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Abstract: Current vehicle bio-methane plants have drawbacks associated with high energy
consumption and low recovery levels of waste heat produced during the gasification process. In this
paper, we have optimized the performance of heat exchange networks using pinch analysis and
through the introduction of heat pump integration technology. Optimal results for the heat exchange
network of a bio-gas system producing 10,000 cubic meters have been calculated using a pinch point
temperature of 50 ◦C, a minimum heating utility load of 234.02 kW and a minimum cooling utility
load of 201.25 kW. These optimal parameters are predicted to result in energy savings of 116.08 kW
(19.75%), whilst the introduction of new heat pump integration technology would afford further
energy savings of 95.55 kW (16.25%). The combined energy saving value of 211.63 kW corresponds to
a total energy saving of 36%, with economic analysis revealing that these reforms would give annual
savings of 103,300 USD. The installation costs required to introduce these process modifications are
predicted to require an initial investment of 423,200 USD, which would take 4.1 years to reach payout
time based on predicted annual energy savings.

Keywords: vehicle bio-methane; pinch analysis; heat pump integration; energy conservation;
economic efficiency

1. Introduction

With the fast development of the biogas industry, using biogas to achieve greater economic
benefits is one of key factors affecting the development model shift of large scale biogas plants from
environment protection mode to energy generation mode. The usage of biogas is changing from
fueling combined heat and power generator engines to upgrading biogas to bio-methane. Vehicle
bio-methane is one of the high value applications of biogas [1,2]. Investment in vehicle bio-methane
plants has attracted widespread attention; for example, China’s 13th Five-year Plan for the biogas
industry involves completion of 192 large-scale biogas projects by 2020 [3]. Although many vehicle
bio-methane projects are underway, their relatively high operating costs and high energy consumption
levels are still a major concern. Previous studies have shown that 10–30% of the total energy consumed
in typical biogas processes involve heat production [4–6], with current process plants being inefficient
at recovering waste heat losses. Therefore, the introduction of new processes or technologies that
enable the efficient recycling of waste heat is important for improving the economic and environmental
efficiency of biogas processes.
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The energy required for the production of vehicle bio-methane results in a large amount of waste
heat being produced that could potentially be recovered and recycled [7,8]. Zupancic et al. have shown
that waste heat could be recovered from a high temperature anaerobic fermenter at 55 ◦C, which was
used to heat the biomass feedstock from 11–32 ◦C, representing an energy saving of around 50% [9].
Zhang et al. applied heat recovery methods to the sterilization, purification and production stages,
resulting in 64–100% of the total input energy being recovered, which enabled net biogas production to
be increased by 5.3–17.4% [10]. These studies reveal that recovery of waste heat can effectively reduce
energy consumption, increase biogas production levels, and produce significant cost savings. However,
most of these studies have focused primarily on recovering heat from a single source, with recovery
methods concentrating on simple heat exchange processes [11]. Vehicle bio-methane plant systems
generate multiple kinds of waste heat, and so this study has used pinch analysis to determine how
new heat pump technology might be used for global recovery of heat energy in a vehicle bio-methane
plant [12,13]. We anticipate that the results described herein will encourage more efficient use of waste
heat in biogas engineering plants, thus enabling their economic efficiency to be improved and their
environmental impact reduced.

2. Research System

Figure 1 shows a diagram of a typical vehicle bio-methane process plant which can process 120 tons
of raw feedstock to afford 10,000 m3 of biogas daily, with 8000 m3 being processed into 4800 m3 of
compressed natural gas (CNG) and the remaining 2000 m3 being used for heat production. The range
of energy consuming techniques present in the biogas process include mechanical pretreatment,
high temperature anaerobic fermentation, wet catalytic desulfurization processes, alcohol amine
decarburization (MEA), four stage compression technology, addition of biological fertilizer, and boiler
heating technology. The main technical parameters of the fermentation process involve maintaining
the fermentation liquid concentration at 8%, maintaining the digestion temperature at 55 ◦C and
ensuring that the concentration of CH4 is 60% in biogas, and 97% in CNG. The waste heat produced by
this system originates from top gas present in the decarburization tower, the lean fermentation liquor,
the air compressor used for cooling water, the biogas slurry, and the boiler exhaust gas. The input heat
used for this system is mainly used to heat and maintain the temperature of the fermentation liquid at
55 ◦C, and to carry out the decarburization desorption process. Figure 2 shows the energy balance
diagram used to describe the vehicle bio-methane process.
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Figure 2. Energy balance of the system.

3. Pinch Analysis of Research System

3.1. Logistical Parameters Used for Pinch Analysis Process

The process and design data produced by 8 vehicle bio-methane projects with daily productivities
of 10,000 cubic meter biogas (5 hot flows and 3 cold flows) were analyzed (See Table 1), with hot fluxes
(H1~H5) requiring cooling, and cold fluxes (C1~C3) requiring heating. The plant operating the C1
process incorporates rich liquid heating processes, facilitates heat desorption from chemical reactions,
and contains a rehydration tower that consumes extra heat. The plant operating the C2 process results
in heat loss from the fermentation tank, the biogas, evaporation of water vapor and from pipelines.
The initial heat exchange network employed in this project is shown in Figure 3, which only has partial
heat exchange between the MEA lean liquid and the MEA rich liquid. The heat exchange of the MEA
lean liquid was 235.11 kW, the heating load of the cold logistics was 587.86 kW and the cooling load of
the hot logistics was 567.79 kW.

Table 1. Process stream data.

Stream Type Number and Name Temperature/◦C Target
Temperature/◦C

Average Heat
Capacity kW/◦C Heat Load/kW

Hot stream

H1 Boiler exhaust 180 60 [14] 0.23 27.6
H2 MEA poor-liquid 120 40 4.61 368.8
H3 Stripper top gas 98 60 [15] 1.26 47.88

H4 Biogas slurry 55 25 10.61 318.25
H5 Cooling water 40 25 1.84 27.56

Cold stream
C1 MEA rich-liquid 55 120 6.74 438.1

C2 Fermentation liquid insulation 50 55 12.83 64.17
C3 Fermentation liquid warming 25 55 10.69 320.83
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Figure 3. Heat exchanger network of the system.

3.2. Methods Used to Determine Pinch Point Location

3.2.1. Division of Temperature Zones

Since the temperature differences for heat transfer between hot and cold fluxes in the system were
different from each other, the minimum temperature difference (∆Tmin) of the whole process could
not be used for pinch analysis. To address this problem, a “virtual temperature method” was used for
pinch analysis [13,16]. As shown in Table 1, it was assumed that ∆Tmin= 10 ◦C, with heat fluxes being
cooled by 5 ◦C and cold fluxes being heated by 5 ◦C [17]. The network was then divided into 9 regions
based on segmentation of a virtual temperature zone, as shown in Figure 4.
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3.2.2. Determining the Heat Balance of Temperature Zones

The heat balance of each temperature zone was calculated according to Equations (1) and (2) [18]:

qn =
(
∑ CPcold − ∑ CPhot

)
(Tn − Tn+1) (1)

Xn = Yn − qn (2)

where, n is the temperature zone number, with n = 1, 2, . . . 9; qn being the extra heat required by
a temperature zone (n in kW); ∑ CPcold is the sum of the heat capacities of all the cold fluxes in a
temperature zone (n in kW/◦C); ∑ CPhot is the sum of the heat capacity of all the hot fluxes in a
temperature zone (n in kW/◦C); Tn, Tn+1 is the input and output temperature of a temperature zone
(n in ◦C); Xn is the input heat of the temperature zone n (in kW); Yn is the output heat ofthe temperature
zone (n in kW).

A question table was then constructed, based on the heat balance values calculated for each
temperature zone (see Table 2).

Table 2. Question table used to optimize pinch point location.

Temperature Zone Input Heat
Required (kW)

Heat Flux with no Heat Input (kW) Heat Flux with Heat Input (kW)

Input Output Input Output

Temperature Zone 1 −11.5 0 11.5 234.02 245.52
Temperature Zone 2 65.1 11.5 −53.6 245.52 180.42
Temperature Zone 3 41.8 −53.6 −95.4 180.42 138.62
Temperature Zone 4 21.12 −95.4 −116.52 138.62 117.5
Temperature Zone 5 87.1 −116.52 −203.62 117.5 30.4
Temperature Zone 6 30.4 −203.62 −234.02 30.4 0
Temperature Zone 7 −67.95 −234.02 −166.07 0 67.95
Temperature Zone 8 −8.8 −166.07 −157.27 67.95 76.75
Temperature Zone 9 −124.5 −157.27 −32.77 76.75 201.25

The pinch point where the heat flux between temperature zones 6 and 7 were found to be zero
occurred at an average virtual temperature of 50 ◦C, corresponding to a minimum heating utility heat
load of 234.02 kW and a minimum cooling utility heat load of 234.02 kW, respectively.

3.3. Total Load Curve of Heat Exchange Network

A cascade diagram for heat flux was constructed using data from Table 2, with the numbers
in each rectangle representing the amount of external heat supplied (see Figure 5). The average
temperatures of hot and cold fluids around the border of the cascade diagram for all fluxes were
marked as points on the total composite curve (average temperature for the vertical axis; heat flux
for horizontal axis) (see Figure 5). Subsequently, adjacent points were connected by a series of lines,
resulting in the construction of a total load curve that was used to optimize the performance of the
heat exchange network (see Figure 6) [19].

Total load curves were used to describe the relationship between the systematic heat flux and
average temperature using a T-Q chart. The region above the pinch point can be used to represent
the relationship between external heating energy and the average temperature, whilst the region
below the pinch point represents the relationship between external cooling energy and the average
temperature [20]. The pinch point of 50 ◦C is the temperature where the balance of heating/cooling
energy required to maintain an optimal process is zero, with the total load curve providing a tool to
guide optimization of the heat exchange network [21].
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3.4. Diagnosis and Analysis of Heat Exchange Network

3.4.1. Energy Saving Potential of the Heat Exchange Network

The original heat transfer network had a minimum temperature difference of 10 ◦C, an actual
heating utility value of 587.86 kW, and a minimum heating utility value of 234.02 kW. This corresponds
to a maximum energy saving potential for the heat exchange network of 353.84 kW, representing an
overall energy saving potential of 60.19%.
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3.4.2. Irrationality of the Heat Exchange Network

Pinch points were used to construct lattice diagrams for the design and diagnosis of the biogas
heat exchange network [22], with a 60.19% value indicating that its initial performance was very
irrational. Therefore, it was necessary to optimize the performance of the heat exchange network
further (See Figure 7), with analyses carried out to evaluate whether: (a) a heat exchanger was passing
through the pinch point; (b) there was a cooler exchanger above the pinch point; or (c) there was a heat
exchanger below the pinch point [23,24].Two irrationalities in the vehicle bio-methane plant system
were identified, the nature of which are described below:

(1) A cooler exchanger existed above the pinch point, with a H2 lean liquid source at 115–64–35 ◦C
and a lean liquid source at 50–64 ◦C, both being above the pinch point. This irrationality could be
corrected using cold logistics to decrease and maintain the temperature of the fermentation broth
at 50 ◦C.

(2) A heater exchanger existed below the pinch point, which occurred when the temperature of
the fermentation reaction (C3) lay in the 30–50 ◦C region, which resulted in an increase in
the amount of heat being transferred to the heating unit. This pinch point rule violation was
corrected by rapidly heating the fermentation liquid to the pinch point temperature (50 ◦C) using
a series of hot fluxes, with the required temperature then being maintained using a series of
heating/cooling units.
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3.5. Optimization of the Heat Exchange Network

The pinch design method was then used to optimize the number of heaters and coolers required
to obtain an optimal heat exchange system, using the network shown in Figure 8. The cold logistics
are presented at the top of the diagram (from right to left), whilst the heat logistics are located at the
bottom of the diagram (from left to right). Matched heat exchanges between the two logistics were
represented using connected virtual lines, with a comprehensive optimization process then used to
carry out the following changes to the heat exchange network:
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(1) The surface area of the first heat exchanger was increased to improve the rate of heat exchange
from the MEA lean liquid to the MEA rich liquid, with the MEA lean liquid being recovered at
50 ◦C with a heat transfer capacity of 64.54 kW.

(2) Two additional heat exchangers (2 and 3) were introduced to match the temperature of the boiler
exhaust and the tower top gas to the fermentation liquid. This enabled 27.6 kW of extra energy to
be potentially recovered from the boiler exhaust, whilst 23.94 kW could be recovered from the
tower top gas-stream.
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Therefore, the addition of two additional heat exchangers to the process would enable better
thermal energy recovery which would only require relatively minor changes to the infrastructure of
the thermal exchange network. These changes would enable a reduction in the amount of heat input
required in the fermentation process, corresponding to a decreased heat load of 116.08 kW and an
energy saving ratio of 19.75%. This is much less than the total energy saving that could potentially be
achieved by global pinch analysis of this process, mainly because the waste heat lost from the biogas
slurry and the compressor are still not being recovered.

4. Systematic Integration of a Hot Pumping Unit

Energy saving rates could be further improved by optimizing the current heat exchange network
using pinch analysis, however, pinch analysis could only be carried out at the same level between
cold and hot fluxes, with some low-grade waste heat remaining unrecovered. Heat pump integration
technology could potentially recover low-grade waste heat [25,26], with two types of absorption
heat pump technology commonly employed in vehicle bio-methane plants [27]. The first type of
absorption heat pump consumes small amounts of high-grade energy to recover waste heat produced
by high-grade or low-grade waste heat sources [28]. The second type of absorption heat pump is
used to increase temperature, with its coefficient of performance generally lying between 0.4 and 0.5,
and the temperature of the heat source not normally <75 ◦C [29].
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4.1. Hot Pump Integration

In pinch analysis, the heat pump is generally set across the pinch point, with external inputs
from hot fluxes below the pinch point being transferred to cold fluxes above the pinch point to reduce
external energy consumption [30]. Systematic pinch analysis revealed that the waste heat from the
biogas slurry and the cooling water of the compressor was not being utilized efficiently. This is because
the temperatures of the biogas slurry and cooling water were lower than the pinch point temperature
and so this waste heat component was not being recovered by heat exchange. However, this heat
source could potentially be recovered using a first type absorption heat pump to heat the fermentation
broth, using the potential process design plan shown in Figure 9.
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4.2. Calculation of the Effect of Heat Pump Integration on the Biogas Process

The ambient temperature of a fermentation broth with a biogas slurry flow rate of 2.78 kg/s was
found to be 25 ◦C, which was heated to a maximum temperature of 55 ◦C using a series of absorbers
and condensers using an overall heat input of 320.83 kW. Conversely, maintaining the temperature
of the biogas slurry at 55 ◦C at a flow rate of 2.64 kg/s, resulted in an overall residual heat output of
318.25 kW. The temperature of the cooling water from the compressor at a flow rate of 0.75 kg/s was
maintained at 40 ◦C, which generated a secondary heat output of 27.57 kW.

If the pump power is ignored, then COP = (Qa + Qc)/Qg, with the energy required to heat the
fermentation broth for the optimized process given by Qa + Qc = 269.29 kW. Therefore, increases in
the COP value can result from an increase the Qe value, or decreases in the Qg value and/or the final
temperature of the residual heat (tz). Therefore, the value of tz plays an important role in determining
the amount of waste heat recovered from the biogas slurry and compressor, whilst also affecting the
amount of input heat required as a heat source [31]. The final temperature of the biogas slurry and
compressor cooling water were found to be 25~30 ◦C, which meant that the COP value for the heat
pumps was around 1.541~1.557 [32]. For convenient analysis, the heat pump COP value was set at
1.55, which meant that the recoverable waste heat Qe = (COP − 1) × (318.25 + 27.56) = 95.55 kW,
corresponding to an energy saving rate for the heat pump of 16.25%.
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In summary, after optimizing the heat exchange network by pinch analysis, the energy saving
potential was found to be 116.0 kW, which represents an energy saving rate of 19.75%. After optimizing
a new heat pump integration system, the energy saving potential was 95.55 kW, corresponding to an
energy saving rate of 16.25%. Therefore, combining these two processes should provide a total energy
saving of 211.63 kW and a global energy saving rate of 36%.

5. Economic Analysis

5.1. Formula Used to Determine Economic Performance of New Heat Exchange Network

The maximum energy saving benefit for the new heat exchange network were calculated using
Equation (3) [33,34]:

maxS = the benefit of steam and hot water saving (3)

The minimum cost increase for the new heat exchange network were calculated using Equation (4):

minC = initial investment of equipment + operating costs (4)

The minimum investment recovery period for the new heat exchange network were calculated
using Equation (5):

N = minC/maxS (5)

5.2. Target Analyses for the New Heat Exchange Process

(1) Energy savings benefit

Values for the annual energy saving of the new process were calculated using Equation (6) [35]:

maxS = 3600τCHQze/qH (6)

where, maxS represents the annual energy savings in USD ($); τ is the annual heat running time of new
equipment in hours; CH is the average annual gas price in $/m3; Qze is the energy saving potential in
MW; qH is the heat value of gas in MJ.

Pinch analysis calculations based on heat pump integration revealed a potential annual energy
saving for Qze of 211.63 kW, which would represent a yearly energy savings benefit of 103,300 USD.

(2) Cost analysis

Pinch analysis revealed that the new heat pump integration process would require three new heat
exchangers (namely, exchangers 1, 2, and 3) and a new absorption heat pump. The costs of this new
equipment were analyzed, including consideration of initial investment and operating costs that were
calculated using Equation (7) [36]:

C1 = p1[(1 + α)CA(A1 + A2 + A3) + CT·n] (7)

where, p1 is the cost of equipment and its installation (default value set at 1) [18]; α is the ratio between
shell, installation and heat transfer costs; CA is the Unit area heat exchanger price (in $/m3); A1 is the
increased area of heat exchanger 1 (in m3); A2 is the area of heat exchanger 2 (in m3); A3 is the area of
heat exchanger 3 (in m3); CT is the cost of heat exchanger frame (in $/frame); n is the total number of
heat exchangers.

The operating cost C2 of the heat exchanger operation was calculated using Equation (8) [36]:

C2 = τp2CEPA(A1 + A2 + A3) (8)
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where: τ is the annual running time for the heat exchangers in h; p2 is a value given to the devaluation
of funds and the change in price of electricity (value taken as 9.52) [18]; CE is the cost of electricity in
$/kW·h; PA is the value for power consumption in kW.

Calculations using data from Table 3 reveal that increasing the area of the heat exchanger by
166.5 m3 would require an initial investment of 35,900 USD, whilst heat exchanger operating costs
would rise by 6600 USD.

Table 3. Basic parameters.

Name Symbol Unit Value

Annual running time T h 8760
Gas price CH $/m3 0.556

Energy saving potential Qe MW 0.21163
Gas calorific value qH MJ 35.9

Cost p1 — 1
Ratio A — 0.2

Heat exchange price per unit area CA $/m3 156.13
Price of heat exchanger frame CT $ 2342
Number of heat exchangers N set 2

Cost p2 — 3.7
Price of coal CE $/kW·h 0.062

Power consumption per unit area PA kW 0.76
Total power consumption of sewage pump PB kW 11

The cost of purchasing a 100 kW lithium bromide absorption heat pump of 374,700 USD was
estimated from quotes obtained from Guangzhou Hongrui Equipment Co., Ltd., Guangzhou, China.
Since the power consumed by solution pumps are small, their operating costs can effectively be ignored.
The power of a sewage pump is 11 kW, with an annual running time of 8760 h at an average electricity
price of 0.062 $/kW·h giving annual electricity costs of around 6000 USD.

(3) Minimum period for recovery of investment

The annual energy saving benefit for the minimum investment recovery period maxS was
calculated to be 103,300 USD per year. Cost analysis revealed that minC = 35,900 + 6600 + 374,700 +
6000 = 423,200 USD. Therefore, the minimum investment period required to recover capital outlay for
this new network process could be calculated as N = 423,200 ÷ 103,300 = 4.1 years (see Table 4).

Table 4. Results of economic analysis.

Name Maximum Benefit USD Minimum Cost USD Minimum Investment
Recovery Period/Years

Data 103,300 423,200 4.1

6. Conclusions

This research shows that it is possible to effectively recycle the systemic waste heat using the
technologies of pinch analysis and heat pump integration. Pinch analysis was used to diagnose
and optimize the heat exchange network, which would enable heating input levels to be reduced by
116.08 kW, corresponding to an energy saving rate of 19.75%. It was also predicted that the introduction
of heat pump integration technology would allow a further 95.55 kW of waste heat to be recovered
from biogas slurry and compressor cooling water, thus corresponding to a further energy saving rate
of 16.25%. Therefore, these would result in a total system energy saving of 211.63 kW, representing a
total energy saving rate of 36%.
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Economic analysis revealed a minimum cost for this modification of 423,200 USD through the
waste heat recovery, this modified plant would result in a potential saving on energy investment of
around 103,300 USD per year, which would take 4.1 years to reach payout time.

Whilst this research has revealed that pinch point analysis and heat pump integration technology
can potentially lead to significant saving in energy costs, we note that the amount of energy recovered is
still far less than could potentially be recovered by a fully optimized heat exchange network. Therefore,
the development of more efficient low grade waste heat recycling techniques and optimal waste heat
recycling processes will be the key to future energy saving strategies in the biogas industry.
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