 2018, 11, x FOR PEER REVIEW  12 of 16 
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Figure 5. The southwestern sea of the Korean Peninsula for which the experimental data was
collected. (a) Ship trajectories of traffic data and the location of sensor buoys used to collect the
marine environmental data; (b) a liner route for optimal speed adjustments.

The first experiment was conducted for a towing vessel that travels at a speed of 8 kt and for
a general cargo ship that travels at 11 kt on the route shown in Figure 5b. The towing vessel travels the
route while pushing a barge carrying large volumes of sand. A SOW of 8 kt is slow for oceangoing
voyages, and the effective speed, that is, SOG, is strongly affected by external forces. A SOW of 11 kt is
normal for a general cargo ship to navigate in the ocean. We considered these two cases to understand
how the efficiency of the proposed DP-based method changes with navigation speed.

Figure 6 shows the experimental results in terms of the SOW, externally forced speed changes
experimented by the vessel, and SOG. In Figure 6, “base” indicates fixed-speed navigation and “DP”
indicates the navigation for which the speed was adjusted according to the plan, that is, the DP-based
method recommended. For the first voyage of 8 kt SOW, the DP-based method changed the vessel
speed from 6.5 to 9 kt, while the base method fixed the speed to 8 kt. Figure 7 shows the energy
consumption and the average of the externally forced speeds for the fixed-speed navigation and
the speed adjustment navigation in the two vessels. The DP-based method found an optimal speed
adjustment plan that saved energy. Energy savings came from the effective use of externally forced
speeds. The DP-based method recommended a plan that suggested large externally forced speed
changes in the positive direction that helped the vessel move quickly rather than with fixed-speed
navigation (Figure 7).
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To evaluate the emission reductions associated with the DP-based speed adjustment method,
we conducted experiments in navigation environments with low, medium, and high external forces
at six different baseline speeds from 6 to 13 kt. Table 6 shows the energy consumption and emission
savings. The DP-based method identified the better-performing plans more so in the high-external-force
environment than in the low-external-force environment. In addition, the DP-based method identified
an efficient speed adjustment plan at low navigation speeds rather than at high navigation speeds.
This means that the DP-based method finds the most efficient plans if the arrival time is not strict.
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Table 6. Energy saving and emission reductions.

Case Reference
Speed

Reference
Speed Energy

DP Speed
Energy

Energy
Savings (KWh)

Shipping Emission Savings (g)

PM NOx SOx CO HC CO2 CH4 N2O

Marine
environment
case 1 (low

external
forces)

8 3025.8 2702.1 323.8 (10.7%) 319 4209 2085 356 162 221,126 3.2 10.0

9 3015.7 2681.1 334.5 (11.1%) 329 4349 2154 368 167 228,492 3.3 10.4

10 2985.3 2697.0 288.3 (9.5%) 284 3747 1856 317 144 196,882 2.9 8.9

11 3003.3 2845.0 158.3 (5.2%) 156 2058 1019 174 79 108,110 1.6 4.9

12 3025.8 2986.5 39.3 (1.3%) 39 511 253 43 20 26,870 0.4 1.2

13 3029.2 3006.5 22.7 (0.8%) 22 296 146 25 11 15,530 0.2 0.7

Marine
environment

case 2
(medium
external
forces)

8 3025.8 2922.7 103.1 (3.4%) 101 1341 664 113 52 70,447 1.0 3.2

9 3015.7 2936.1 79.6 (2.6%) 78 1035 513 88 40 54,360 0.8 2.5

10 2985.3 2834.9 150.4 (5.0%) 148 1955 969 165 75 102,737 1.5 4.7

11 3003.3 2902.0 101.3 (3.3%) 100 1317 652 111 51 69,177 1.0 3.1

12 3025.8 2979.8 46.0 (1.5%) 45 598 296 51 23 31,418 0.5 1.4

13 3029.2 2991.2 38.0 (1.3%) 37 494 245 42 19 25,954 0.4 1.2

Marine
environment
case 3 (high

external
forces)

8 3025.8 2270.0 755.8 (25.0%) 744 9826 4868 831 378 516,234 7.6 23.4

9 3015.7 2381.7 634.0 (21.0%) 624 8242 4083 697 317 433,000 6.3 19.7

10 2985.3 2400.7 584.6 (19.3%) 575 7600 3765 643 292 399,297 5.8 18.1

11 3003.3 2386.7 616.6 (20.4%) 607 8016 3971 678 308 421,167 6.2 19.1

12 3025.8 2605.5 420.3 (13.9%) 414 5465 2707 462 210 287,097 4.2 13.0

13 3029.2 2765.6 263.6 (8.7%) 259 3427 1698 290 132 180,033 2.6 8.2

7. Conclusions

Saving energy and reducing emissions are paramount concerns in transportation and
environmental preservation. We propose a DP-based method that recommends optimal speed
adjustment plans for navigation routes in response to external forces, unlike the conventional
navigation systems. To estimate the externally forced speed changes according to the ship’s condition
and position, the proposed method extracts the mapping information from the combined configuration
of the ship’s status, marine environmental conditions, and speed changes by analyzing large volumes of
AIS and marine environmental data using MapReduce-based operations. The simulation experiments
showed that the DP-based method developed speed adjustment plans that produced up to about
20% energy savings under high-external-force conditions. The pollutant emissions were proportional
to the energy consumption; thus, the speed adjustment plans determined by the proposed DP-based
method also reduced pollutant emissions. The experimental results revealed the emission reductions
achieved by the recommended speed adjustment plans. Ships consume large amounts fossil fuel and
pose great a threat to the environment. Optimal speed adjustment against external forces can reduce
fuel consumption and help to protect the environment.

The proposed DP-based method does not take into account the energy loss caused by speed
changes from the following observations. First, the conventional fixed-speed navigation method
changes the revolutions per minute (RPM) of the engine because of changing external resistance,
which also incurs energy loss at RPM changes. Second, there are some compensation effects for speed
acceleration and slowdown: The energy consumption increases at speed acceleration while the inertia
of motion helps to save energy consumption at speed slowdown. Third, we have yet no energy
consumption model in hand that considers the energy loss due to speed change. Once we have such
an energy consumption model, a new DP-based method can be easily developed in a similar way to
the proposed DP-based method.
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