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Abstract: The design and implementation of the battery energy storage system in DC micro-grid
systems is demonstrated in this paper. The battery energy storage system (BESS) is an important
part of a DC micro-grid because renewable energy generation sources are fluctuating. The BESS can
provide energy while the renewable energy is absent in the DC micro-grid. The circuit topology of
the proposed BESS will be introduced. The design of the voltage controller and the current controller
for the battery charger/discharger are also illustrated. Finally, experimental results are provided to
validate the performance of the BESS.
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1. Introduction

Reducing carbon emissions and mitigating the global warming are the main advantages of using
renewable energy [1–3]. However, renewable energy fluctuates with its environmental parameters.
Therefore, an AC microgrid [4–6] and a DC microgrid [7–9] are implemented to treat this issue.
Renewable energy in a microgrid can be solar or wind power. Extra electricity can be stored in an
energy storage system [10–13]. If the renewable energy sources are absent, the micro-grid will be
stabilized via the energy storage system. In this paper, the battery energy storage system (BESS) is
designed and implemented in a DC micro-grid.

Takagi-Sugeno Fuzzy [14], proposed by Takagi and Sugeno, is a control system based on
fuzzy-logic. In T-S Fuzzy systems, a nonlinear system can be resembled by linear sub-systems.
The controllers of the T-S Fuzzy system are designed on the concept of parallel-distributed
compensation (PDC) [15]. Lyapunov theorem [16] can be applied to prove the stability of a T-S
Fuzzy control system. The stability specifications are displayed in the form of linear matrix inequality
(LMI). The T-S Fuzzy control applied to the DC-DC converter can be classified as buck [17] and
boost [18] converters. Nevertheless, the non-ideal characteristics of the circuit elements are not treated
in the literature. The non-ideal circuit elements are treated in this research to increase control precision
and performance.

A battery energy storage system in DC micro-grid systems is designed and implemented. A BESS
consists of the battery and the charger/discharger. A buck converter, combined with a boost converter,
is implemented as the charger/discharger. If the battery needs to be charged, the buck converter is
operated as a charger. Furthermore, the boost converter is operated as a discharger to release electric
energy. In this paper, the BESS in the DC micro-grid system is first illustrated. Next, the circuit
topology, considering non-ideal circuit models, is demonstrated. After that, the state equations of the
BESS are obtained through the state-space average scheme. Then, the voltage and current controllers
of the BESS are designed via T-S Fuzzy controls. The system stability of the BESS is proved and
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verified. The control performances of the voltage controller and current controller are validated by
experimental results.

2. System Configuration

The system configuration of the DC micro-grid is shown in Figure 1. The developed battery energy
storage system consists of the battery and the bidirectional DC/DC converter. Figure 2 shows the circuit
configuration of the battery charger/discharger. The buck converter and boost converter is combined to
form the bidirectional converter. In charging mode, the buck converter is operated with (M1, D2), while
in discharging mode, the boost converter is operated with (M2, D1). The non-ideal circuit elements are
included in the circuit configuration. The non-ideal elements include the equivalent series resistance
(ESR) of the power switch (RM), the ESR of the inductor (RL), the ESR of the capacitor (RCB , RCDC ),
and the forward conduction voltage of the diode (VD). Inductance current iL, DC-link voltage VDC and
battery voltage VB are used to determine the duty ratio of the power switches. The feedback signals are
sampled by the analog-to-digital converter (ADC). The control of the bidirectional DC/DC converter
is digitally realized via the microcontroller Renesas RX62T.
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3. Operation Modes and State Equations

3.1. Charging Mode

At charging mode, the power switch M2 is kept off. The duty ratio of the power switch M1 is
controlled to regulate the inductance current. When M1 is turned on, the inductance will be magnetized
and the inductance current rises. When M1 is turned off, the diode D2 will be forced to turn on. Then
the inductance is de-magnetized and the inductance current will fall.

The state space average scheme can be used to find the state equations of charging mode:

[ .
iL.

VCB

]
=

 − 1
L

(
RL +

RRCB
R+RCB

)
− R

L(R+RCB )
R

CB(R+RCB )
− 1

CB(R+RCB )

[ iL
VCB

]
+

[
1
L (VDC + VD − iLRM)

0

]
D +

[
−VD

L
0

]
(1)

where R is the load resistance and D is the duty ratio of M1. The output is the inductance current:

y = iL =
[

1 0
] [ iL

VCB

]
(2)

3.2. Discharging Mode

At discharging mode, the power switch M1 is kept off. The duty ratio of the power switch M2 is
controlled to regulate the output voltage. When M2 is turned on, the inductance current rises. When
M2 is turned off, the diode D1 will be forced to turn on. Then, the inductance current falls.

The state space average scheme is also used to find the state equations of discharging mode:
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where D is the duty ratio of M1. The output is the DC-link voltage:

y = VDC =
[ RRCDC

R+RCDC

R
R+RCDC

] [ iL
VCDC

]
−

RRCDC

R + RCDC

iLD (4)

4. Design of Current Controller and Voltage Controller

In charging/discharging mode, the current/voltage tracking error will converge to zero by
defining a new state variable:

xerr(t) =
∫

(r− y(t))dt (5)

where r is desired value of inductance current for charger and output voltage for discharger.
By combining Equations (1), (2) and (5), the expanded state equations of the charger can be

obtained as:
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y =
[

1 0 0
]  iL

VCB

xerr

 (7)

Furthermore, by combining Equations (3)–(5), the expanded state equations of the discharger can
be obtained as:
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For convenience, Equations (6) and (8) are represented in general state-equation form:

.
x(t) = Ax(t) + Bu(t) + Ev(t) (10)

where v(t) are the disturbances of the system.
In the T-S fuzzy models, the nonlinear BESS are represented by linear sub-systems according to

the model rules:
Model rules i: If z1(t) is Mi1 and . . . and zp(t) is Mip, then

.
x(t) = Aix(t) + Biu(t) (11)

where u(t) are the control inputs, x(t) are the state variables, Ai, Bi are the state matrices of the
sub-systems, Mip is the fuzzy set. In charging mode, iL is chosen as zp(t). In discharging mode, iL,
VCDC are chosen as zp(t). The T-S fuzzy system of the BESS can be expressed after defuzzification:

.
x(t) =

r

∑
i=1

hi(z(t)){Aix(t) + Biu(t)} (12)

where:

hi(z(t)) =
∏r

j=1 Mij(zj(t))

∑r
i=1 ∏r

j=1 Mij(zj(t))
(13)

and Mij(zj(t)) is the grad of membership.
The PDC controllers of the BESS are expressed as:
Control rules i: If Z1(t) is Mi1 and . . . and zp(t) is Mip, then

u(t) = −
r

∑
i=1

hi(z(t))Fix(t) (14)

By substituting (14) into (12), the close-loop system are obtained:

.
x(t) =

r

∑
i=1

r

∑
j=1

hi(z(t))hj(z(t))
{

Ai − BiFj
}

x(t) (15)
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According to state Equation (10), the BESS T-S fuzzy system with disturbances is found:

.
x(t) = ∑r

i=1 hi(z(t)){Aix(t) + Biu(t) + Eiv(t)}
y(t) = ∑r

i=1 hi(z(t))Cix(t)
(16)

To suppress the disturbances, the H∞ performance index is defined:

sup
‖v(t)‖2 6=0

‖y(t)‖2
‖v(t)‖2

≤ γ, 0 ≤ γ ≤ 1 (17)

where γ is the disturbance suppression ability index.
To analyze the stability of the designed current and voltage controller, Lyapunov theorem [19] is

applied to find the following LMI condition: XAT
i −MT

j BT
i + AiX− Bi Mj Ei −XCT

i
ET

i −γ2 I 0
−CjX 0 −I

 < 0, i ≤ j (18)

where X is a positive definite matrix and X = P−1, Mj = FjX.

5. Results and Discussions

Table 1 lists the specifications of the BESS.
For buck mode, the H∞ performance index is selected as γ = 0.7. For boost mode, the H∞

performance index is selected as γ = 0.8. The controller gains Fi are obtained by using the LMI toolbox
in MATLAB.

Table 1. Specifications of the BESS.

Rated power 2 kW VD 1.5 V
Inductance 1.97 mH RM 0.079 Ù

Input voltage 380 V (DC) Input capacitance 560 µF
Output voltage 100 V (DC) Output capacitance 440 µF

5.1. Charging Mode

The load resistance is constant and the input voltage VDC is 380 V. The current commands are 5 A
and 20 A. The inductance current and battery voltage at current command 5 A, load = 20 Ù (500 W),
and current command 20 A, load = 5 Ù (2 kW) are shown in Figure 3a,b, respectively. It can be found
that the inductance current can accurately track the command.

Next, the load is constant (10 Ù) and the input voltage VDC is also 380 V. The current command is
variable 5 A→ 10 A→ 5 A. Figure 4 shows the inductance current and battery voltage with current
command variation. It is clear that the inductance current tracks the command accurately.
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5.2. Discharging Mode

The load resistance is constant and the input battery voltage VB is 100 V. Figure 5a,b shows the
inductance current and DC-link voltage at load = 250 Ù (577.6 W) and 135.7 Ù (1.06 kW), respectively.
It is obvious that the DC-link voltage can exactly track the command 380 V.

Next, the input voltage VB is 100 V, and the load is variable 250 Ù→ 135.7 Ù→ 250 Ù. Figure 6a,b
shows the inductance current and DC-link voltage under load variation 300 Ù→ 150 Ù and 150 Ù→
300 Ù. It can be seen that the DC-link voltage is well regulated under load variation.
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6. Conclusions

A battery energy storage system in DC micro-grid systems is designed and implemented. T-S
Fuzzy current control and voltage control of the BESS is introduced. The system stability with
disturbance suppression ability is analyzed and shown. The performance of the current controller and
voltage controller is verified via experimental results.
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