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Abstract: Micro phasor measurement units (µPMU) installed in active distribution networks are
very useful for improving observability by acquiring system real-time data. However, three-phase
imbalance and harmonic power flows adversely impact the accuracy of synchronous measurements,
which implies the importance of phasor estimation errors. This paper proposes a new phasor
estimation algorithm for µPMU in active distribution networks that uses a conditional maximum
likelihood (CML) estimation method. Firstly, the signal model of three-phase, three-wire and
four-wire imbalance systems is established. Then, the probability distributions of the magnitude
and phase angles are derived from the geometric characteristics of the CML method by solving the
geometric equation. Simulation results show that the proposed CML based method is effective
for estimating phasor and impedance models of active distribution networks by using µPMU
measurement data.

Keywords: active distribution networks; PMU; conditional maximum likelihood estimation;
three-phase imbalance system

1. Introduction

With the increasing popularity of distributed energy sources in power systems, the operation
of distribution systems becomes more complex [1]. A great number of renewable energy resources
and controllable loads are integrated into active distribution networks. Bi-directional imbalanced and
stochastic change of distribution network power flows make it difficult to control active distribution
networks. It is necessary to obtain and estimate the operation states for dynamic control under
quasi-steady-state conditions. Therefore, it is important to study the phasor estimation algorithms for
micro-phasor measurement units (µPMUs) in active distribution networks, which are vital for real-time
dynamic synchronous monitoring and the safety control of active distribution networks [2]. With the
development of synchronous phasor measurement units (PMUs) and fault recorders, the phasor
estimation algorithms for PMUs in distribution networks should be further enhanced to improve the
accuracy and related applications, such as state estimation and fault location [3].

The most widely used phasor measurement algorithm for PMUs is the Discrete Fourier Transform
(DFT), which can suppress harmonic distortion impact and has high measurement accuracy for
three-phase balance systems. However, the active distribution network is a complex stochastic system,
where disturbances, faults, and other uncertain factors cause the system inevitably to have a variety of
complex and diverse processes. The spectral leakage phenomenon may appear in the asynchronous
sampling of DFT; this adversely affects the measurement accuracy [4,5]. Wavelet transform overcomes
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the disadvantages of DFTs, as it is independent of frequency; however, the key challenge is to select
appropriate wavelet functions. A short window Morlet complex wavelet method is proposed for
analysis of the signals of the power system in [6]. Due to the high computational burden, the method
is problematic for practical applications. According to [7], due to the increasing generation resources
in active distribution networks, reduced steady-state models have to be used in PMU measurements,
even though they can incur errors.

µPMU measurement in distribution networks may contain errors and even bad data. Paper [8]
considers the problem of voltage imbalance detection in a three-phase power system by using PMU
output. The test can be performed at the local area, substations, or at centralized energy management
system (EMS), suitable for close range hypothesis. In [9], it focuses on using µPMU to analyze
distribution networks to help identify issues. In paper [10], due to the fact that large-scale photovoltaic
(PV) power plants contain numerous transmission branches and laterals inside, when a fault occurs,
conventional fault location methods face challenges due to the complex system structure and the
diversified PV inverter controls. Therefore, a new method is proposed to locate the unbalanced faults.
The proposed method is based on the knowledge that PV units generate minimum negative-sequence
currents (even for different inverter controls), but under high-level noise conditions, the results have
slightly increased location errors. In paper [11], the new approach is known as “angle constraint
active management” (ACAM), where a renewable generation is constrained based on voltage angle
difference signals produced by the PMU. A set of angle constraints are derived through offline network
simulation, such as voltage constraints, thermal constraints and angle constraints (0.4◦~7.5◦) caused
by non-firm wind farm at different locations. In summary, most of the traditional phasor measurement
algorithms are based on the single-phase steady state signal model, which could be severely disturbed
by three-phase imbalance, frequency fluctuations, and harmonic waves; as a consequence, the dynamic
measurement results are not accurate. The load complexity of middle/low voltage distribution
networks further makes it difficult to achieve the requirement of phasor measurement accuracy in
distribution networks.

However, the phasor estimation of middle/low voltage distribution networks is different from
transmission networks, making it impossible to simply extend traditional approaches. From the
viewpoint of signal processing, a new algorithm for single-phase phasor measurement using
conditional maximum likelihood estimation is proposed in [12]. The contribution of this paper
is that the CML estimator has a simple closed-form expression determined from geometrical properties,
applicable to the accurate measurement for the impedance of three-phase distribution networks. In this
paper, the dynamic three-phase signal model is used to replace the single-phase signal model of the
traditional algorithms. The phasor is then solved by the orthogonal matrix of the three-phase matrix
and sample covariance matrix. The measurement accuracy of the proposed three-phase model is
further improved by considering the stochastic disturbance and three-phase likelihood in modeling.

This paper extends the original principle and application by solving three-phase phasor estimation
equations, and identifying the effectiveness of impedance measurements. The remainder of the
paper is organized as follows: Firstly, the signal model of the three-phase unbalanced system is
established by using phase amplitude and phase angle as unknown parameters in Sections 2 and 3.
Then, the conditions of the maximum likelihood estimation method for phasor estimation are proposed.
The phasor is solved by the geometric graph in Section 4. Finally, the performance of the algorithm is
verified in Section 5. Section 6 concludes the paper and proposes future work.

2. The Signal Model of Three-Phase Unbalanced System

In this section, the conventional model is presented in a discrete signal processing formulation for
an unbalanced three-phase system.

The model for the k-th phase power signal is:

yk[n] = dka[n] cos(φ[n] + ϕk) + bk[n] (1)



Energies 2018, 11, 1320 3 of 18

The values of k are 0,1,2, which represent the A, B, and C three-phase systems respectively;
a[n] and φ[n] represent the instantaneous phase shift and instantaneous amplitude offset parameters
respectively, which are from IEEE C37.118 [13]; bk[n] is the white Gauss noise, dk and ϕk are phasor
amplitude and phase angle respectively.

The above model is dynamic, which can be used in the real-time monitoring of active distribution
networks [14]. In the model, when the system is a balanced three-phase system, the difference between
ϕk is 2/3π; when the system is unbalanced, ϕk is the actual measured value. The phasor value of
the k phase is dkejϕk . By defining c(θ) = [d0ejϕ0 , d1ejϕ1 , d2ejϕ2 ], the unknown parameter θ includes the
amplitude and phase angle of the phasor. The matrix of the power signal model is:

y[n] = A(θ)s[n] + b[n] (2)

y[n] and b[n] are the signal and noise matrices respectively.

y[n] ,

 y0[n]
y1[n]
y2[n]

b[n] ,

 b0[n]
b1[n]
b2[n]

 (3)

The A(θ) is represented by the real part and imaginary part of the measured variable c(θ):

A(θ) ,
[

Re[c(θ)] −Im[c(θ)]
]

(4)

The covariance and quadrature components of the phasor are calculated separately, and then the
column matrix s[n] is constructed.

s[n] = G(a[n], φ[n]) ,

[
a[n] cos(φ[n])
a[n] sin(φ[n])

]
(5)

where, G(a[n], φ[n]) is a multivariate nonlinear function. The signal is added with Gauss white
noise so that its mean is 0 and the variance is δ2. The θ is solved by a three-phase signal matrix
S , [s[0], · · · , s[N − 1]] to obtain the phasor value, and N is the number of samples.

3. Condition Maximum Likelihood Estimation

In the unbalanced system signal model, the phase and quadrature components of the three-phase
signal matrix s[n] are treated as unknown variables. When the prior information is unknown,
it is feasible to use the model to derive the same direction component and a quadrature component.
However, it is not guaranteed that the parameters can be uniquely identified, i.e., the uniqueness of
the solution cannot be guaranteed. Considering this, the conditions for identifying the parameters to
be measured should be studied first before solving the phasor estimation.

3.1. Conditions of Parameter Identification

According to the definition of matrix A(θ) and S in the upper section, it is concluded that the
uniquely identified parameter θ must satisfy the following conditions:

A(θ)S = A(θ2)S2 ⇒ θ = θ2 (6)

where S2 =
(
AT(θ2)A(θ2)

)−1AT(θ2)A(θ)S is solved by the Formula (6), the orthogonal projection of
A(θ) can be solved according to the calculation method of [15] (p. 266).

PA(θ) = A(θ)
(

AT(θ)A(θ)
)−1

AT(θ) (7)

PA(θ) = I− u(θ)uT(θ) (8)
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where u(θ) is the standard feature vector corresponding to the zero eigenvalues of A(θ)AT(θ).

If u(θ) = u(θ2), then the orthogonal projection of A(θ) and A(θ2) is equal, i.e., PA(θ) = PA(θ2).
If u(θ) = u(θ2), θ 6= θ2, the matrix S2 cannot satisfy the condition of Formula (6), and the parameter
cannot be uniquely identified. Thus, the following lemma is obtained.

Lemma 1. In order to ensure that a number of phase parameters are uniquely identified, u(θ) and θ must be
a one-to-one correspondence.

By the mapping principle, it is known that when the solution θ of uTA(θ) = 0 is unique, there is
a one-to-one correspondence between u(θ) and θ. According to above definition, A(θ) is the matrix of
three rows and two columns, u is a matrix of three rows and columns, and the uTA(θ) = 0 expansion
contains two equations. In order to ensure that the equation has a unique solution, the variable θ to
be measured should contain at most two variables. In addition, for the measurement matrix c(θ),
all variables to be measured θ are likely to satisfy u(θ) = u, which will lead to many solutions of
the equation.

For example, suppose all the variables in c(θ) satisfy [111]c(θ) = 0, i.e., [111]A(θ) = 0. The conclusion
obtained by calculation is that, regardless of the value of θ, the unit standard eigenvector
u corresponding to the zero eigenvalues of A(θ)AT(θ) is equal to 1/

√
3[111]T . Therefore, the following

Proposition 1 is obtained.

Proposition 1. Parameters θ can be uniquely identified only when the following two conditions are
satisfied simultaneously.

(1) θ contains 2 unknown variables at most.
(2) All the θ of the measurement matrix c(θ) should satisfy.

[111]c(θ) 6= 0 (9)

The Proposition 1 is described in details by the two examples, in which θ does not satisfy the
above conditions at the same time.

Example 1. In paper [16], seven types of three-phase unbalanced voltage drops are introduced, which are A, B,
C, D, E, F, G, among which the C model is

c(α) =

 1
− 1

2 + jα
− 1

2 − jα

 (10)

Through this model, it can be seen that [111]c(α) = 0 the parameter α will not be uniquely
identified at this time.

Example 2. The phasor model is as follows:

c(α, β) = αejβ

 1
e2jπ/3

e4jπ/3

 (11)

θ = {α, β} contains two variables and meets the condition (1). However, [111]c(θ) = 0 does not
meet the condition (2), and then the parameter θ cannot be uniquely identified.
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3.2. Estimation of Phasor

When the phasor parameters θ meet the above conditions, CML can be used to estimate the
unbalance parameter, and the general form of the estimation is [17].

θ̂ = arg min
θ

Tr[P
1
A
(θ)R̂] (12)

where R̂ is the sample covariance matrix and P 1
A (θ) is the orthogonal projection of AT(θ).

R̂ ,
1
N

N−1

∑
n=0

y[n]yT [n] (13)

P
1
A
(θ) = I−A(θ)

(
AT(θ)A(θ)

)−1
AT(θ) (14)

By (8) and (14), P 1
A (θ) can be further simplified by

P
1
A
(θ) = u(θ)uT(θ) (15)

By taking (15) into (12)
θ̂ = arg min

θ
Tr
[
u(θ)uT(θ)R̂

]
(16)

θ̂ = arg min
θ

uT(θ)R̂u(θ) (17)

4. Three-Phase Phasor Estimation

The accuracy of both voltage and current phasor affects the performance of the steady-state
application. However, µPMU measurements can be impacted by noise, outliers, and missing samples,
particularly in distribution networks [7]. Therefore it is normal to estimate the quasi-steady state
components of the µPMU data to improve parameter estimation before using advanced estimation
techniques, such as symmetrical component methods.

4.1. Estimate Eigenvector u

The Formula (18) is minimized to obtain u.

û = arg min
u

uTR̂u, uTu = 1 (18)

The minimum value is û = g, where g is the eigenvector corresponding to the minimum
eigenvalue of the sample covariance matrix R̂ [18].

4.2. Estimate Variate θ

Due to that u(θ) is the unit eigenvalue vector corresponding to the zero eigenvalue of A(θ)AT(θ),
uTA(θ) = 0. θ and uT(θ) are replaced by the estimates of θ̂ and gT .

gTA(θ̂) = 0 (19)

By introducing the complex i, the equation can be simplified as follows

gTA(θ̂)

[
1
−i

]
= 0 (20)

According to the definition of A(θ), the following Theorem 1 can be obtained.
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Theorem 1. In the three-phase unbalanced system of the active distribution network, θ̂ is obtained by the
orthogonalization phasor parameter matrix c(θ̂) with the eigenvector g.

gTc(θ̂) = 0 (21)

Figure 1 is the diagram of a three-phase distribution system. The orthogonality condition in
Theorem 1 can be explained by geometric figures. While g and c(θ) are equal to g = [g0, g1, g2]

T and
c(θ) = [d0ejϕ0, d1ejϕ1, d2ejϕ2]

T , respectively, dk and ϕk instead of dk(θ) and ϕk(θ), the expression of the
three-phase unbalance system can be obtained.

2

∑
k=0

gkdkejϕk = 0 (22)

In Figure 2, gkdk in (22) corresponds to the length of the triangle, through the internal and external
angle principle we can compute the inner angle of the triangle.

α02 = ϕ2 − ϕ0 − π

α01 = π − ϕ1 + ϕ0

α12 = π − ϕ2 + ϕ1

(23)

By using the above relations, the conditional maximum likelihood estimation can be transformed
into a geometric problem.

In the active balanced three-phase distribution system, the offset between the phase angle is equal
to 2π/3. So, Figure 2 becomes equilateral triangle in Figure 3, and d̂k = g0/gk [19].

Figure 1. Three-phase three wire system.

Figure 2. Geometric interpretation of Formula (22).



Energies 2018, 11, 1320 7 of 18

Figure 3. Geometric interpretation of the three-phase symmetrical system.

4.3. Closed Form Estimation

There are two characteristics of a branch lij in the active distribution network configured for
µPMU in Figure 4.

(1) If µPMU is configured on the node i, the phase angle θij of the node i is considered to be known.

(2) The branch current
·
Iij will vary with the phase angle of the voltage at both ends of the branch.

Figure 4. Diagram of one branch.

The amplitude and angle of the phase are used as a reference value by using the rotation
measurement transformation method in polar coordinates [20]. The amplitude and phase of the
phasor are estimated according to Theorem 1. The amplitude parameters of the phase are d1 and
d2, and the phase shift parameters are ϕ1 and ϕ2. It is assumed that the amplitude and phase of the
A phase are d0 = 1 and ϕ0 = 0, respectively.

4.3.1. Amplitude Parameter Estimation

Supposing the unknown parameter is θ = {d1, d2}, d1 and d2 are estimated by using the sine law
in the triangle of Figure 3. The estimated values of d1 and d2 are obtained after simplification.

d̂1 = − g0 sin(ϕ2)
g1 sin(ϕ2−ϕ1)

d̂2 = − g0 sin(ϕ1)
g2 sin(ϕ2−ϕ1)

(24)

4.3.2. Phase Parameter Estimation

When θ = {ϕ1, ϕ2} is unknown, the triangle cosine theorem can be used.

g2
2d2

2 = g2
0 + g2

1d2
1 − 2g0g1d1 cos(α01)

g2
1d2

1 = g2
0 + g2

2d2
2 − 2g0g2d2 cos(α02)

(25)
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The estimated values of angular displacement are

ϕ̂1 = arccos( g2
2d2

2−g2
0−g2

1d2
1

2g0g1d1
)

ϕ̂2 = arccos( g2
2d2

2+g2
0−g2

1d2
1

2g0g2d2
) + π

(26)

Theorem 2. Figure 5 is a low-voltage three-phase four wire power supply. At this point gTc(θ̂) 6= 0, if the
neutral line phasor value is doejϕo , then the Formula (27) can be obtained:

2

∑
k=0

gkdkejϕk − doejϕo = 0 (27)

Figure 5. Three-phase four wire wiring diagram.

According to the method of Theorem 1, the Formula (27) can be expressed as a geometric form
in Figure 6.

Figure 6. Geometric interpretation of Formula (27).

In Figure 6, the inner corners of the quadrilateral are obtained by the law of the inner and outer
angles of the quadrilateral and triangles.

αo0 = ϕo − π − ϕ0, α01 = π − ϕ1 + ϕ0

α12 = π − ϕ2 + ϕ1, α2o = π − ϕo + ϕ2
(28)

In order to ensure that the measurement parameter θ has only two unknowns, the three-phase
four wire system needs to select two amounts as a reference, which is k = 0. The total instantaneous
value do can, at any time, be summed with a mathematical function expression with time variables [21].
Using the Theorem 2 to estimate the magnitude and phase of the phasor, the amplitude parameters
to be determined are d1, d2; the phase shift parameters to be obtained are ϕ1 and ϕ2. By choosing
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ϕo = 4/3π, d0 = 1, ϕ0 = 0 as the reference values, the estimations of amplitude and phase parameters
are as follows:

d̂ =

√
g2

0+d2
o−g0d0
2 , α = arcsin

√
3/2d0

d̂

β = arcsin
√

3/2g0
d̂

(29)

d̂1 =
d̂ sin(β− ϕ2)

g1 sin(ϕ2 − ϕ1)
, d̂2 =

d̂ sin(ϕ1 + α)

g1 sin(ϕ2 − ϕ1)
(30)

ϕ1 = π − α− arc( d̂2+g2
2d2

2−2g2
1d2

1
2d̂g2d2

)

ϕ2 = β− π − arc( d̂2+g2
2d2

2−2g2
1d2

1
2d̂g2d2

)
(31)

4.4. Flowchart of the Algorithm

According to the CML in above to determine the value of the parameter θ. Figure 7 is the flowchart
of the algorithm for CML in µPMU.

Figure 7. Flowchart of the proposed algorithm in µPMU.

The voltage and current data are from time domain simulation in Matlab (R2016a, The Mathworks.
Inc., Natick, MA, USA). Test settings and indexes can be found in IEEE C37.118 [13].
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5. Results and Demonstration

5.1. Performance Analysis of CML

In this section, the performance of CML is estimated by Matlab, and the mean square error (MSE)
is used as the standard to estimate the performance. MSE is a convenient method to measure the
average error, which can evaluate the degree of the change of the data, i.e., the smaller the value,
the higher the accuracy of the prediction model to describe the experimental data. MSE consists of two
parts: deviation and variance. The expression is as follows [22]:

MSE[θ̂] = bias2(θ̂) + var(θ̂) (32)

where, bias(θ̂) and var(θ̂) represent the deviation and variance of the estimated quantities. Phasor
parameters are set as follows: d0 = 1, d1 = 1.2, d2 = 0.75, ϕ0 = 0, ϕ1 = 2.29 rad, ϕ2 = 4.68 rad. In the
IEEEC37.118.1 standard, the parameters of instantaneous phase offset and instantaneous amplitude
migration are all fixed values [12].

a[n] = 1 + 0.1 cos(2π fmn/Fe)

φ[n] = 2π f0n/Fe + 0.1 cos(2π fmn/Fe − π)
(33)

where fm = 5 Hz, f0 = 50 Hz, Fe = 1000 Hz.
The MSE of each estimate is obtained by the Monte Carlo method. The Cramer Rao bound (CRB)

and MSE of different data length and signal-to-noise ratio (SNR) are compared and analyzed, given in
Tables 1 and 2. The CRB and SNR are as follows

CRB(ĉ(θ)) = 4δ2||v||2
3N × hRxhT

ĉ2(θ)det(Rx)
)

SNR = 10 log( trace(A(θ)SSTAT(θ))
3Nδ2 )

(34)

where, the constant-vector h = [−1/2,
√

3/2], number RX = 1
N ∑ s[n]s[n]T, complex-vector

v = [d̂0ejϕ0 , d̂1ejϕ1 , d̂2ejϕ2 ]
T

is the three rows and one column vector of the estimated value to
be measured, || || is the calculation norm, det(·) is a determinant, trace(·) is the trace of matrix.

Table 1. The relationship between CRB, var and bias2 of dk when δ2 = 4.10−2.

Experimental Value Estimated Value

N CRB MSE Var(d̂k) Bias2(dk) MSE Var(d̂k) Bias2(dk)

d2

100 0.0178 0.0181 0.0181 0.0013 0.0193 0.0192 0.0013
200 0.0101 0.0113 0.0113 0.0007 0.0127 0.0127 0.0008
1000 0.0026 0.0028 0.0028 0.0001 0.0031 0.0031 0.0000

d1

100 0.0495 0.0513 0.0513 0.0010 0.0524 0.0524 0.0011
200 0.0281 0.0297 0.0297 0.0004 0.0309 0.0308 0.0003
1000 0.0069 0.0071 0.0071 0.0001 0.0073 0.0073 0.0000

Table 2. The relationship between CRB, var and bias2 of dk when N = 200.

Experimental Value Estimated Value

SNR
dB CRB MSE Var (d̂k) Bias2(dk) MSE Var(d̂k) Bias2(dk)

d2

5 0.00023 0.00023 0.00023 0.00011 0.00024 0.00024 0.00012
15 0.00017 0.00017 0.00017 0.00008 0.00018 0.00018 0.00008
25 0.00014 0.00014 0.00014 0.00005 0.00016 0.00016 0.00006

d1

5 0.00016 0.00013 0.00012 0.00007 0.00014 0.00018 0.0008
15 0.00012 0.00012 0.00012 0.00004 0.00013 0.00013 0.00004
25 0.00008 0.00008 0.00008 0.00001 0.00007 0.00008 0.00001
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It can be seen from Tables 1 and 2 that the square of the deviation is close to or equal to zero.
The CRB and MSE in Table 1 show that when the SNR is fixed, the CRB and MSE are not equal under
different samples, which is not the case in Table 2. As observed, CML is invalid when the SNR is
fixed, but CML is valid when N is fixed. Figure 8 shows the amplitude and phase modulation of the
sinusoidal signal.Energies 2018, 11, x FOR PEER REVIEW  11 of 18 
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Figure 8. The sinusoidal amplitude and phase modulation.

In the following noise simulation, the noise is Gaussian white noise with distribution feature
(0, 0.0012), the SNR is in the range of −20~50 dB. Figure 9 shows the performance analysis of the
amplitude offset estimation using the CML. It can be seen the MSE and the SNR of d̂2 are smaller
than those of d̂1. When SNR or N is large, it can be seen that the value of MSE[d̂1]/MSE[d̂2] is
constant. Combined with Tables 1 and 2, when N is fixed, SNR→ ∞ , the estimate can satisfy the SNR
requirement, which is consistent with the condition of the maximum likelihood estimation.

Figure 9. Estimation of amplitude parameter d1 and d2. (a) Noise and mean square error (MSE); and
(b) The variation of mean square error (MSE) with signal to noise ratio (SNR).

As seen in Figure 9, when the SNR is fixed, the larger the number of samples, the smaller the MSE.
When the number of samples is fixed, the larger the SNR, the smaller the value of MSE; the reason
for this is that the higher the SNR, the better the channel condition. That is to say, the larger the SNR,
the smaller the noise mixed in the signal, and the better the estimation of performance of the algorithm
in this paper. Simulation results show that the anti-interference ability of the algorithm is better than
the conventional DFT method. All the MSE values are only close to the CRB, but not lower than the
lower limit of the cramerozone, which is consistent with theory that shows that CML has a good
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estimation performance for the phasor amplitude. Similar features are also reflected in phase angle
estimation, as shown in Figure 10.
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Figure 10 shows the performance analysis of the phase angle offset estimation using the CML.
It can be found, except when N or SNR is very small, the MSE of ϕ̂1 is always smaller than that of ϕ̂2,
and when ϕ̂1 = 2π/3 and ϕ̂2 = 4π/3, ϕ̂1 and ϕ̂2 have the same characteristics. In the case of low SNR,
the SNR and the MSE of the estimated values of CML are not related. However, when the value of N is
fixed, and SNR→ ∞ , CML has the same characteristics as the angle deviation amplitude, the larger
the number of samples, the more accurate the estimated value.

5.2. Steady State Test

5.2.1. Analysis of Harmonic and Noise Suppression

The harmonic signal is injected into the voltage and current signals:

y = cos(2π f1t) + 0.2 cos(2π f3t) + 0.04×
cos(2π f5t) + 0.006 cos(2π f7t) + b(t)

(35)

b(t) is a Gaussian white noise with a distribution characteristic of N (0,0.0012), the signal is measured
by the DFT method and the CML method respectively, the simulation results of phasor amplitude,
phase angle and frequency error, and the total vector error (TVE) value are shown in Figure 11. TVE is
the total vector error as follows [13]:

TVE =
√
{(Xr(n)− Xr)

2 + (Xi(n)− Xi)
2}/(X2

r + X2
i ) (36)

Xr(n) and Xi(n) are the real and imaginary parts of the true value of the phasor, and Xr and Xi are the
real part and the imaginary part of the phasor estimation value.
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It can be seen from Figure 11 that the CML and the DFT are greatly affected by the harmonics.
The DFT cannot meet the maximum TVE error requirement in the standard. The CML of this paper has
higher accuracy, which maintains the tracking speed, and increases the tracking accuracy of the signal.

5.2.2. Frequency Offset Simulation Analysis

The accuracy of the algorithm is simulated and analyzed when the frequency is offset, where
the range of frequency offset is −3~3 Hz. The amplitude, phase angle error and TVE value of phasor
measurement of DFT and CML are compared.

In Figure 12, the red line represents CML, the green line represents DFT. The measurement error
of the two algorithms increases with the increase of frequency offset. However, the measurement
error of CML is relatively small, and the error of DFT algorithm increases sharply with the increase of
frequency. The amplitude, phase angle and TVE error of CML are far less than the DFT. Although with
the increase of frequency offset, the measurement accuracy of the algorithm is reduced, it is still within
the scope of the standard. The effect of signal frequency change on the measurement results is shown
in Table 3.

Table 3. The influence of the signal frequency changes on the measurement results.

f /Hz The Maximum Amplitude Error (%) The Maximum Phase Angle Error (◦) The Maximum TVE Error (%)

49.7 0.095 0.029 2.017
49.8 0.068 0.018 1.003
49.9 0.037 0.011 0.008
50.0 3.488 × 10−9 1.013 × 10−8 3.491 × 10−9

50.1 0.037 0.030 0.008
50.2 0.069 0.019 1.001
50.3 0.096 0.013 2.019
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As can be seen from Table 3, when the signal frequency is shifted by the nominal frequency,
the measurement error of each parameter shows an increasing trend. When the frequency offset is
very low, the accuracy of parameter measurement in this paper is still satisfied.

Figure 12. Amplitude, phase and TVE error of CML in frequency offset.(a) The relation between
amplitude error and frequency offset and time variation; and (b) The relation between Phase error and
frequency offset and time variation; and (c) The relation between the total vector error and frequency
offset and time variation.

5.3. Dynamic Interference Test

In order to test the dynamic performance of the CML method, the dynamic simulation signal in
the test is:

y(t) = 220(2π f t/ fs + π/6) + 4 cos(6π f t/ fs + ϕ)+

2 cos(10π f t/ fs + ϕ) + 3
(37)

where, f = 50.5 Hz, sampling frequency fs = 1600 Hz, ϕ is the initial phase, the sampling points per cycle
N = fs/f 0 = 32. Taking into account the existence of changing factors in the power system, this section
tests the dynamic performance of the algorithm by setting signal parameter mutations. In simulation,
the frequency, amplitude and phase angle in Equation (37) are simultaneously mutated as follows:
the frequency changes from 50 Hz to 50.5 Hz; the amplitude increases from 220 V Mutation to 200 V;
the initial phase angle from 60◦ to 0◦ at t = 0.2425 s. Simulation results are shown in Figure 13.

As can be seen from Figure 13, when the system parameters are abrupt, both algorithms will
produce short-term oscillations in the test, and will quickly resume their given state after oscillation.
However, the traditional DFT algorithm has a significantly larger measurement error after the signal is
abruptly changed. It can be seen that the CML method has the characteristics of fast convergence and
accurate measurement results under the system dynamic conditions, and its dynamic characteristic
have also been improved.



Energies 2018, 11, 1320 15 of 18

Figure 13. Phasor amplitude, phase angle and TVE error in the parametric abrupt change test.
(a) The relationship between amplitude error and time; and (b) Phase angle error and time; and
(c) the total vector error and time.

5.4. Application: Impedance Measurement Using CML Results under Noise Interference

When the system signal is a current signal, a similar estimation of the amplitude and phase of
the current phasor can be made by using the CML method in this section. Using the phasor data
measured by CML to estimate the impedance in the 10 kv distribution network, this result can be
applied for fault location in the distribution network. The 10 kV distribution network is shown in
Figure 14. When line l3 has a single-phase short-circuit fault through the transition resistance Rg at K.
As the distribution network is seriously affected by harmonics, especially the odd harmonics, and the
impedance under fault with added harmonics and noise is estimated as follows. The measurement
signal is shown as Formula (35).

Figure 14. 10 kv distribution system model.
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In Figure 14, inner impedance of source G1 ZG = (4.264 + j85.15) Ω, line impedance of line
Z0 = (0.021 + j0.281) Ω/km, transformer impedance ZT = (0.05 + j12.1) Ω, transition resistance Rg = 2.5 Ω,
the distance from the fault point K to the bus M P = 0.4l3, the length of the three lines l1 = 10 km,
l2 = 15 km and l3 = 20 km respectively. The impedance estimated value obtained by the CML method
is compared with the impedance measurement value and the impedance true value, and the error is
shown in Figures 15 and 16.

Since the system signal contains harmonic and noise, the actual impedance estimation is constantly
changing over time. The change of the total resistance value of the distribution network model based
on the CML method is shown in Figure 15. As can be seen from Figure 15, the actual value of the total
resistance of the distribution network model is 7.507Ω, the estimated value of the resistance fluctuates
constantly due to the noise, and the maximum deviation is about 0.072Ω. The accuracy of the resistance
estimation based on the phasor values obtained by the CML method works better than conventional
DFT method. Although the accuracy of the estimation is slightly lower than the measured value, it can
simplify the measurement steps and improve the impedance measurement speed, which provides
a new method for the fast and accurate fault location of the distribution network.
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Figure 15. Total resistance measurement error of the distribution network model.
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The change of the total reactance value of the distribution network model based on the CML
method is shown in Figure 16. As can be seen from Figure 16, the estimated reactance is also changing
over time. The maximum deviation between the estimated value and the actual value of 106.523 Ω is
about 0.085 Ω. Since the reactance value is related to the system frequency, it is affected more by the
system than the resistance, so its measurement deviation is greater than the resistance. The distribution
network model has a large reactance base, so its relative error is very small. It can be seen that the
estimation performance of reactance is ideal.

When a single-phase ground fault occurs at phase C at 0.20 s, the total impedance estimation
values of the µPMU three channels at 0.245 s in Figure 14 are shown in Table 4. It can be seen from
the deviation between the estimated impedance, and the real value in Table 4, that the impedance
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estimation accuracy based on CML estimates is satisfied. This method can be applied easily for fault
location, state estimation and other advanced application in distribution networks.

Table 4. The actual and estimated values of distribution network impedance at 0.245 s.

Actual Value (Ω) Measured Value (Ω) Estimated Value (Ω) Deviation (Ω)

Load 1 4.524 + j100.060 4.519 + j100.065 4.455 + j99.980 0.069 + j0.080
Load 2 4.629 + j101.465 4.622 + j101.469 4.558 + j101.546 0.070 + j0.081
Load 3 6.982 + j99.498 6.978 + j99.453 6.909 + j99.577 0.073 + j0.079

Total load 7.507 + j106.523 7.502 + j106.529 7.436 + j106.605 0.071 + j0.082

6. Conclusions

In this paper, a new algorithm for simultaneous phasor estimation based on CML is proposed
to solve the phasor parameters in the distribution network. When the parameter can be identified,
its maximum likelihood estimated value can be determined by solving the vector orthogonal to the
eigenvector of the parameter covariance matrix.

(1) This algorithm uses the geometric edges and inner angles to solve the amplitude and phase,
reducing the amount of computation. The performance of CML is verified by MSE, and the
signals under harmonic, noise and frequency offset are tested. The results meet the requirements
of IEEE C37.118, and the algorithm has less calculation burden for µPMU, compared with DFT.

(2) The dynamic test of the CML method is carried out and the impedance of the distribution network
model is solved according to the phasor estimation results of CML method. The simulation shows
that the impedance estimation performance based on the CML measurement value is satisfied.

(3) The phasor measurement algorithm proposed in this paper can be applied to fault location,
state estimation, and other advanced application in distribution networks, because of numerical
stability and estimation precision under a quasi-steady-state condition.

The proposed CML method can improve estimation precision of phasor and balance
three-phase effect. The future research work will focus on the advanced application of µPMU for
distribution networks.
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