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Abstract: An AC-DC combined voltage is applied to the oil-pressboard insulation near the valve
side during the operation of a converter transformer. To study the breakdown characteristics of an
oil-pressboard insulation under such voltages, a typical plate electrode structure was employed in
the laboratory to conduct a breakdown test on the oil-pressboard insulation. The electrical field
distribution and the DC contents of the transformer oil and the pressboard in composite insulation
under the AC-DC combined voltage were simulated by their dielectric parameters. The breakdown
strength of the transformer oil decreases with the increase in the DC content of the applied voltage,
whereas that of the pressboard increases. For the oil-pressboard insulation, the breakdown voltage
increases first and then decreases. The electric field strength decreases in the transformer oil with
the increase in the DC content, whereas it increases in the pressboard. And the DC contents of
the transformer and the pressboard in composite insulation were different from that of the applied
voltage. Finally, based on the above results, a mathematical model was proposed to describe the
breakdown characteristics of the oil-pressboard insulation under the AC-DC combined voltage;
the theoretical and experimental results were in good agreement.

Keywords: oil-pressboard insulation; AC-DC combined voltage; mathematical model; breakdown
characteristics

1. Introduction

The converter transformer is one of the most important pieces of equipment in high-voltage direct
current (HVDC) power transmission projects, as it is used for AC-DC voltage conversion. The reliable
operation of the converter transformer is a prerequisite for the stability of the entire system [1,2].
Compared to the conventional AC transformers, the converter transformer can withstand not only the
AC voltage, lightning impulse voltage, and operating overvoltage, but also AC-DC combined voltage,
polarity reversal voltage, and other complex conditions [3–5]. The electric field distribution in the
oil-pressboard insulation under an AC-DC combined electric field is more complicated than that under
an AC electric field alone. Moreover, the breakdown strengths of the oil and pressboard are affected by
the DC content, thus complicating the insulation design of converter transformers [6–8].

The breakdown voltage of a composite dielectric is mainly affected by the electric field distribution
and breakdown strength of the dielectric [9,10]. The electric field distribution in oil-pressboard
insulations has been extensively studied, mostly based on the resistance-capacitance model, under
AC-DC combined voltage and polarity-reversed voltage [11–13]. In an experimental study, Li et al.
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used a plate electrode to study the effect of thickness on the breakdown strength of a pressboard under
AC-DC combined voltage. The results showed that the breakdown strength of the pressboard increased
with the increase in the thickness under both DC voltage and AC-DC combined voltage, whereas it
decreased under the AC voltage [14–16]. Rajan et al. used the parallel plate, rod-plate, and ball-plate
type electrodes to study the breakdown voltage of a multi-layer impregnated pressboard under AC-DC
combined voltage and concluded that the breakdown voltage under AC-DC combined voltage was
higher than that under DC voltage but lower than that under AC voltage. Moreover, the effect of
electric field distortion on the DC breakdown voltage was not obvious, whereas that on the AC
breakdown voltage was obvious [17,18]. Li et al. studied the effect of DC voltage superimposed with a
high-frequency AC voltage (50–600 Hz) on the breakdown strength of a pressboard and concluded
that the space charge accumulated in the sample increased with the increase in the frequency, thereby
decreasing the breakdown strength of the pressboard [19]. Chi et al. studied the effect of oil flow on the
breakdown characteristics of an oil-pressboard insulation under AC-DC combined voltage. The results
showed that the breakdown voltage of the oil-pressboard insulation increased first and then decreased
with the increase in the DC content, and the breakdown voltage decreased with the increase in the flow
rate [20]. In summary, the breakdown characteristics of oil-pressboard insulations have been studied
preliminarily; however, the mathematical expression and mechanism of breakdown characteristics
have not been reported in detail.

In this paper, a typical plate electrode structure was used to study the breakdown characteristics
of an oil-pressboard insulation. The mathematical expression for the electric field distribution was
obtained using the dielectric parameters of the oil and pressboard. Based on this, a mathematic model
for the breakdown characteristics of the oil-pressboard insulation was established to explain the effect
of AC-DC combined voltage on the breakdown characteristics of the oil-pressboard insulation.

2. Experimental Method

2.1. Sample Preparation and Test Model

A pressboard with a thickness of 0.25 mm and with dimensions of 10 cm × 10 cm was used for
the test. The pressboard was dried under vacuum and immersed in transformer oil placed in a vacuum
container. Karamay 45# transformer oil was used for the oil-pressboard insulation. The oil was filtered
using an oil filter to remove impurities such as moisture and gas. Table 1 lists the dielectric parameters
and moisture contents of the pressboard and transformer oil at room temperature [21].

Table 1. Dielectric parameters and moisture content of pressboard and transformer oil.

Parameters Pressboard Transformer Oil

Moisture content 0.43% 6.3 mg/kg
Resistivity 4.93 × 1014 Ω·m 1.15 × 1013 Ω·m

Relative permittivity 3.22 2.08

The main insulation of a large converter transformer is the barrel type structure, but its radius of
curvature is large, so it is closer to a plate electrode in a small range. Hence, a plate electrode with an
axisymmetric cylindrical structure is used to study the breakdown characteristics of the oil-pressboard
insulation under AC-DC combined voltage, as shown in Figure 1.
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Figure 1. Test model.

2.2. Test System

The test system, comprising a DC voltage power supply, an AC voltage power supply, a voltage
divider, a protective resistor (R2, 30 kΩ/150 kV), a coupling capacitance (C3, 0.01 µF/80 kV), filter
capacitor (C0, 0.5 µF/80 kV), voltage regulators, and high-voltage silicon stacks (D1, D2, 2 A/250 kV),
can generate AC-DC combined voltage, as shown in Figure 2. The rated power, output voltage range
and rated frequency of the voltage regulators (T0, T1, T2) are 15 kVA, 0–220 V and 50 Hz, respectively.
The rated power, rated input/output voltage, rated output current and rated frequency of high voltage
test transformer (T3, T4) are 15 kVA, 0.22/150 kV, 0.1 A and 50 Hz, respectively. The DC content of
the AC-DC combined voltage can be adjusted using the voltage regulators T1 and T2, and the voltage
amplitude can be adjusted using the voltage regulator T0.
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Figure 2. Test system.

Figure 3 shows the waveform of the AC-DC combined voltage. The DC content of the voltage is
expressed as follows:

η =
Udc

Uac + Udc
× 100% (1)

where Uac is the peak of the AC voltage component, and Udc is the average of the DC voltage component.
The nomenclature section including the symbols and used parameters in this paper are shown in
Table 2.
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Figure 4. Breakdown strength of transformer oil under AC-DC combined voltage. 

Figure 3. Waveform of AC-DC combined voltage.

Table 2. Nomenclature section.

Symbols Parameters Unit

εr Relative permittivity -
ρ Resistivity Ω·m
d Thickness m
C Capacitance F
R Resistance Ω
E Electric field strengths kV/mm
Eb Breakdown strength kV/mm
U Voltage V
η DC content -

3. Test Results

Figure 4 shows the breakdown strength of the transformer oil under AC-DC combined voltage at
room temperature. The breakdown strength of the transformer oil decreases with the increase in the
DC content. The breakdown strength of the transformer oil under pure DC voltage is approximately
66.5% that under pure AC voltage, probably due to impurities such as moisture and gas. With the
increase in the DC content of the applied voltage, the impurities more easily polarize, and they align
between the electrodes to form a discharge channel.
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Figure 4. Breakdown strength of transformer oil under AC-DC combined voltage. Figure 4. Breakdown strength of transformer oil under AC-DC combined voltage.
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Figure 5 shows the breakdown strength of the pressboard under AC-DC combined voltage at room
temperature. The breakdown strength of the pressboard increases with the increase in the DC content
of the applied voltage, and the breakdown strength under pure AC voltage is only approximately 31.6%
that under pure DC voltage. The oil-immersed pressboard is composed of cellulose, with transformer
oil gap between the cellulose. The electric field in the transformer oil increases with the decrease in
the DC content because of its lower permittivity compared to that of the pressboard. And its lower
breakdown strength, which can easily lead to the transformer oil breakdown. Once the breakdown
occurs in the oil gap, it will initiate the breakdown of the entire pressboard.
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Figure 5. Breakdown strength of pressboard under AC-DC combined voltage.

The fitted expressions can be derived through exponential fitting. Table 3 lists the fitted
expressions and the correlation coefficients for the breakdown strength of the transformer oil
and pressboard.

Table 3. Fitted Expressions for Breakdown Strength.

Medium Fitted Expression Correlation Coefficient

Transformer oil Ebo = 48.24 − 0.65 × exp(3.22 × η) 0.98
Pressboard Ebp = −18.39 + 86.45 × exp(1.04 × η) 0.97

Figure 6 shows the breakdown voltage of the oil-pressboard insulation under AC-DC combined
voltage at room temperature. The breakdown voltage of the oil-pressboard insulation increases first
and then decreases with the increase in the DC content. The breakdown voltage reaches its peak at a
DC content of 68%.
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Figure 6. Breakdown voltage of oil-pressboard insulation under AC-DC combined voltage.

4. Mathematical Model of Breakdown of Oil-Pressboard Insulation

4.1. Simplified Model

To study the effect of DC content on the electric field distribution in the oil-pressboard insulation
more directly, the oil-pressboard insulation model, shown in Figure 1, is simplified to a physical model
of the oil-pressboard insulation, as shown in Figure 7. Eo and Ep, ε1 and ε2, ρ1 and ρ2, and d1 and d2 are
the electric-field strengths, relative permittivity, resistivity, and thicknesses of the transformer oil and
pressboard, respectively.
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Figure 8 shows the equivalent circuit model of the oil-pressboard insulation, where U is the
applied voltage, U1 and U2, C1 and C2, and R1 and R2 are the equivalent voltages, capacitances,
and resistances of the transformer oil and pressboard, respectively [15].
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4.2. Mathematical Expression of Electric Field Distribution

The AC electric field component of the AC-DC combined electric field is distributed by the
capacitances of the transformer oil and pressboard. The DC electric field component of the AC-DC
combined electric field is distributed by the capacitance when the voltage is just applied but it is
distributed by the resistance in the steady state. To simplify the analysis, the analysis is focused on
the electric field distribution in the steady state, and the electric field in the medium is assumed to
be uniform. Because of the superposition of the electric field, the electric field strength (Eo) in the
transformer oil and the electric field strength (Ep) in the pressboard can be obtained using E = U/d,
as follows: {

Eo =
ρ1

ρ1d1+ρ2d2
Udc +

ε2
ε2d1+ε1d2

Uac sin(ωt)
Ep = ρ2

ρ1d1+ρ2d2
Udc +

ε1
ε2d1+ε1d2

Uac sin(ωt)
(2)

The following equations are obtained by substituting Equation (1) into Equation (2):{
Eo = AηU + (1− η)BU sin(ωt)
Ep = CηU + (1− η)DU sin(ωt)

(3)

where A = ρ1
ρ1d1+ρ2d2

, B = ε2
ε2d1+ε1d2

, C = ρ2
ρ1d1+ρ2d2

and D = ε1
ε2d1+ε1d2

.

As shown in Equation (3), Eo and Ep are mainly affected by the parameters of A and C when η is
high, whereas they are mainly affected by the parameters of B and D when η is low. This indicates that
the electric field distribution is significantly affected by the resistivity when the DC content is high
and by the relative permittivity when the DC content is low. The breakdown of insulating material is
mainly affected by the maximum value of the voltage waveform. Hence, the peak voltage (i.e., sin(wt)
= 1) is chosen to analyze the electric field distribution in the oil-pressboard insulation, which can be
obtained using Equation (3), as follows:{

Eo = BU + (A− B)ηU
Ep = DU + (C− D)ηU

(4)

The electric field in oil and pressboard calculated by Equation (3) varies with time, while the result
of Equation (4) calculation is its maximum value. Using Equation (4), the electric field distribution in
the oil-pressboard insulation with different DC contents is simulated under a voltage of 10 kV. Figure 9
shows the simulation results.

As shown in Figure 9, the electric field strength of the transformer oil decreases with the increase in
the DC content, whereas that of the pressboard increases. As listed in Table 1, ρ1 = 0.023ρ2, ε1 = 0.646ε2,
and d1 = 2d2, which makes A = 0.088 mm−1, B = 1.51 mm−1, C = 3.82 mm−1 and D = 0.98 mm−1.
Hence, A − B < 0 and C − D > 0 in Equation (4). Thus, Eo decreases and Ep increases with the increase



Energies 2018, 11, 1319 8 of 13

in the DC content when the peak voltage is the same. The DC contents of the transformer oil (ηo) and
pressboard (ηp) can be obtained using Equation (4), shown as follows:{

ηo =
Aη

Aη+B(1−η)

ηp = Cη
Cη+D(1−η)

(5)
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As shown in Equation (3), Eo and Ep are mainly affected by the parameters of A and C when η is 

high, whereas they are mainly affected by the parameters of B and D when η is low. This indicates 

that the electric field distribution is significantly affected by the resistivity when the DC content is 

high and by the relative permittivity when the DC content is low. The breakdown of insulating 

material is mainly affected by the maximum value of the voltage waveform. Hence, the peak voltage 

(i.e., sin(wt) = 1) is chosen to analyze the electric field distribution in the oil-pressboard insulation, 

which can be obtained using Equation (3), as follows: 
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The electric field in oil and pressboard calculated by Equation (3) varies with time, while the 

result of Equation (4) calculation is its maximum value. Using Equation (4), the electric field 

distribution in the oil-pressboard insulation with different DC contents is simulated under a voltage 

of 10 kV. Figure 9 shows the simulation results. 
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Figure 9. Simulation results of the electric field strengths of transformer oil and pressboard. 

As shown in Figure 9, the electric field strength of the transformer oil decreases with the increase 

in the DC content, whereas that of the pressboard increases. As listed in Table 1, ρ1 = 0.023ρ2, ε1 = 

0.646ε2, and d1 = 2d2, which makes A = 0.088 mm−1, B = 1.51 mm−1, C = 3.82 mm−1 and D = 0.98 mm−1. 

Hence, A − B < 0 and C − D > 0 in Equation (4). Thus, Eo decreases and Ep increases with the increase 

Figure 9. Simulation results of the electric field strengths of transformer oil and pressboard.

Figure 10 shows the DC contents of the transformer oil and pressboard of the oil-pressboard
insulation under different DC contents of the applied voltage. The DC contents of the transformer
oil and pressboard are the same as that of the applied voltage when the applied voltage is pure DC
voltage or pure AC voltage. In other cases, the DC content of the transformer oil is lower than that
of the applied voltage, whereas the DC content of the pressboard is higher than that of the applied
voltage. As the resistivity of the pressboard is significantly greater than that of the transformer oil,
the DC voltage component of the applied voltage is mainly applied to the pressboard. As a result,
the DC content of the pressboard increases and that of the transformer oil decreases.
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As ηo and ηp are different from η, the ηo and ηp corresponding to the breakdown strength are
different from the η corresponding to the breakdown strength. By substituting Equation (5) into
the fitting expression of the breakdown strength, listed in Table 3, the breakdown strengths of the
transformer oil and pressboard of the composite insulation (Ebo

′ and Ebp
′) corresponding to the DC

content of the applied voltage can be obtained as follows:{
Ebo
′(η) = Ebo(ηo)

Ebp
′(η) = Ebp

(
ηp
) (6)

Figure 11a,b show the breakdown strengths (Ebo
′ and Ebp

′) corresponding to the DC content of
the applied voltage and the breakdown strengths (Ebo and Ebp) corresponding to the DC content of
the medium, respectively. Ebo

′ is greater than Ebo, and Ebp
′ is greater than Ebp when the DC content is

the same. Figure 10 shows that ηo is lower than η, whereas ηp is higher than η. The test results show
that Ebo decreases and Ebp increases with the increase in the DC content; therefore, Ebo(ηo) is greater
than Ebo(η), and Ebp(ηp) is greater than Ebp(η). According to Equation (5), Ebo

′(η) is greater than Ebo(η),
and Ebp

′(η) is greater than Ebp(η). Thus, the breakdown strength corresponding to the DC content of
the applied voltage is greater than that corresponding to the DC content of the medium when the DC
content is the same.Energies 2018, 11, x FOR PEER REVIEW  9 of 13 
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4.3. Mathematical Model of Breakdown Voltage of Oil-Pressboard Insulation

The breakdown voltages (Uo-ca and Up-ca) of the oil-pressboard insulation are calculated on the basis
of the breakdown strengths and electric field distributions of the transformer oil and pressboard of the
composite insulation. They can be expressed as follows by substituting Equation (6) into Equation (4).
The results calculated by substituting Equation (6) into Equation (4) is the minimum value of the
results calculated by substituting Equation (6) into Equation (3): Uo-ca =

Ebo
′(η)

B+(A−B)η

Up-ca =
Ebp
′(η)

C+(C−D)η

(7)

When the oil-pressboard insulation breaks down, either the transformer oil or the pressboard
breaks down first. The voltage will then be applied to the other medium completely, and the DC
content of the other medium becomes the DC content of the applied voltage. When the applied voltage
is higher than the breakdown voltage of the other medium, the composite insulation will break down.
When the applied voltage is lower than the breakdown voltage of the other medium, the breakdown
voltage of the composite insulation becomes the breakdown voltage of the other medium. Thus,
the voltage calculated using Equation (7) must be compared with the breakdown voltages of the pure
transformer oil and pure pressboard. Ubo and Ubp are the breakdown voltages of the pure transformer
oil and pure pressboard, respectively, expressed as follows:{

Ubo = Ebo(η)d1

Ubp = Ebp(η)d2
(8)

The calculated breakdown voltage of the oil-pressboard insulation is Ub, which is related to Uo-ca,
Up-ca, Ubo, and Ubp. The relationship between them can be expressed as follows:

Ub = max
[
min

(
Uo-ca, Up-ca

)
, Ubo, Ubp

]
(9)

Figure 12 shows the variations in Ub, Uo-ca, Up-ca, Ubo, and Ubp under different DC contents of the
applied voltage. The green-solid line represents the calculated breakdown voltage of the oil-pressboard
insulation. The figure shows that Uo-ca is lower than Up-ca when the DC content is low, whereas Uo-ca

is greater than Up-ca when the DC content is high. This indicates that the transformer oil will break
down first if the DC content is low, and the pressboard will break down first if the DC content is
high. Ubo and Ubp are lower than Uo-ca and Up-ca under different DC contents. This indicates that the
other medium will break down immediately after any one of the mediums in the composite insulation
breaks down first.

As shown in Figure 12, Ub is Uo-ca when the DC content is in the range of 0–59%, and it increases
with the increase in the DC content. Ub is Up-ca when the DC content is in the range of 60–100%, and
it decreases with the increase in the DC content. The above analysis shows that Uo-ca and Up-ca are
affected by their breakdown strengths and electric field distributions; however, their variation rates
with respect to the DC content are different. The breakdown strength and electric field strength of the
transformer oil decrease with the increase in the DC content, but the former decreases slower than the
latter. This increases Uo-ca with the increase in the DC content. The breakdown strength and electric
field strength of the pressboard increase with the increase in the DC content, but the former increases
slower than the latter. This decreases Up-ca with the increase in the DC content. Thus, the breakdown
voltage of the oil-pressboard insulation increases first and then decreases with the increase in the
DC content.
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insignificant (the correlation coefficient between them is 0.963). This shows that the mathematical 

Figure 12. Calculation of the breakdown voltage of oil-pressboard insulation under different
DC contents.

Figure 13 shows the test and calculation results of the breakdown voltage of the oil-pressboard
insulation. The trends in the test and calculation results are the same. The numerical difference is
insignificant (the correlation coefficient between them is 0.963). This shows that the mathematical
model proposed in this paper can well describe the breakdown characteristics of an oil-pressboard
insulation under AC-DC combined voltage.
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Figure 13. Comparison of test and calculation results of oil-pressboard insulation breakdown.

5. Conclusions

In this study, a breakdown test was conducted on an oil-pressboard insulation under the AC-DC
combined voltage. A mathematical expression for the electric field distribution was then established to
analyze the changes in the electric field distribution and DC content. Finally, a mathematic model for
the oil-pressboard insulation breakdown was proposed. The following are the main conclusions of
this study:
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(1) With the increase in the DC content of the applied voltage, the breakdown strength of the
transformer oil decreases, whereas that of the pressboard increases. Moreover, the breakdown
voltage of the oil-pressboard insulation increases first and then decreases.

(2) With the increase in the DC content of the applied voltage, the electric field strength of the
transformer oil decreases, whereas that of the pressboard increases.

(3) Under AC-DC combined voltage, the DC content of the pressboard is higher than that of
the applied voltage, whereas the DC content of the transformer is lower than that of the
applied voltage.

(4) When the DC content is same, the breakdown strength corresponding to the DC contents of the
transformer oil and pressboard of the composite insulation is lower than that corresponding to
the DC content of the applied voltage.

(5) The breakdown voltage calculated by the proposed model is in good agreement with the
experimental results.

Author Contributions: Q.C. and J.Z. conceived and designed the experiments; C.G. performed the experiments;
J.Z. and M.C. analyzed the data; J.Z. wrote the paper.
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