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Abstract: Short-term load forecasting is the basis of power system operation and analysis. In recent
years, the use of a deep belief network (DBN) for short-term load forecasting has become increasingly
popular. In this study, a novel deep-learning framework based on a restricted Boltzmann machine
(RBM) and an Elman neural network is presented. This novel framework is used for short-term load
forecasting based on the historical power load data of a town in the UK. The obtained results are
compared with an individual use of a DBN and Elman neural network. The experimental results
demonstrate that our proposed model can significantly ameliorate the prediction accuracy.

Keywords: short-term load forecasting; a novel deep learning framework; deep belief network;
restricted Boltzmann machine; Elman neural network

1. Introduction

In modern society, electrical energy has become the basic resource of national economic and social
development, which is widely applied in various fields, such as power, lighting, chemistry, textile,
communication, and broadcasting. With growing living standards and the fast development of electric
power industry, better quality power supply has been requested. This means that power users need
more economical and reliable electrical energy. The forms of electricity generation and consumption
are changing all the time. Due to the non-storable character of electric energy, it is expected that the
electricity supply and demand can be balanced as much as possible. Electricity generation needs
to change along with electricity consumption; otherwise, the stability of the power system could be
endangered [1]. In order to keep the balance of the electrical power network, a precise load prediction is
essential. Load prediction can be categorized into four classes: ultra-short-term forecasting, short-term
forecasting, medium-term forecasting, and long-term forecasting, based on the forecasting duration.

Short-term load forecasting is the basis of power system operation and analysis, referring to
the power load prediction for the next few hours, one day, or several days. This load forecasting
is beneficial for optimizing operation time of generating units, i.e., the starting and stopping time,
and their output. A precise load forecast is helpful for minimizing the total consumption of the
generating units [2]. Therefore, improving the accuracy of short-term load forecasting is crucial in the
operation and management of the modern power system.

According to the forecasting models, approaches for load forecasting can be loosely categorized
into statistical models and artificial intelligence models. Statistical models include regression
analysis [3], Box–Jenkins models [4], Kalman filtering [5], autoregressive integrated moving average
(ARIMA) [6], exponential smoothing [7], state space model [8], and so on. Artificial intelligence models
include artificial neural networks (ANNs) [9], support vector machines (SVM) [10], data mining
approaches [11,12], etc. Compared with statistical models, artificial intelligence models are usually
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more suitable for complex problems. Furthermore, hybridmodels [13], which integrate different
models, have been studied to ameliorate the prediction effect. This method is designed to preserve the
advantages of each individual model, and is shown to have good performance. The features of several
common models are introduced in Table 1.

Table 1. The features of several common models.

Model Advantage Disadvantage

Regression Analysis

When analyzing multi-factor models,
regression analysis is simpler and more
convenient. It can accurately measure the
correlation degree between various factors
and the degree of regression fitting.

The model is more mechanical and
less flexible, and requires
higher-quality information.

ARIMA

The model is simple and easy to master.
Meanwhile, it has the ability to dynamically
determine the parameters of the model and
has a fast computation speed.

It can neither reflect the internal
relations of things nor analyze the
relationship between two factors.
Furthermore, it is only suitable for
short-term prediction.

ANN

The model has a rapid calculating speed
and good non-linear fitting capability. More
importantly, it does not need to set up a
mathematical model.

Firstly, it cannot express and analyze
the relationship between the input
and output of the predicted system.
Secondly, it has both slow
convergence in a learning course and
poor fault tolerance ability. Lastly, it is
easy to fall into the local minimum.

SVM

The model is simpler in structure with a few
parameters. Fewer samples are needed to
build the model. More importantly, it has
good generalizability.

It is hard to implement for large-scale
training samples. It is also difficult to
solve multiple classification problems.

Hybrid Model

The model not only preserves the
advantages of each individual model, but
can also use prediction sample information
to a great extent. It is more systematic and
more comprehensive than a single
prediction model.

The model needs a variety of
prediction methods, which makes it
complicated and cumbersome. When
analyzing the problems in reality, it is
difficult to determine that they have
some functional relationship.

Among different kinds of prediction models, a deep belief network (DBN) [14] has shown
promising performance. The deep belief network has a deep architecture that can represent multiple
features of input patterns hierarchically with the pre-trained restricted Boltzmann machine (RBM).
It has been widely used in many fields, such as image processing [15], dimensionality reduction [16],
and classification tasks [17]. Previous research has shown that a DBN performs significantly better
than shallow neural networks [18]. Compared with the shallow model, DBN can reveal the implicit
characteristics of data from the bottom to the top.

In the last decade, numerous studies have been conducted using deep belief networks to perform
time series data prediction [19]. For instance, Hu et al. [20] pre-trained a deep belief network using
different pre-training models and investigated the difference between a DBN and a Stacked Denoising
Autoencoder (SDA) when used as pre-training models. Qiu et al. [21] proposed an ensemble approach
based on a DBN and Empirical Mode Decomposition (EMD) algorithm to forecast load time series.
Adachi et al. [22] used samples from a D-Wave quantum annealing machine to estimate model
expectations of Restricted Boltzmann Machines. Keyvanrad et al. [23] developed a new model named
nsDBN that has different behaviors according to deviation of the activation of the hidden units from
a fixed value. Meanwhile, the model has a variance parameter that can control the force degree of
sparseness. Plahl et al. [24] explored a Sparse Encoding Symmetric Machine (SESM) to pre-train DBNs
and applied this method to speech recognition. Ranzato et al. [25] described a novel and efficient
algorithm to learn sparse representations, and compared it theoretically and experimentally with a
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Restricted Boltzmann Machine. Kamada et al. [26] proposed an adaptive structure learning method of
a Restricted Boltzmann Machine (RBM), which can generate/annihilate neurons by a self-organized
learning method according to input patterns. In addition, the adaptive DBN in the assembly process
of a pre-trained RBM layer was also proposed. Papa et al. [27] applied a fast meta-heuristic approach
called Harmony Search (HS) to fine-tune the parameters of a DBN. Kuremoto et al. [28] optimized the
number of input (visible) and hidden neurons by means of the Particle Swarm Optimization (PSO)
method, as well as the RBM learning rate. Torres et al. [29] developed a new approach which used an
Apache Spark framework to load data in memory and deep learning methods as regressors to forecast
electricity consumption. Quyang et al. [30] proposed a data-driven deep learning framework for
power load forecasting. First, a Gumbel-Hougaard Copula model is used to model the tail-dependence
between power load, electricity price, and temperature. Then, the tail-dependence is applied to a deep
belief network for power load forecasting.

Although the DBN has been widely studied, as displayed by the aforementioned studies, to the
best of our knowledge, focus is mainly on the training process of DBNs, more specifically, the training
of RBMs. Research on the network structure of a DBN is rarely reported in the literature. After the
pre-training stage of a DBN, the obtained parameters can be expanded for a multi-hidden layer neural
network (MLNN). Generally, neural network models have two common types: Back Propagation (BP)
neural networks and Elman neural networks. Compared with BP neural networks, Elman neural
networks as a recurrent neural network have been proved to have better performance in time-series
forecasting. In the last few decades, the Elman neural network model has been studied extensively
for short-term electrical load forecasting [31]. For instance, the combination of an Elman network and
wavelet is proposed to forecast a one-day-ahead electrical power load by considering the impact of
temperature in Reference [32]. Similarly, in Reference [33], the authors investigated the short-term
load forecasting problem via a hybrid quantized Elman neural network with the least number of
quantized inputs, hourly historical load, hourly predicted target temperature, and time index. Despite
the considerable research on Elman neural networks, these studies focus on shallow neural networks.
Research on the combination of DBN and Elman neural networks for short-term load forecasting is
rarely investigated. To fill in this research gap, this study proposed a new deep learning framework
for short-term load prediction based on RBM and Elman neural networks.

The rest of the paper is organized as follows. Preliminary knowledge, including introductions to
deep belief networks and Elman neural networks, is described in Section 2. Section 3 introduces the
proposed Elman integrated deep learning framework. Experimental results are presented in Section 4,
and Section 5 concludes this paper and identifies future studies.

2. Methodology

2.1. Deep Belief Network

The DBN is a deep neural network that consists of several layers of restricted Boltzmann machines
(RBMs) and a layer of neural network (NN) [34]. The network structure of a typical DBN is shown in
Figure 1.Traditional NN models adopt a gradient descent algorithm as the main training method, which
is easily trapped in a local minimum value. When the NN structure becomes deep, this drawback
becomes apparent because numerous network parameters need to be optimized. Initializing the
network parameters to the greatest extent possible is a more sensible method to mitigate the local
optimum dilemma. Consequently, in the search spaces, if the network parameters are initialized
close to the optimal values, the opportunity to find out the global optimum will also greatly increase.
With regard to DBNs, the training process consists of two components: a layer-wise pre-training
process and a fine-tuning process. The former is applied to provide better initial values of the network
parameters, and the latter is applied to search the optimal parameters based on the initial states of
the network.
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Figure 1. Illustration of a typical DBN structure.

2.1.1. Pre-Training Process

The parameters of each hidden layer in a DBN can be initialized by the pre-training process,
resulting in a better local optimum, or even the global optimal region. This process is obtained through
an unsupervised greedy optimization algorithm by using the restricted Boltzmann machine (RBM).

A restricted Boltzmann machine (RBM) can learn a distribution from its input sample, which is a
stochastic two-neural network [35]. The network generally consists of two different layers of nodes:
visible nodes and hidden nodes. There are connections between nodes in different layers, while there
are no connections between nodes in the same layer. Connections between nodes are symmetric and
bidirectional. RBMs have been applied to generate models of various data types. A single RBM is
shown in Figure 2.
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Figure 2. Illustration of a typical RBM structure.

The RBM is an energy model. The energy function of visible layer and hidden layer is depicted as:

E(v, h) = −∑
ij

wijvihj −∑
i

aivi −∑
j

bjhj (1)

where vi and hj are the states of visible node i and hidden node j, respectively; ai and bj represent
the bias between the visible layer and hidden layer; and wij is the connecting weight between them.
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A lower energy indicates that the network is in a more desirable state. This energy function is used to
calculate the probability that is assigned to every possible pair of visible and hidden vectors:

p(v, h) =
1
Z

e−E(v,h) (2)

where Z is the sum of e−E(v,h) over all possible configurations, and is used for normalization:

Z = ∑
v,h

e−E(v,h) (3)

For binary state nodes vi and hj ∈ {0, 1}, the state of hidden node hj is set to 1 with probabilities:

phj
= p

(
hj = 1|v

)
= σ

(
ai + ∑

i
wijvi

)
(4)

where σ(x) represents the logistic sigmoid function 1/(1 + exp(−x)). The state of visible node vi is
set to 1 with probability:

pvi = p(vi = 1|h) = σ

(
bj + ∑

j
wijhj

)
(5)

The training process of the RBM is described as follows. Firstly, a training sample is assigned to
the visible nodes, and the {vi} is obtained. Then, the hidden nodes state

{
hj
}

is sampled according to
probabilities. This process is repeated once more to update the visible and hidden nodes to produce
the one-step “reconstructed” states vi

′ and hj
′. The related parameters are updated as follows:

∆wij = η
(〈

vihj
〉
−
〈
v′ ih′ j

〉)
(6)

∆aj = η
(〈

hj
〉
−
〈

h′ j
〉)

(7)

∆bi = η
(
〈vi〉 −

〈
v′ i
〉)

(8)

where η represents the learning rate, and 〈·〉 refers to the expectation of the training data.
The above-mentioned expressions can be derived from the Contrastive Divergence (CD)algorithm.

2.1.2. Fine-Tuning

After pre-training, each layer of DBN is configured with initial parameters. Then the DBN starts
fine-tuning the whole structure. Based on the loss function of the forecast data and the actual data,
a gradient descent algorithm can be adopted to make a slight adjustment to the network parameters
throughout the whole network, achieving the optimal states of the parameters. In this paper, the loss
function is depicted as follows:

L
(
y, y′

)
= ‖y− y′‖2

2 (9)

Where y′ denotes the forecast data and y denotes the actual data.
More generally, the DBN is a special BP neural network where the parameters of hidden layers

are initialized by an RBM, instead of being randomly assigned.

2.2. Elman Neural Network

An Elman neural network is based on the BP neural network that adopts a connection layer
to feedback the outputs from the hidden layer. It is a typical local recurrent neural network.
The connection layer applies to memory the output value of the last step, which is then used as
the input of the hidden layer. This can be considered as a step delay, which makes the Elman neural
network sensitive to historical data, and thus, enables the network to have a dynamic memory
function [36].
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The basic Elman network is composed of an input layer, a connection layer, a hidden layer, and an
output layer, as shown in Figure 3. The activation function of the hidden layer is nonlinear, e.g.,
the sigmoid function or the tan-sigmoid function. The activation function of the connection layer and
the output layer is linear.
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In light of the Elman structure, the nonlinear relation of this model can be represented by the
following mathematical equations:

x(k) = φ[W1 I(k− 1) + W2xc(k) + b1] (10)

xc(k) = x(k− 1) (11)

z(k) = f (W3x(k) + b2) (12)

where x and I are the output of the hidden layer and the input layer, respectively; xc and z represent
the output of the context layer and the output layer; φ(·) is the activation function, which is usually
a nonlinear sigmoid function; and f (·) is a pure linear activation function. W1, W2 and W3 are the
connecting weights of the input layer to hidden layer, the connection layer to hidden layer, and the
hidden layer to output layer, respectively; k is the kth iteration.

3. RBM-Elman Network

Compared with a BP neural network, which is a static mapping network, the Elman neural
network appends an important feedback mechanism that behaves like a dynamic system. Therefore,
it is more suitable for use as a time-series model. In this study, we propose a new deep learning
framework based on RBM and Elman neural networks for short-term load prediction. The new deep
learning framework is denoted as an RBM-Elman network.

3.1. RBM-Elman Optimization

Elman neural networks inherit some defects of BP neural networks. For example, a slow
convergence rate and being easily trapped in local optima. These deficiencies are partly due to
the randomly initialized parameters. Therefore, we proposed an RBM to initialize the weights and
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thresholds of Elman neural networks, by which we expected generalizability and the training speed of
Elman neural networks to improve. The basic steps of our proposed method are described as follows,
and Figure 4 shows the model implementation flowchart.
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3.2. RBM-Elman Algorithm

The main steps of an RBM-Elman algorithm are discussed in turn below:

1. determines the primary structure of an Elman neural network,
2. applies RBMs to initialize the parameter of the hidden layer of Elman neural network,
3. trains the Elman neural network using a gradient descent algorithm, and
4. forecasts load output based on the trained network.

The significance of the new model is the initialization of connection weights and threshold using
RBMs. This is expected to be helpful in improving the training speed and convergence, saving the
network running time.

4. Case Studies

In order to validate the forecast performance of our proposed model, we describe a realistic case
study of short-term load prediction in this section. First, the data set and model implementation are
illustrated. Then, experimental results are demonstrated.

4.1. Data Set

The historical power load data of a town in the UK is employed to investigate the forecast effect
of our proposed model. The chosen dataset is composed of 24 h of load data from 1 January 2014
to 31 December 2014. The whole dataset is further divided into two subsets: the training set and the
testing set. In this study, about 80% of the whole dataset, i.e., the first 292 days, is chosen as the training
set. The rest of data is applied to test the forecasting performance of the proposed model. Figure 5
shows an example of load data for June 2014.
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4.2. Model Implementation

4.2.1. Parameter Settings

As indicated above, the input data of the forecast model is the historical power load data.
To construct the RBM-Elman model, the raw time-series data was transformed into a more suitable
form. In this paper, we employed the state space reconstruction technique with the delay embedding
theorem [37] to manipulate the raw data. The discrete time dynamic system was described as:

X(t + 1) = F(X(t)) (13)

where F represents a nonlinear vector valued function and X(t) represent the system state at time step
t. By the delay embedding theorem, it was supposed that the information of higher dimensional data
could be compressed into the one-dimensional chaotic data. Therefore, the time series data X(t) was
reconstructed as follows:

X(t) = [X(t), X(t− τ), · · · , X(t− (m− 1)τ)] (14)

where m represents the embedding dimension and τ represents time delay. Therefore, reconstructing
time series turns into finding the optimal values of parameters m and τ. For a given dataset, the false
nearest neighbor method and mutual information function were applied to determine these two
parameters [38]. In this study, m was determined to be 10 and τ was determined to be 6, which
were obtained using the utility functions false nearest and mutual in TISEAN toolbox [39]. Then,
the reconstructed time series was generated, which is used to train the RBM-Elman neural network.
Because of the number of nodes in input layer for the RBM-Elman model was determined by the
dimension of reconstructed delay vectors, which is 10, the number of input nodes was also 10.
In addition, the raw data was normalized into [0, 1] to accelerate the model training process.

Next, the trial and error method was employed to investigate the number of nodes in the hidden
layer. The trial and error results of Elman model are illustrated in Figure 6. From the Figure, we can
observe that the mean absolute percentage error (MAPE) index of the model achieved optimal
performance when the number was 24. Hence, the structure of optimal policy for Elman neural
network is 10-24-1, and the number of context layer nodes was also 24.
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In the end, for this neural network, the activation functions in the hidden layer and the output
layer were the common tan-sigmoid and pure linear function, respectively. The diagram of the model
is illustrated in Figure 7.
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4.2.2. Model Evaluation

To examine the performance of our proposed model, two metrics were calculated to evaluate
the error of output power prediction, including MAPE and mean squared error (MSE), which are
frequently used in the literature. The MAPE and MSE are defined as:

MSE =
1
N

N

∑
i=1

(
Y(t)−Y′(t)

)2 (15)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Y(t)−Y′(t)
Y(t)

∣∣∣∣ (16)

where N denotes the number of forecast sample, Y(t) represents the actual value at time instance t,
and Y′(t) is the predicted value.

4.3. Experimental Results

The proposed RBM-Elman model was employed for use in a short-term load prediction.
For comparison purposes, a DBN model was designed to perform the short-term load prediction with
the same dataset. A typical three-layer Elman neural network was also employed to demonstrate
the validity of our proposed model. The results obtained by each prediction method are illustrated
in Table 2. Furthermore, the forecasting results by RBM-Elman model for test data are illustrated in
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Figure 8. For a better visualization, the results of seven consecutive days are also illustrated in Figure 9.
The forecasting results of seven consecutive days by the DBN model and Elman model are illustrated
in Figures 10 and 11, respectively.

Table 2. Forecast results by different models.

Model MSE MAPE TIME

RBM-Elman 7.86 × 10−4 0.0346 12 s
DBN 9.18 × 10−4 0.0381 7 s

Elman 9.35 × 10−4 0.0383 30 s
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Figure 11. The forecast results of seven consecutive days using Elman model.

The tabular overviews of the results are presented in Table 2. Amongst them, the MAPE of
the RBM-Elman network was the minimum, which was 0.0346. The MAPE of the DBN was 0.0381.
From Table 2, we can see that the forecast performance of our proposed RBM-Elman prediction model
was better than other models. Meanwhile, it had a shorter computing time. From the above Figures,
it is also evident that our proposed method provided a better match of actual load and forecasted load.

In order to further demonstrate the forecast performance of our proposed method, we decomposed
the dataset based on different seasons. Each season’s dataset is split into the usual 80–20% training-test
sets structure. Then our proposed method is applied to examine them. The forecast results of different
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seasons by RBM-Elman model are given in Table 3. From the results, we can see that the RBM-Elman
model achieved good forecasting precision for four seasons. In addition, the forecast results of spring
and autumn are better than those of summer and winter. This may be due to the change of temperature
in summer and winter seasons.

Table 3. Forecast results of different seasons by RBM-Elman model.

Season MSE MAPE

Spring 8.16 × 10−4 0.0361
Summer 9.57 × 10−4 0.0379
Autumn 8.42 × 10−4 0.0366
Winter 9.27 × 10−4 0.0371

5. Conclusions

In the competitive electricity market, an accurate electricity load forecast is necessary. In this
study, a deep learning framework based on RBM and Elman neural networks was presented. To verify
the effectiveness of our proposed model, the proposed model was compared with an individual use of
the DBN and Elman neural networks. The results of these experiments demonstrate that our proposed
model achieved the best forecasting precision and had a shorter computing time.

In future studies, we would first like to examine our method on more complex datasets. Second,
the hyper-parameters of neural networks were fine-tuned by the back-propagation method, which
makes it easy to fall into local optima. Thus, we would like to apply advanced evolutionary
algorithms [40–43] to lightly adjust those hyper-parameters to improve the performance of neural
networks even further. Lastly, other improvements of the deep believe network for load predication
will also be considered.
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SVM Support Vector Machines
TISEAN Time Series Analysis



Energies 2018, 11, 1554 13 of 15

References

1. Jiang, P.; Liu, F.; Song, Y. A hybrid forecasting model based on date-framework strategy and improved
feature selection technology for short-term load forecasting. Energy 2017, 119, 694–709. [CrossRef]

2. Chen, Y.; Luh, P.B.; Rourke, S.J. Short-term load forecasting: Similar day-based wavelet neural networks.
In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Chongqing, China,
25–27 June 2008; pp. 3353–3358.

3. Chen, C.; Zhou, J.N. Application of Regression Analysis in Power System Load Forecasting. Adv. Mater. Res.
2014, 960–961, 1516–1522. [CrossRef]

4. Vähäkyla, P.; Hakonen, E.; Léman, P. Short-term forecasting of grid load using Box-Jenkins techniques. Int. J.
Electr. Power Energy Syst. 1980, 2, 29–34. [CrossRef]

5. Shankar, R.; Chatterjee, K.; Chatterjee, T.K. A Very Short-Term Load forecasting using Kalman filter for Load
Frequency Control with Economic Load Dispatch. J. Eng. Sci. Technol. Rev. 2012, 5, 97–103.

6. Wei, L.; Zhen-gang, Z. Based on time sequence of ARIMA model in the application of short-term electricity
load forecasting. In Proceedings of the International Conference on Research Challenges in Computer
Science, Shanghai, China, 8–29 December 2009; pp. 11–14.

7. Li, X.; Chen, H.; Gao, S. Electric power system load forecast model based on State Space time-varying
parameter theory. In Proceedings of the International Conference on Power System Technology, Hangzhou,
China, 24–28 October 2010; pp. 1–4.

8. Christiaanse, W.R. Short-term load forecasting using general exponential smoothing. IEEE Trans. Power
Appar. Syst. 2007, 900–911. [CrossRef]

9. Lee, K.Y.; Cha, Y.T.; Park, J.H. Short-term load forecasting using artificial neural networks. IEEE Trans.
Power Syst. 2014, 7, 124–132. [CrossRef]

10. Li, G.; Cheng, C.T.; Lin, J.Y. Short-Term Load Forecasting Using Support Vector Machine with SCE-UA
Algorithm. In Proceedings of the International Conference on Natural Computation, Haikou, China,
4–27 August 2007; pp. 290–294.

11. Martínez-Álvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J.C. A Survey on Data Mining Techniques
Applied to Electricity-Related Time Series Forecasting. Energies 2015, 8, 13162–13193. [CrossRef]

12. Duque-Pintor, F.; Fernández-Gómez, M.; Troncoso, A. A New Methodology Based on Imbalanced
Classification for Predicting Outliers in Electricity Demand Time Series. Energies 2016, 9, 752. [CrossRef]

13. Kavousi-Fard, A.; Kavousi-Fard, F. A new hybrid correction method for short-term load forecasting based
on ARIMA, SVR and CSA. J. Exp. Theor. Artif. Intell. 2013, 25, 559–574. [CrossRef]

14. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006,
18, 1527–1554. [CrossRef] [PubMed]

15. Cheng, M. The cross-field DBN for image recognition. In Proceedings of the IEEE International Conference
on Progress in Informatics and Computing, Nanjing, China, 8–20 December 2015; pp. 83–86.

16. Arsa, D.M.S.; Jati, G.; Mantau, A.J. Dimensionality reduction using deep belief network in big data case
study: Hyper spectral image classification. In Proceedings of the International Workshop on Big Data and
Information Security, Jakarta, Indonesia, 18–19 October 2016; pp. 71–76.

17. Sun, S.; Liu, F.; Liu, J. Web Classification Using Deep Belief Networks. In Proceedings of the 2014
IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China,
19–21 December 2014; pp. 768–773.

18. Chao, J.; Shen, F.; Zhao, J. Forecasting exchange rate with deep belief networks. In Proceedings of
the International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011;
pp. 1259–1266.

19. Kuremoto, T.; Kimura, S.; Kobayashi, K. Time series forecasting using a deep belief network with restricted
Boltzmann machines. Neurocomputing 2014, 137, 47–56. [CrossRef]

20. Hu, Z.; Xue, Z.Y.; Cui, T. Multi-pretraining Deep Neural Network by DBN and SDA. In Proceedings
of the International Conference on Computer Engineering and Information Systems, Kunming, China,
21–23 September 2013.

21. Qiu, X.; Ren, Y.; Suganthan, P.N. Empirical Mode Decomposition based ensemble deep learning for load
demand time series forecasting. Appl. Soft Comput. 2017, 54, 246–255. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2016.11.034
http://dx.doi.org/10.4028/www.scientific.net/AMR.960-961.1516
http://dx.doi.org/10.1016/0142-0615(80)90004-6
http://dx.doi.org/10.1109/TPAS.1971.293123
http://dx.doi.org/10.1109/59.141695
http://dx.doi.org/10.3390/en81112361
http://dx.doi.org/10.3390/en9090752
http://dx.doi.org/10.1080/0952813X.2013.782351
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1016/j.asoc.2017.01.015


Energies 2018, 11, 1554 14 of 15

22. Adachi, S.H.; Henderson, M.P. Application of Quantum Annealing to Training of Deep Neural Networks.
arXiv 2015, arXiv:1510.06356.

23. Keyvanrad, M.A.; Homayounpour, M.M. Normal sparse Deep Belief Network. In Proceedings of the
International Joint Conference on Neural Networks, Killarney, Ireland, 12–17 July 2015; pp. 1–7.

24. Plahl, C.; Sainath, T.N.; Ramabhadran, B. Improved pre-training of Deep Belief Networks using Sparse
Encoding Symmetric Machines. In Proceedings of the International Conference on Acoustics, Speech and
Signal Processing, Kyoto, Japan, 25–30 March 2012; pp. 4165–4168.

25. Ranzato, M.A.; Boureau, Y.L.; Lecun, Y. Sparse feature learning for deep belief networks. In Proceedings of
the International Conference on Neural Information Processing Systems, British, DC, Canada, 7–10 December
2009; Curran Associates Inc.: Red Hook, NY, USA, 2007; pp. 1185–1192.

26. Kamada, S.; Ichimura, T. Fine tuning method by using knowledge acquisition from Deep Belief Network.
In Proceedings of the International Workshop on Computational Intelligence and Applications, Hiroshima,
Japan, 5 January 2017; pp. 119–124.

27. Papa, J.P.; Scheirer, W.; Cox, D.D. Fine-tuning Deep Belief Networks using Harmony Search.
Appl. Soft Comput. 2015, 46, 875–885. [CrossRef]

28. Kuremoto, T.; Kimura, S.; Kobayashi, K. Time Series Forecasting Using Restricted Boltzmann Machine.
In Emerging Intelligent Computing Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 17–22.

29. Torres, J.; Fernández, A.; Troncoso, A.; Martínez-Álvarez, F. Deep learning-based approach for time series
forecasting with application to electricity load. In Proceedings of the International Work-Conference on the
Interplay between Natural and Artificial Computation, Corunna, Spain, 19–23 June 2017; Springer: Cham,
Switzerland, 2017; pp. 203–212.

30. Ouyang, T.; He, Y.; Li, H.; Sun, Z.; Baek, S. A Deep Learning Framework for Short-term Power Load
Forecasting. arXiv, 2017.

31. Liang, Y. Application of Elman Neural Network in Short-Term Load Forecasting. In Proceedings of
the International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China,
23–24 October 2010; pp. 141–144.

32. Kelo, S.; Dudul, S. A wavelet Elman neural network for short-term electrical load prediction under the
influence of temperature. Int. J. Electr. Power Energy Syst. 2012, 43, 1063–1071. [CrossRef]

33. Li, P.; Li, Y.; Xiong, Q. Application of a hybrid quantized Elman neural network in short-term load forecasting.
Int. J. Electr. Power Energy Syst. 2014, 55, 749–759. [CrossRef]

34. Zhang, X.; Wang, R.; Zhang, T. Short-term load forecasting based on an improved deep belief network.
In Proceedings of the International Conference on Smart Grid and Clean Energy Technologies, Chengdu,
China, 19–22 October 2016; pp. 339–342.

35. Zhang, X.; Wang, R.; Zhang, T. Effect of Transfer Functions in Deep Belief Network for Short-Term Load
Forecasting. In International Conference on Bio-Inspired Computing: Theories and Applications; Springer:
Singapore, 2017; pp. 511–522.

36. Zhang, X.; Wang, R.; Zhang, T. Short-Term Forecasting of Wind Power Generation Based on the Similar
Day and Elman Neural Network. In Proceedings of the 2015 IEEE Symposium Series on Computational
Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 647–650.

37. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980;
Springer: Berlin, Germany, 1981; pp. 366–381.

38. Hegger, R.; Kantz, H.; Schreiber, T. Practical implementation of nonlinear time series methods: The TISEAN
package. Chaos 1999, 9, 413–435. [CrossRef] [PubMed]

39. Nonlinear Time Series Analysis (TISEAN). Available online: https://www.mpipks-dresden.mpg.de/tisean/
(accessed on 5 June 2018).

40. Wang, R.; Purshouse, R.C.; Fleming, P.J. Preference-inspired Co-evolutionary Algorithms for Many-objective
Optimization. IEEE Trans. Evolut. Comput. 2013, 17, 474–494. [CrossRef]

41. Wang, R.; Ishibuchi, H.; Zhou, Z.; Liao, T.; Zhang, T. Localized weighted sum method for many-objective
optimization. IEEE Trans. Evolut. Comput. 2018, 22, 3–18. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2015.08.043
http://dx.doi.org/10.1016/j.ijepes.2012.06.009
http://dx.doi.org/10.1016/j.ijepes.2013.10.020
http://dx.doi.org/10.1063/1.166424
http://www.ncbi.nlm.nih.gov/pubmed/12779839
https://www.mpipks-dresden.mpg.de/tisean/
http://dx.doi.org/10.1109/TEVC.2012.2204264
http://dx.doi.org/10.1109/TEVC.2016.2611642


Energies 2018, 11, 1554 15 of 15

42. Wang, R.; Zhang, Q.; Zhang, T. Decomposition based algorithms using Pareto adaptive scalarizing methods.
IEEE Trans. Evolut. Comput. 2016, 20, 821–837. [CrossRef]

43. Li, K.W.; Wang, R.; Zhang, T.; Ishibuchi, H. Evolutionary Many-objective Optimization: A Comparative
Study of the State-of-the-Art. IEEE Access. 2018, 6, 26194–26214. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TEVC.2016.2521175
http://dx.doi.org/10.1109/ACCESS.2018.2832181
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Deep Belief Network 
	Pre-Training Process 
	Fine-Tuning 

	Elman Neural Network 

	RBM-Elman Network 
	RBM-Elman Optimization 
	RBM-Elman Algorithm 

	Case Studies 
	Data Set 
	Model Implementation 
	Parameter Settings 
	Model Evaluation 

	Experimental Results 

	Conclusions 
	References

