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Abstract: Efficient energy management is strongly dependent on determining the adequate power
contracts among the ones offered by different electricity suppliers. This topic takes special relevance
in healthcare buildings, where noticeable amounts of energy are required to generate an adequate
health environment for patients and staff. In this paper, a convex optimization method is scrutinized
to give a straightforward analysis of the optimal power levels to be contracted while minimizing
the electricity bill cost in a time-of-use pricing scheme. In addition, a sensitivity analysis is carried
out on the constraints in the optimization problems, which are analyzed in terms of both their
empirical distribution and their bootstrap-estimated statistical distributions to create a simple-to-use
tool for this purpose, the so-called mosaic-distribution. The evaluation of the proposed method
was carried out with five-year consumption data on two different kinds of healthcare buildings,
a large one given by Hospital Universitario de Fuenlabrada, and a primary care center, Centro de
Especialidades el Arroyo, both located at Fuenlabrada (Madrid, Spain). The analysis of the resulting
optimization shows that the annual savings achieved vary moderately, ranging from −0.22 % to
+27.39%, depending on the analyzed year profile and the healthcare building type. The analysis
introducing mosaic-distribution to represent the sensitivity score also provides operative information
to evaluate the convenience of implementing energy saving measures. All this information is useful
for managers to determine the appropriate power levels for next year contract renewal and to consider
whether to implement demand response mechanisms in healthcare buildings.

Keywords: demand side management; demand response; optimization; time-of-use; healthcare
building; convex programming; sensitivity analysis; bootstrap resampling

1. Introduction

Conventionally, demand side management (DSM) is defined as the planning, implementation,
and monitoring of distribution network utility activities designed to influence the customer use
of electricity in a way that will produce some desired changes in the time pattern and load
magnitude [1,2]. Even tough DSM is still an active research topic with significant practical implications
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in the electrical industry, DSM scope has evolved rapidly in the last decade, mainly due to the
improved communication and control capabilities offered by modern information and communications
technologies (ICTs). In particular, the load management concept has evolved into the so-called Demand
Response (DR) [3]. DR schemes depend on the entities involved (i.e., electricity market, utility,
and customers) and the objective of the DR request (i.e., Price-Based DRs and Physical DRs). Pricing
schemes can range from simple (e.g., single, flat, or block rates) to complex rates, such as seasonal,
time-of-use (TOU), or real-time pricing (RTP) rates. Nevertheless, TOU pricing is the most worldwide
employed scheme for electrical energy billing [4–6]. On the other hand, physical-DR request may
include load shifting, turning-off non-essential loads, peak shaving, or turning-on allowable on-site
generators [7], and more recently the so-called battery energy storage systems (BESS) [8]. In this
context, a very special kind of industrial consumers which need to adopt DR programs are healthcare
buildings, as they usually are large and complex buildings that are continuously operating, consuming
energy on large scale, and playing a vital role in health services [9–11]. Energy needs of large hospitals
can be comparable to a small city and they manage expensive electricity bills. This considerable
energy consumption and its subsequent billing require an effective load management to obtain savings
without affecting the quality of service in the patient healthcare [12].

Before adopting a DR program, facility managers need to analyze the energy performance to
quantify the cost associated with energy consumption and to quantify the impact of implementing
those DRs actions that require investment, finance viability and payback time [13,14]. In this regard,
the aim of this paper is to support healthcare building managers in adopting a Price-Based DR
program, specifically in a TOU pricing scheme. For this purpose, we formulate the DR problem subject
to TOU pricing constraints based on convex optimization that finds the contracted power level that
minimizes the cost of electricity bill and satisfies the TOU pricing. Convex optimization is a widely
used tool for this purpose, and it refers to the minimization of a convex objective function subject to
convex constraints [15]. Not only can convex optimization provide with a direct solution of the most
convenient power level by block rate to be contracted by a healthcare building in terms of the its power
demand, but it can also provide the sensitivity of the problem to the involved constraints, although it
could be highly informative from a managerial point of view.

To our best knowledge, the literature review provides limited information about the optimization
of the electricity bill with data from this special type of customer. Most of the existing research
related to TOU rates is concerned about utilities and industrial customers, and these approaches
exhibit different mathematical methods. Among others, several complex methods were considered
in [16–18] as optimization approaches. In [16], the authors studied mathematical models for the
consumer and the utility companies to optimize the cost to the parties individually and in combination.
In [17], an approach was proposed for TOU design based in quadratically constrained quadratic
programming and stochastic optimization techniques from the utility point of view. Furthermore,
in [18] a game-theoretic approach is considered for optimal TOU electricity pricing. Other works
(e.g., [19,20]) have focused on evaluating electricity rates though characterization and forecasting of
energy consumption to advise companies for the contract renewal. All these studies have different
approaches from ours and they have paid little attention to the sensitivity analysis.

We evaluated our approach on two different kinds of healthcare buildings: (1) a recently created
hospital with modern facilities and general design, which virtually represents a small city itself, i.e.,
Hospital Universitario de Fuenlabrada (HUF); and (2) a primary healthcare center referred to it, namely
Centro de Especialidades el Arroyo (CEA), with lower power consumption. Both are located in the city
of Fuenlabrada (Spain) and can provide us with a contrasted and differential analysis on their energy
consumption on the basis of a shared geographical and demographical context.

The main contributions of this paper can be summarized as follows. First, we propose a novel yet
simple methodology based on convex programming that allows us to determine the optimal power
levels to be contracted with the electricity company into a TOU-rate scheme. Second, we model the
sensitivity of the annual cost of energy by block and period, and use non-parametric resampling
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techniques (specifically, bootstrap resampling [21]) to generate an easy-to-handle tool for analyzing
the sensitivity of the cost in terms of months and consumption blocks, in a unified statistical form.
This proposal allowed us to identify at a glance where the demanded power exceeded the contracted
power and its impact from a statistical point of view. This sensitivity analysis using mosaic distributions
can straightforwardly drive managers towards the specific TOU block where DR programs need to
be prioritized and implemented, hence supporting an improved energy management in healthcare
buildings; however, the entire approach could also be useful in other scenarios.

The rest of this paper is organized as follows. In Section 2, we formulate the DR problem subject
to TOU pricing scheme, and we detail the methodology used for sensitivity analysis. In Section 3,
we describe the datasets, corresponding to the two aforementioned healthcare buildings, as well as
the blocks of the TOU rates considered in this work. In Section 4, we present the experimental results
in pricing optimization and sensitivity analysis for both scenarios (large and small scale healthcare
buildings). Finally, Section 5 summarizes the discussion and main conclusions of this work.

2. Demand Response Optimization: Sensitivity Analysis and Mosaic Distribution

In this section, we formulate the DR problem subject to TOU pricing constraints. More specifically,
we formulate a constrained optimization problem that, using as inputs the power demand and the
pricing schemes, finds the contracted power level that minimizes the cost and satisfies the TOU pricing
constraints imposed by the operator. This optimization will be the key not only to finding the optimal
contracted powers, but also to analyzing the sensitivity of the solutions with respect to changes in
the power demand. To that end, the first part of the section focuses on the problem formulation and
discusses how this problem could be solved using convex programming tools [22]. The second part
addresses the sensitivity analysis by discussing the empirical distribution of the Lagrange multipliers
(LM) associated with the optimization, and the usefulness of the bootstrap re-sampling techniques [21]
to yield a unified view of the relevance of the constraints through different blocks and month periods.

Regarding the problem formulation, we start by introducing the main notational conventions and,
then, identify the state variables (which serve as inputs to our problem), the optimization variables
(which serve as outputs), the constraints relating the different variables, and the cost to minimize.

1. Power consumption. We focus on optimizing the power consumption during one year (12 months)
and consider that the time is divided into regularly sampled 15-min periods. Variable N is used
to denote the total number of periods in a year (i.e., N = 365× 24× 4) and variable n is used
to index those periods of 15 min each). Similarly, we use M = 12 to denote the total number
of months in a year and the variable m to index the corresponding month. With this notation
in place, we can define the column vector d ∈ RN as the one-year load consumption (in kWh).
Moreover, suppose that at period n the contracted power is not enough to meet the current
demand, thus additional power from the supplier are needed. Then, we use xn to denote the
excess power at period n (in kW) and collect all those values in vector x ∈ RN . Defining Nm

as the number of 15-min periods in month m, we also define the monthly counterparts of the
previous vectors as dm ∈ RNm and xm ∈ RNm and write d> = [d>1 , ..., d>M] and x> = [x>1 , ..., x>M].

2. Pricing mechanisms. The operator considers T = 6 different tariff periods, which are indexed
by variable t. The unitary cost of the power during the tariff period t is denoted as ct, and all
those prices are collected in vector c ∈ RT . At the beginning of each year, the customer must
decide the amount of power that is contracted for each of the tariff periods. To that end, we use
pt to denote the contracted power at tariff period t and collect all those variables in the column
vector p ∈ RT . Moreover, to penalize the amount of excess power that the customer needs to buy
every month, the supplying company establishes a cost coefficient kt for each tariff t, which are
collected in the column vector. Finally, to account for the TOU pricing mechanism, we consider
the binary variable Qm

n,t, which is one if the time period n of the month m is charged with the tariff
t and zero otherwise. Moreover, for each month m and tariff t, we can collect the corresponding
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binary variables in the vector qm
t ∈ RNm . Those vectors are used to define the diagonal matrices

diag(qm
t ) for all (m, t) as well as the matrices Qm = [qm

1 , ..., qm
T ] ∈ RNm×T for all m.

Using the state variables p, c and k as inputs, and viewing the optimization variables p and x as
outputs, our DR optimization problem subject to TOU constraints can be formulated as

J(c, k, d) := min
p,x

T

∑
t=1

ct pt +
T

∑
t=1

∑
m∈M

kt
∥∥diag(qm

t )xm
∥∥

2 (1)

subject to : p ≥ 0, xm ≥ 0, ∀m = 1, . . . , M, (2)

Qmp + xm ≥ dm, ∀m = 1, . . . , M, (3)

pt ≤ pt+1, ∀t = 1, . . . , T − 1, (4)

pT ≥ pmin. (5)

In the above optimization, the constraints in Equation (2) account for the fact that the power
variables are non-negative; Equation (3) are balance constraints that guarantee that the power demand
is always satisfied; and the constraints in Equations (4) and (5) are imposed by the power supplier
as part of its TOU pricing mechanisms. Regarding the cost, we note that two terms are considered.
The first one simply accounts for the cost of the power contracted at the beginning of the year for each
of the T tariffs. The second one, which is a bit more involved, accounts for the excess of power that the
customer must buy when the demand exceeds the contracted power. More specifically, this second
term considers all month–tariff pairs and, for a given (t, m) pair, finds the cost as the multiplication of
the coefficient kt with the `2 norm of the vector collecting the excesses during the (t, m) pair, which can
be conveniently obtain as diag(qm

t )xm.
All the constraints in Equations (1)–(5) are linear; the cost to minimize is the sum of a linear term

and `2 norms; and the domains of the optimization variables are RN . As a result, the formulated
problem is convex and can be efficiently solved, either upon developing tailored first/second order
algorithms (recommended when computational complexity is an issue), or using a generic off-the-shelf
solver such as CVX (if the dimensionality of the problem is not large) [22].

Note that, if c, k and d are given, the formulated optimization yields the value of p that minimizes
the cost paid by the customer. Unfortunately, while the prices c and k are known at the beginning of
the year, the demand d is not. Different approaches arise to handle this issue. If the joint probability
distribution of d is known, the optimization can be reformulated as a stochastic problem whose
objective is to minimize, for example, an average or a worst-case cost. Alternatively, one can use as
input the demand of the previous year and, then, analyze the sensitivity of the problem to variations
of such a demand, which is is one of the goals of the ensuing section.

2.1. Sensitivity Analysis

Whereas it is easy to identify the time instants when the consumption has overpassed the power
limits, it is not so immediate to provide with an operative view on which are the periods for each
month when the consumption is statistically closer or over the limits. An intuitive and heuristic
solution should be to represent the histograms of the consumption excesses per block and month
period. Two improvements can be done to this simple approach. On the one hand, the use of
the sensitivities provided by the convex optimization solver for the excess constrains is statistically
more representative than that of the empirical values of the overshoots itself, because, for instance,
the LM associated with the constraints are less affected by outliers or atypical samples. On the other
hand, the statistical distribution of the sensitivities are often complex, probably a mix of a Bernoulli
distribution with another continuous distribution (e.g., Bernoulli–Gaussian) due to the time instants
per block and month when the consumption remains below the limit are associated with a null
Lagrange multiplier. This can be arranged by the estimation of the average value, and improved by
yielding the statistical distribution of that average value per period and month, which can be tackled
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efficiently using bootstrap resampling the available on the yearly consumption samples and on the
optimization problem statement.

The sensitivity analysis in convex optimization [22,23] aims to quantify the impact on the solution
of the constrains, either all of them, or some subset of special interest. If we denote by vt,k the LM
associated with the constraints in Equation (3), those LM represent the sensitivity of the optimization
cost with respect to the variation on the demand (and, hence, on power consumption excess), taking
into account their distribution in periods and months, as required by the optimization primal functional.
The empirical distribution functions for these Lagrange multipliers can be expressed as

f̂e(vt,k) =
1

Nt,m

Nt,m

∑
i=1

δ(vt,m − vt,m
i ) (6)

where Nt,m is the number of consumption samples in cost period t and month m, and δ(v) denotes the
Dirac’s delta function. This empirical probability density function (PDF) is often indirectly visualized
by using a histogram and choosing an appropriate number of bins, which is denoted here as f̂h(vt,m).
The histogram representation is more useful for visualization, but we should keep in mind that
the empirical PDF is the basis for the plug-in principle in bootstrap resampling techniques [21,24].
Estimated means µt,m can be obtained as an operator (the sample average), denoted by S(), on the set
of Lagrange multipliers, as follows

µt,k ≈ S(vt,m) =
1

Nt,m

Nt,m

∑
i=1

vt,m
i (7)

where vt,m represents the set of Lagrange multipliers grouped according to Nt,m elements in that TOU
block and that month.

The Bernoulli-mixed character of the sensitivity distribution can be hard to handle for management
purposes, and, given that the sample mean represents a partial information on its actual and statistical
relevance, bootstrap resampling techniques can be used to provide us with the distribution of the mean
sensitivities, as follows. The PDF of an estimator is not always easy to estimate analytically; hence,
we can use instead bootstrap resampling, which is a non-parametric technique turning especially
useful when the statistical distribution of the problem is unknown, as it is our case of analysis [25,26].
We denote by θ the operator that yields the set of sensitivities grouped into cost periods and months
from a set of consumption measurements on a year, this is,

vt,m = θ(d|C) (8)

for t = 1, · · · , T and m = 1, · · · , 12, and where C denotes on a compact form all the constrains that
have to be fulfilled and considered when building the convex optimization problem.

A bootstrap resample of the population sample d is given by d∗(b, C), which corresponds the bth
repetition of the process of sampling with replacement the load consumption samples, while restricted
to hold the conditions in the given problem (e.g., constraints on the periods, distribution per cost
periods and months, and all others). If we repeat this process B times (i.e., from b = 1, . . . , B), we obtain
B replications of the sensitivities, as follows,

vt,m,∗(b) = θ(d∗(b, C)) (9)

and then we can obtain the replications of the average values for each, given by

µ∗t,m(b) = S(vt,m,∗(b)) (10)

This way, we can represent the histogram distribution for each estimator of the average as f ∗h (µt,m).
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Finally, as a way to show the results of the sensitivity estimations, we introduce the concept of
mosaic-distribution, which for a given set of distributions is defined as follows:

1. The mosaic distribution D(t, m, f ) will be a three-dimensional set of T×M representation cells,
where horizontal plane performs a grid of (t, m) indexed squares that corresponds to their
respective TOU block and month. In the vertical axis, we are representing the normalized
histogram of the sensitivity distributions.

2. In our plots, the squares that are disjoint in the TOU blocks conditions are represented using
grey color; those PDF in (t, m) whose 95% confidence interval (CI) overlaps zero are represented
with a blank cell; and those PDF whose CI are significant, and their average sensitivity are low,
moderate, and high, are shown in green, orange, and red color line, respectively.

In this work, we use the mosaic distribution for the histogram-estimated PDF of the
sensitivities, hence denoted by D(t, m, f̂h(vt,m)), and for the average bootstrap sensitivities, denoted
by D(t, m, f ∗h (v

t,m)), as shown in Section 4. Note that the calculation of the mosaic representations
has to be seen as a post-processing, and that bootstrap resampling is not part of the optimization
process, but rather the optimization is replicated with the set of resampled consumption measurements.
Algorithm 1 summarizes the process steps for clarity.

Algorithm 1 Mosaic Representation
Input: one-year consumption d in kWh, and periods with the corresponding costs c, t = 1, · · · , T.
Output: Contracted power p and mosaic representation of sensitivities D(t, m, f ).

Step 1. Divide the one-year data in monthly data, dm, m = 1, . . . , 12.
Step 2. Compute the optimum contracted power vector p from Equations (1) to (5).
Step 3. Bootstrap postprocessing. For b = 1 to B:

Resample consumption measurements, d ∗ (b, C).
Replicate sensitivies vt,m,∗(b) as in Equation (9)
Replicate average values µ∗t,m(b) as in Equation (10)

Step 4. Estimate the histogram distribution for each estimator of the averages, f ∗h (µt,m).
Step 5. Graph the mosaic distribution D(t, m, f ) according to the described convenion rules.

3. Databases

We analyzed historical load data of high voltage (e.g., ≥ 1 kV) consumers as case study from
two different sized healthcare buildings. They both followed a six-block TOU rate, and their supplier
constraints required that at least one of the six contracted power levels were greater than 450 kW.
The first dataset has been provided by the HUF, located at the Comunidad de Madrid, Spain. The HUF
serves a population of about 220,000 people, and it has a total surface of 64,000 m2, capacity for
406 beds, and 9 surgery theaters. The second dataset corresponded to the power consumption of the
CEA, which is also located in the Comunidad de Madrid, a few kilometers away from the HUF. This is
a primary attention center that carries out specialty outpatient activities, with a surface of 10,050 m2.

These datasets can be represented by their corresponding boxplots (Figure 1) and both contain
quarter-hourly demand from 1 January 2013 to 1 December 2017. We notice, for the HUF case,
that the demand exceeds the current power contracted level, in such a way that values above this limit
are considered as overshoots of the demanding power and they causes penalties in the final price.
For this case, the optimal set of power levels should be higher than the current ones. On the other
hand, for CEA case, the load profile mainly remains below the limits indicated by the dashed lines,
which suggests that the current contracted power levels were higher than the optimal.

The historical database contains 35,040 consumption registers by year with a sampling period of
15 minutes (i.e., 4 × 24 × 365 = 35,040 samples). These registers must be allocated by block (1–6) and
by month, day, and hours (i.e., time block division for TOU pricing), as detailed in Table 1.
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Figure 1. Load demand representations with the data available from 2013 to 2017 period: at Hospital
Universitario de Fuenlabrada (HUF) (a) yearly boxplot and (b) monthly boxplot; and at Centro de
Especialidades el Arroyo (CEA) (c,d) yearly and monthly boxplot, respectively. Red dashed lines
represent the current contracted power levels, in the HUF case the same level for all t blocks, while for
CEA case we have two power levels, one for P1−5, and another one for P6.

Table 1. Six-block time division for the used time-of-use (TOU) rates in our data.

Block Type A
(Hours)

Type A1
(Hours)

Type B
(Hours)

Type B1
(Hours)

Type C
(Hours)

Type D
(Hours)

1
10–13
18–21 11–19 - - - -

2
8–10
13–18
21–24

8–11
19–24 - - - -

3 - - 9–15 16–22 - -

4 - -
8–9

15–24
8–16
22–24 - -

5 - - - - 8–24 -

6 0–8 0–8 0–8 0–8 0–8 0–24

Mon-Fri 1 1 1 1 1 0
Sat-Sun 0 0 0 0 0 1

Holidays 0 0 0 0 0 1
Months 1,2,12 6 1,7 6 2,9 3,11 4,5,11 1,...,12

1 Second half of the sixth month; 2 First half of the sixth month.
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4. Experimental Results

In this section, we analyze the results obtained when applying the proposed methodology to
the available databases from the HUF and CEA buildings. The optimization problems were solved
using Matlab-based CVX software (version 2.1, CVX Research, Inc., Austin, TX, USA) for convex
optimization [27]. First, we present the results of evaluating the function cost when the optimal set
of power levels is applied. Then, we present the results of data processing followed to determine
the sensitivity description, which basically consisted of performing bootstrap resampling from the
LM for every pair of months and TOU block. Finally, we analyze the sets of sensitivities in terms
of the introduced mosaic representations, showing that they allow us to readily identify where the
optimization constraints and demand need to be focused to adopt DR mechanisms in a TOU scenario.

4.1. Cost Analysis in Terms of the Optimal Power Level

The upper part of Table 2 presents the optimal power set found by the proposed optimization
method for the HUF and CEA cases in every analyzed year. With this approach, the optimal set
of power levels calculated in the current year are the recommended ones to be contracted with the
power supplier during the next year. According to the HUF demand profile, depicted in Figure 1a,b,
these results confirm that the optimal set of powers should be higher than the current one, and they
tend to stabilize in 2016 with the values in 2014. The table also shows how the optimized levels in
the HUF, presented for the current year, affect the annual cost if they are applied to the next year
(e.g., optimal power calculated with 2013 demand is applied to calculate the cost with 2014 demand).
We obtained a saving metric for this evaluation when compared with their corresponding current cost
by year. Moderate savings (max 2.86%) indicate that the current contracted power levels are close to
the optimal. In this case, the DR strategy suggest that it is possible and recommendable to increase the
power to be contracted during the next year.

For the CEA healthcare building, a different behavior was observed compared with the HUF,
as in this case, the optimal set of powers are located below the current ones (see Table 2, lower part).
Whereas the relative savings are apparently higher (max 27.39%), the amounts are noticeably much
smaller. It can be seen that the optimum remains in general stabilized, except for the increment
observed in 2015. There is a trend on the forward prediction to yield a slight overcost in the last
three years, which was due to the fact that a change in the management was followed in which the
building required to be increasingly cooled in the summer, which caused a change in the dynamics
and a non-stationary modification on the conditions. However, the method is capable of providing a
closer-to-the-optimum estimation.

Table 2. Power levels and results of cost evaluation.

Building Year Optimal Power by Period Cost (e/year) Savings %
t1−5 (kW) t6 (kW) Current Optimal

HUF

2017 2168 2168 251,784 247,229 1.81
2016 2126 2269 250,589 251,160 −0.22
2015 2318 2318 278,540 270,570 2.86
2014 2125 2200 249,552 246,142 1.37
2013 2197 2197 257,287 - -

CEA

2017 208 450 16983 13,997 17.58
2016 238 450 16,956 13,366 21.17
2015 261 450 16,956 15,700 7.41
2014 206 450 16,956 12,312 27.39
2013 219 450 16,956 - -

In both cases, we see that several quantitative advantages can be obtained. Rather than the impact
on the savings, this shows evidence that the consumption dynamics are being adequately captured
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by the optimization procedure. Accordingly, and rather than just giving a recommendation for the
next-year tariff to contract, it seems desirable to provide information on these changes in the dynamics
from one year to another, so that this information can be handled by healthcare building managers, as
described next.

4.2. Overshoot, Lagrange Multipliers and Bootstrap

When formulating the optimization problem, one of our decisions was to consider the power
excess (overshoot) as an explicit variable and to relate this variable to the power demand and the
contracted power using a constraint. Such a decision brings two benefits: (i) the LMs associated with
the constraint capture the sensibility of the cost in the objective to variations (uncertainties) on the
demand; and (ii) we can rely on dual theory and sensitivity analysis to characterize those LMs. In this
section, we evaluate the value of those LMs and use the results to asses the sensitivity to overshoots
for every block and period.

For the HUF case, Figure 2 shows an example of post-optimization data treatment allowing us to
obtain the mean bootstrap sensitivity value and its distribution from the LM analysis. In Figure 2a,
we can observe the load profile and the time instants when it overpasses the power limit. Note that the
green dashed line depicts the current power level and the red line shows the overshoot with respect the
optimal level. Figure 2b depicts the corresponding LM provided by the optimization algorithm output
as a function of the same time instants, where it is clear that these LM track the overshoot with their
instantaneous values, whereas these values remain at zero level with no overshoot. Figure 2c shows
every overshoot as discrete variable that is active only for the specific (t, m) constraint (i.e., block,
month) defined in Equation (3). In the histogram in Figure 2d, the empirical PDF is represented for
this price evolution, and the presence of complex shapes can be appreciated, as given in this case
by bi-modalities. Figure 2e shows the average-values for every bootstrap replication, together with
Figure 2f depicting its empirical PDF. Whereas the statistical distribution of the bootstrap-estimated
values still includes the information of the overshoots that take place at every resample, its statistical
distribution is not so affected by specific peaks happening in a specific realization. This provides a
robust set of estimators, which are less affected by atypical samples, while respecting the impact of the
overshoots on the statistical distribution description.

For the CEA case, the counterpart to Figure 2 is shown in Figure 3. Load consumption and the
time instants when it overshoots the optimal power limit (red line) are shown in Figure 3a. Note that,
for the currently contracted level (green dashed line), we can see that the optimal level is well below
the contracted one, which in this case implies that in the equilibrium point it is preferable to allow
some overshoots. LMs and their discrete representation are shown in Figure 3b,c, respectively. In the
PDF distribution shown in Figure 3d, we observe a different distribution profile compared with the
HUF case for these same conditions, where it is noticeable a trend to zero value. Finally, in Figure 3e,f,
the average values by bootstrap replication and its bootstrap distribution are shown, respectively.
These statistical profiles are much alike the ones in the HUF case example, and again, they are including
the information about the overshoots for the optimized problems, hence it represents a robust statistical
measurement and characterization of the dynamics, which in turn can be readily compared with other
situations. Hence, the use of sensitivity analysis in combination with bootstrap resampling yields a
unified and robust representation of the underlying dynamics, which is subsequently analyzed in the
next subsection.
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Figure 2. Example of implementation of the sensitivity analysis for HUF: (a) Load profile plot
corresponding to Month 7 and Block 1; (b) Lagrange multipliers (LM) plot associated with the constraint
(1,7); (c) LM discrete event representation; (d) LM empirical distribution function; (e) Bootstrap
replications mean plot; and (f) Mean bootstrap distribution.
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Figure 3. Implementation of the sensitivity analysis for CEA: (a) Load profile plot corresponding to
Block 1, Month 7; (b) LM plot associated with the constraint (1,7); (c) LM discrete event representation;
(d) LM empirical distribution function; (e) bootstrap replications mean plot; and (f) bootstrap
mean distribution.

4.3. Mosaic-Distribution and Sensitivity Results

We addressed the representation of mosaic distributions for the data from the available years
(i.e., 2013–2017) according to Algorithm 1. Recall that, in the mosaic distributions for the LM empirical
distributions, in horizontal plane, blank cells represent a distribution which demand do not overshoot
optimal power level, and grey cells indicate that the corresponding month does not match with any
TOU block. In addition, in the mosaic distributions for the bootstrap sensitivity analysis, blank cells
represent a distribution whose CI overlaps zero and then it is not statistically significant, and hence,
that distribution is not represented in the mosaic. Recall also that the estimated PDFs of the LM
are depicted with green, orange, and red color when their corresponding average is low, moderate,
and high, respectively.

Figure 4 shows the mosaic distribution for the LM empirical distributions in the HUF case.
The peak load is represented for each year in Figure 4a, so that we can have a view of the consumption
profile. We can observe that the load overshoots the pmin and even pmax optimal power levels, which are
identified by the dotted lines therein.

In Figure 4, those tiles whose 95% CI overlaps zero have been removed from the representation;
nevertheless, most of the distributions are significantly present with this criterion. It can be also seen in
Figure 4b–f that there is a noticeable bimodality and heavy tails in the distributions of the LM, which is
just due to the threshold effect on the LM. This representation makes hard to identify which are the
more crucial periods and months, and not much difference can be observed from one year to another.

Conversely, Figure 5 shows the mosaic distributions for the bootstrap estimated averages. It can
be clearly seen that distributions in red have clearly higher values, and more, there are temporal trends
that can be observed through years. For instance, the red distributions are mostly grouped on the
months of June, July, and September, for periods 1 to 4, and mostly repeated with minor changes.
However, there is a trend in the red distributions following an inverted-U shape, which are more
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present in 2013 for the ending months, then they trend to reduce in those months but to increase in
March and April during 2014 and 2015, and finally to be less evident in 2017. Hence, two sets of
policies need to be separately considered, one for the summer, and another for the winter, which will
be obviously different, but can be scrutinized in terms of what happened in those specific months in
the observed years.

Different dynamics are observed in CEA. Figure 6 shows the peak load with a very different
profile from the triangular trend in HUF, and, in this case, there is a flat trend in the summer months,
probably related with the cooling air connection, and then a peak-trend with maximum in January
but linearly decreasing, corresponding to the Winter months. In this case, the mosaic distribution for
the LM empirical distributions has a different profile from the HUF distribution, and more, it remains
stable and repeated through years. However, as seen in Figure 7, the mosaic representations for the
bootstrap sensitivity analysis is very different from stationary. The U-shape set of significant green
distributions is not present here, whereas the significant sensitivity is now condensed in the months
of June, July, and September, being non-significant the other tiles. Nevertheless, the relevance of
the significant tiles changes from one year to another, with a trend to increase the sensibility during
years 2015 and 2017. These were the years where the policies on the air-conditioned management
changes, and this trend is detected within this analysis to change the impact on the mosaic distribution.
In Table 3, we summarize the maximum sensitivity values obtained for CEA and HUF. In both cases,
the maximum corresponds to 2015 and 2017 years.
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Figure 4. Mosaic distribution for LM in HUF: (a) peak load representation for the available data;
and (b–f) mosaic representation for the LM empirical distributions by month and TOU, in Years 2013,
2014, 2015, 2016, and 2017, respectively.
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Figure 5. Bootstrap sensitivity analysis in HUF: (a) monthly load profile representation for the available
data; and (b–f) mosaic representation of mean distributions by month and TOU blocks, for Years 2013,
2014, 2015, 2016 and 2017, respectively.



Energies 2018, 11, 1454 14 of 17

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Time (months)

0

100

200

300

400

500

L
o
a
d
 (

k
W

h
)

p
min

p
max

2013
2014
2015
2016
2017 0

6

5

4

TOU Block

3

2
DecNovOct

Month

SepAugJul1 JunMayApr

0.5

MarFeb

N
o
rm

a
li
ze
d
h
is
to
g
ra
m

Jan

1

(a) (b)

0

6

5

4

TOU Block

3

2
DecNovOct

Month

SepAugJul1 JunMayApr

0.5

MarFeb

N
o
rm

a
li
ze
d
h
is
to
g
ra
m

Jan

1

0

6

5

4

TOU Block

3

2
DecNovOct

Month

SepAugJul1 JunMayApr

0.5

MarFeb

N
o
rm

a
li
ze
d
h
is
to
g
ra
m

Jan

1

(c) (d)

0

6

5

4

TOU Block

3

2
DecNovOct

Month

SepAugJul1 JunMayApr

0.5

MarFeb

N
o
rm

a
li
ze
d
h
is
to
g
ra
m

Jan

1

0

6

5

4

TOU Block

3

2
DecNovOct

Month

SepAugJul1 JunMayApr

0.5

MarFeb

N
o
rm

a
li
ze
d
h
is
to
g
ra
m

Jan

1

(e) (f)

Figure 6. Mosaic distribution for LM in CEA: (a) peak load representation for the available data (from
2013 to 2017); and (b–f) mosaic representation for the LM empirical distributions by month and TOU,
in years 2013, 2014, 2015, 2016, and 2017, respectively.

Table 3. Summary of maximum sensitivity by year.

Building Max. Sensitivity (e/kWh) Overall (e/kWh)
2013 2014 2015 2016 2017

HUF 0.05 0.05 0.06 0.05 0.06 0.06
CEA 0.04 0.03 0.04 0.03 0.04 0.04
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Figure 7. Bootstrap sensitivity analysis in CEA: (a) monthly load profile representation for the available
data (from 2013 to 2017); and (b–f) mosaic representation of mean distributions by moth and TOU
blocks, for Years 2013, 2014, 2015, 2016, and 2017, respectively.

5. Discussion and Conclusions

In this paper, we have proposed a twofold application of convex optimization to support managers
of healthcare buildings in adopting a time-of-use based demand response program (DR-TOU). First,
a simple yet novel method has been proposed which has been solved using convex programming tools.
The analyzed scenario corresponds to the five years of data consumption available from two different
sized healthcare buildings and the rate scheme to a six-block TOU pricing. Second, we provided the
managers with additional information about the most relevant constraints to be paid attention, and,
for this purpose, the statistical distribution of the constraint sensitivity of the time periods and pricing
levels was scrutinized, giving a good view of which are the most critical of them on a new, systematic,
and easy-to-handle representation with the so-called mosaic distributions.

Sensitivity analysis has been shown to identify at a glance where and when the interventions
will be more urgent and more necessary to reduce the cost. The use of statistical tests based on
nonparametric bootstrap resampling makes this instrument more than a visualization tool, and is
solidly based on the statistical distribution analysis. The application of this method in two very
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different cases of study (different healthcare buildings) highlights the effective convenience and
usability of this approach.

In our results, the analysis of the resulting optimization showed a cost reduction in the electricity
bill of up to 27.81% per year, obtained in the smaller building with conventional energy management
strategy. Clearly, it should not be used as an autonomous and isolated prediction tool, but rather
as a support to the deep knowledge of the managers in their field. The statistical profiles in the
distributions of the raw LM was shown to have limited information, whereas the profiles given
by bootstrap resampling provided with useful and operative information about the dynamics and
the most convenient tiles to scrutinize in order to manage the cost. Thus, the mean sensitivity of
0.06 e/kWh (for the larger building) and 0.04 e/kWh (for the the smaller building) could be a useful
evaluation metric for those energy saving measures that require investment, finance viability and
payback time (e.g., to invest in battery energy storage systems (BESS)). It can be concluded that
the proposed novel system can be useful to determine the suitable power levels for the next year
contract renewals, while giving a robust and operative overview of the optimized solution for DR-TOU
management purposes. Finally, although our formulation is suitable for healthcare buildings, it could
also be useful in other scenarios.
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