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Abstract: Recently, a traction blockade in the depots of numerous electric multiple units (EMUs) of
high-speed railways has occured and resulted in some accidents in train operation. The traction
blockade is caused by the low-frequency oscillation (LFO) of the vehicle–grid (EMUs–traction
network) system. To suppress the LFO, a scheme of EMUs line-side converter based on the H∞
control is proposed in this paper. First, the mathematical model of the four-quadrant converter in
EMUs is presented. Second, the state variables are determined and the weighting functions are
selected. Then, an H∞ controller based on the dq coordinate is designed. Moreover, compared with
the simulation results of traditional proportional integral (PI) control, auto-disturbance rejection
control (ADRC) and multivariable control (MC) based on Matlab/Simulink and the RT-LAB platform,
the simulation results of the proposed H∞ control confirm that the H∞ controller applied in EMUs
of China Railway High-Speed 3 has better dynamic and static performances. Finally, a whole cascade
system model of EMUs and a traction network is built, in which a reduced-order model of a traction
network is adopted. The experimental results of multi-EMUs accessed in the traction network indicate
that the H∞ controller has good suppression performance for the LFO of the vehicle–grid system.
In addition, through the analysis of sensitivity of the H∞ controller and the traditional PI controller,
it is indicated that the H∞ controller has better robustness.

Keywords: high-speed railway; EMUs–traction network; converter; low-frequency oscillation;
H∞ control

1. Introduction

With the rapid development of high-speed railways during recent years, plenty of electric multiple
units (EMUs) have been put into operation in passenger railways, interurban railways, and high-speed
railways in China. Because of the heavy operation of EMUs and electric locomotives, low-frequency
voltage oscillation (LFO) problems happened worldwide. During 2009–2014, LFOs happened in the
EMUs depots of Zhengzhou, Nanjing, Shenyang, and some other cities in China [1–4]. And the LFOs
cause some severe accidents, which affects EMUs safety and dispatch. The protection logic operation
of the line-side converter of EMUs would be triggered due to the larger voltage oscillation amplitude
of traction network, which results in traction blockades and makes the EMUs lose traction power [5].
Because of the severe threat to the safety of high-speed railway operation, these problems should be
urgently solved.

At present, there have been many research studies on LFOs. An LFO usually happens if more than
six EMUs are accessed in the auto-transform (AT) station network and at the same time the inverter
and motor are basically in an inoperative state. The diagram of a traction network and EMUs is shown
in Figure 1. In references [2–5], it was indicated that LFOs is closely related to the parameters of the
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line-side converter controllers, especially the parameters of the proportional integral (PI) controller.
The implementation of PI controller is simple, and it can make the EMUs–traction network cascade
system have the good stability. However, the dynamic performance of the system would become
worse when the system is disturbed. The dominant poles triggering LFO were derived based on
the dq decomposition method in single-phase system [6]. In [7], the influence of the semiconductor
switching on the stability limit of the traction power supply system was studied. In order to analyze
the low-frequency instability of locomotives in a railway traction network, the input admittance was
measured in [8]. In references [9,10], the derivation of a multivariable control (MC) concept was used
to achieve better dynamic performance. The MC is a nonlinear control method, which can transform
the nonlinear system into a linear system characterized by the selected state variables.
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Figure 1. Schematic of traction network and electric multiple units (EMUs). PWM: pulse-width 

modulation; DC: direct current. 
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Figure 1. Schematic of traction network and electric multiple units (EMUs). PWM: pulse-width
modulation; DC: direct current.

The LFO problem could be simplified as a dynamic stability problem of large-scale multi-converter
system. In the vehicle–grid cascade system, improving the control strategy of the line-side converter of
EMUs is usually proposed to ensure stability and suppress LFOs. At present, the traditional linear PI
controller is widely used in the line-side converter control of China Railway High-speed (CRH) EMUs.
However, it is difficult to adjust PI control parameters, and they are very sensitive to the disturbance
of the system. In addition, the line-side converter of EMUs is a typical nonlinear, multi-variable,
and strong coupling system, which is sensitive to variations in external disturbance and system
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parameters. Therefore, it is difficult to achieve the ideal control effect using traditional linear control.
In reference [5], auto-disturbance rejection control (ADRC) was adopted to suppress LFOs. The ADRC
controller is an improvement to the PI controller, and it eliminates the integration step and adds an
extended state observer to realize real-time estimation of the internal model perturbation and external
disturbances. But the parameter setting is complex and difficult. H∞ is a control method based on
precise mathematical models. During the design process, the uncertainties of system can be considered
and a strong anti-interference ability is ensured. When the parameters of the controlled object are
changed or the uncertainty disturbance is encountered, it still has a good control effect and strong
robustness, and it is not sensitive to the control parameters [11–13]. However, it is difficult to select the
appropriate weighting functions for the H∞ mixed sensitivity problem [14]. The H∞ mixed sensitivity
problem can be attributed to an optimization problem if the weighting functions are considered as
variables. However, this optimization has various constraints and it is very complicated. In general,
particle swarm optimization (PSO) is an efficient optimization algorithm. PSO will be used to optimize
the parameters of weighting functions in this paper.

This paper is organized as follows. Section 2 designs the H∞ controller of the line-side converter
of EMUs based on a dq coordinate. Section 3 completes the simulations and analysis for a dual line-side
converter. Section 4 establishes the reduced-order model of the traction network, and compares the
simulations of multi-EMUs accessed in the traction network based on a PI controller and the H∞
controller. Additionally, we indicate that the H∞ controller is not sensitive to high external noise, the
model parameters, or the control parameters by comparing the control parameters between the H∞
controller and the PI controller. The LFO suppression strategy based on the H∞ controller is verified.
Section 5 gives some conclusions. The whole idea in this paper is described in Figure 2.
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2. H∞ Controller Design of the Line-Side Converter of EMUs

2.1. Model Review of the Line-Side Converter of EMUs

CRH3 EMUs in China adopt dual interleaved pulse-width modulation (PWM) converters, whose
equivalent circuit is shown in Figure 3. When the LFO happens, a lot of EMUs are at a standstill
and only the auxiliary devices are powered by the DC-link of converters. Therefore, the inverter and
traction motor of the vehicle-grid system are simplified to resistance RL [15]. L and R are the traction
winding leakage inductance and resistance, respectively. The Cd is the DC-link capacitor. L2 and C2

are the series resonant circuit inductance and capacitance. T1, T2, T3, and T4 are the four IGBTs of the
two-level converter.
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In Figure 3, u, i and uab are the line voltage, the line current, and the input voltage of the converter,
respectively. udc and idc are the output voltage and current of the converter, respectively.

The line voltage u and the line current i are defined below.

u = Um sin ωt (1)

i = Im sin(ωt + ϕ) = Id sin ωt + Iq cos ωt (2)

where Um and Im represent the peak values of the line voltage and line current, respectively.
ω represents the angular frequency of the line voltage, and ϕ represents the power factor angle.
id, iq, ud, and uq represent the DC components of i and uab in the dq frame, respectively.

The voltage across inductor L yields

L
di
dt

= u− Ri− uab. (3)

The mathematic model of the line-side converter of EMUs in the dq reference frame in [16] is
depicted as follows. 

du2
dc

dt
= − 2u2

dc
RLCd

+
udid
Cd

+
uqiq

Cd

L
did
dt

= −Rid + ωLiq + ud

L
diq

dt
= −Riq −ωLid + uq

(4)
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2.2. H∞ Controller State Variable Problem

The core of designing H∞ controller is to find appropriate weighting matrices and an augmented
model. The augmented plant equations with the following state-space are introduced below [14].

.
x = Ax + B1ε + B2u
z = C1x + D11ε + D12u
y = C2x + D21ε + D22u

(5)

where x(t) represents the plant state vector, u(t) represents the control input, ε(t) represents the external
input, which includes plant disturbances and the measurement noise, z(t) represents the regulated
output, and y(t) represents the measured output. A, B1, B2, C1, C2, D11, D12, D21, and D22 represent
the constant matrices, and the state variable vector x(t) represents selected below.

 x1

x2

x3

 =


udc
e

s + Ka
e

s + Kb

 (6)

where e = u∗
dc
− udc, s represents a differential operator, and u

∗
dc represents the reference of the DC-link

voltage. Ka and Kb represent the underdetermined parameters, and ε(t) is selected as follows.

ε =

 u∗dc
i

nnoise

 (7)

where nnoise is the measured noise of the DC-link voltage. Additionally, the control input u(t) is
selected as

u = [i∗d] (8)

where i∗d is the reference of id.
Then, the parameters of matrices in the system state equation can be obtained as follows.

A =

 − 1
RLCd
−1
1

0
−Ka

0

0
0
−Kd

 B1 =

 0
1
0

− 1
Cd
0
0

0
−1
0

 B2 =


1

Cd
0
0



C1 =

 −Kb
0

Ke

Kc − KaKb
0
0

0
0

K f − KdKe

 C2 =
[
−1 0 0

]
D12 =

 0
Kg

0


(9)

where Kc, Kd, Ke, K f , and Kg are the parameters that need to be determined, and D11 = D21 =D22 = 0.

2.3. H∞ Controller Mixed Sensitivity Problem

Through the upper linear fractional transformation (LFT), the mixed sensitivity problem can be
transformed into the problem of the standard H∞ control [9]. The structures of the mixed-sensitivity
problem and the standard H∞ control are shown in Figure 4. P(s), G(s), and K(s) represent the
augmented plant, the plant, and the controller, respectively. r(t), m(t), d(t), e(t), u(t), and y(t) represent
the reference input signal, the measurement noise signal, the environmental disturbance signal, the
tracking error signal, the control input signal, and the system output signal, respectively. z1(t), z2(t),
and z3(t) represent the evaluation signals to the weight augmentation system. W1(s), W2(s), and W3(s)
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represent the performance weighting function, the output limiter weighting function for the controller,
and the robust weighting function, respectively.
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Given a scalar γ1 > 0, the H∞ suboptimal objective is to find a H∞ suboptimal controller that can
stabilize the closed loop system Hzω(s) from ω to z and satisfy (10) and (11) as

‖Hzω(s)‖∞ =

∣∣∣∣∣
∣∣∣∣∣

W3S
W2R
W1T

∣∣∣∣∣
∣∣∣∣∣ < γ1 (10)

where S(s) represents the sensitivity matrix function, R(s) represents the enter sensitivity function, and
T(s) represents the complementary sensitivity function. These functions can be described as follows.

S = (I + GK)−1

R = K(I + GK)−1 = KS
T = GK(I + GK)−1 = I− S

(11)

where I represents the unit matrix whose order is as same as that of matrix GK.

2.4. Design of Weighting Functions

For the engineering application, it is difficult to give a clear and general formula and choose
the H∞ weighting functions due to the existence of various practical problems. The choice of
weighting functions depends more on the designer’s experience [17,18]. To track the reference
signal and suppress the disturbance, W3(s) should have the low-pass characteristic with high
gain. Because of multiplicative uncertainties of high frequencies, W1(s) should have a high-pass
characteristic. A suitable W2(s) can provide the enough bandwidth and avoid an overlarge amount of
control energy going to the system. Furthermore, the choice of the weighting functions in this paper
needs to satisfy the following requirements [11,19].

(1) In order to satisfy the first theorem of robust control, W1(s) and W3(s) should meet the
following inequality constraint, which will avoid the formation of an overlapping frequency range
between W1(s) and W3(s):

σ
[
W1
−1(s)

]
+ σ

[
W3
−1(s)

]
≥ 1. (12)

(2) The maximum singular value of the sensitivity function S(s) should be less than the maximum
singular value of W−1

1 (s) in the whole frequency range.

σ[S(s)] < σ
[
W1
−1(s)

]
(13)
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(3) The maximum singular value of the complementary sensitivity function T(s) should be less
than the maximum singular value of W3

−1(s) in the whole frequency range.

σ[T(s)] < σ
[
W3
−1(s)

]
(14)

To increase the stability of the EMUs–traction network cascade system, the structures of W3(s)
and W1(s) are chosen as a stable first-order continuous time form. The structure of W2(s) is chosen as
a scalar form. The weighting functions are described as follows.

W3 =
Kcs + Kd

s + Ka

W2 = Kg

W1 =
Kes + K f

s + Kb

(15)

The controller K(s) can be obtained by solving the Riccati inequality. The Riccati inequality is
introduced as

ATP + PA +
1

γ2 PB1B1
T + C1

TC1 −
(

PB2 + C1
TD12

)(
D12

TD12

)−1(
B2

TP + D12
TC1

)
< 0 (16)

where γ represents a chosen constant, T denotes the transpose of a matrix, and the matrix P represents
a constant. The controller K(s) can be obtained as follows.

K(s) =
(

D12
TD12

)−1(
B2

TP + D12
TC1

)
(17)

The controller of the line-side converter of EMUs based on H∞ control is shown in Figure 5.Energies 2018, 11, x FOR PEER REVIEW  8 of 24 
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The function of the low-pass filter (LPF) is to block high-frequency signals and preserve the
low-frequency signals.

3. Simulation and Analysis for the Dual Line-Side Converter

In a conventional PI system, the expected performance of voltage and current control in different
load conditions can be obtained through adjusting the proportion coefficient and integral coefficient
generally. According to [16,18,20,21], if the real situations of the EMUs’ converter are considered,
the control parameters based on the H∞ controller are set through the PSO in (18). In addition,
the parameters of the weight function and the optimal values are listed in Table 1.



Energies 2018, 11, 1594 8 of 23

K =
[

0.2 0.6 0.4
]T

(18)

Table 1. Parameters of the weight function and optimal values.

Parameters Max Value Min Value Optimal Value

Ka 100 1 × 10−4 9
Kb 200 10 12
Kc 100 0.001 10
Kd 200 1 × 10−5 45
Ke 100 1 × 10−4 69
Kf 200 0.01 6
Kg 10 1.0 1
γ 1 0 1

3.1. Off-Line Simulation

An off-line simulation model of a twofold four quadrant line-side converter of EMUs is built as
shown in Figure 6. The parameters are listed in Table A2, and a bipolar carrier sinusoidal pulse width
modulation SPWM algorithm is adopted in the SPWM. The adjustable parameters of the PI controller
have been tuned to the appropriate values. Based on the PI controller, MC controller, ADRC controller,
and H∞ controller, the waveforms of voltage and current of the line-side converter in a steady state are
shown in Figures 7 and 8, respectively. The performance indexes at the DC-link voltage of the line-side
converter are listed in Table 2.

Under a stable state, the line-side converter of EMUs operates in the converter mode, and the
energy flows from the traction network to EMUs. In Figure 7a, the line current increases up to 0.1 s
and then gradually stabilizes. In Figure 7b, the line current is small at starting and suddenly increases
at 0.1s, then the line current tends to stabilize after 0.35s. In Figure 7c,d, the line current is large at the
beginning. The line current in Figure 7c decreases gradually, but the line current in Figure 7d increases
gradually. And the stable duration of the line current in Figures 7c and 7d is 0.18s and 0.2s, respectively.

Table 2. Performance indexes of DC voltage for the converter.

Performance PI Control MC ADRC H∞

Overshoot (%) 16.7 5.5 0.8 0.3
Peak time (s) 0.0125 0.182 None None

Adjustment time (s) 0.15 0.33 0.18 0.2
Voltage fluctuation(V) ±70 ±30 ±70 ±55
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Figure 7. Waveforms of the line voltage and current of the convertor in steady state use.

From Figure 8 and Table 2, it can be seen that the four controllers all have good performances.
The voltage fluctuation of the H∞ controller is better than the PI and ADRC controllers, which

is only ±55V. The voltage overshoot of the PI controller is 16.7%, while the overshoot of the H∞
controller is only 0.3%. Compared with the MC controller, the adjustment time of the H∞ controller is
reduced by 39.4%. From Figure 8 and Table 2, it is shown that the peak time of the H∞ controller is
much smaller than the peak time of the MC controller.

Through the fast Fourier transform (FFT) method, Figure 9a–c show that the line current total
harmonic distortion (THD) of line-side converter of EMUs based on the PI controller, MC controller
and ADRC controller are 5.90%, 6.78% and 5.57% respectively. The line current THD of line-side
converter of EMUs based on the H∞ controller is the smallest than that of the other three controllers,
which is 5.28%. Thus, the H∞ controller has better static performance and dynamic performances.
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3.2. Real-Time Simulation

To further validate the performance of the H∞ controller, simulation and experimental tests based
on the H∞ controller are carried out. The experimental platform includes an RT-LAB simulator OP5600
(Opal-RT Technologies, Montreal, QC, Canada) and a computer as a real-time control interface as
shown in Figure 10. The parameters of real-time simulation are the same as those for the off-line
simulation. The waveforms based on the H∞ controller in the steady state are shown in Figure 11.
iN and i′N in Figure 11 represent the two currents of the dual line-side converter, respectively. uN and
u′N in Figure 11 represent the two voltages of the dual line-side converter, respectively. The waveforms
of the voltage and current are both smooth and sinusoidal generally and in phase without distinct
distortion. The results further validate the performance of the H∞ controller.
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4. System Verification

4.1. Reduced-Order Model of a Traction Network

To further verify the LFO suppression effect, a whole traction network model should be built.
A traction network is a set of a special kind of multi-conductor single-phase power transmission lines,
which consists of a feeder line (F, ZFF), a messenger wire (M, ZMM), a contact wire (C, ZCC), a rail
(R, ZRR), and a protection wire (PW). In order to facilitate the research object, the method of conductor
reduced order and merging is adopted to simplify the traction network. Thus, the reduced order model
of the traction network can be established with the calculated parameters. The major parameters of the
traction network lines are listed in Table 3.

Table 3. Major parameters of traction network lines.

Conductor Type DC Resistance (Ω/km) Calculation Radius (mm)

C CuMg-150 0.1191 7.2
R UIC-60 0.135 12.79

PW LGJ-120 0.286 4.567
F 2 × LGJ-185 0.082 9.51
M THJ-120 0.181 7.0

C: contact wire; R: rail; PW: protection wire; F: feeder line; M: messenger wire.

For a single conductor in the traction network, as shown in Figure 12, the self-impedance and the
mutual-impedance can be calculated by Carson theory and the self-stiffness and the mutual-stiffness
can be obtained in [22]. Thus, the parameters of each conductor can be obtained. Through the merging
of conductors circularly, as shown in Figure 13, the wires can be simplified to be one equivalent
conductor. The equivalent impedance and admittance of the traction network per unit length can be
calculated out as (19) and (20). 

Zii = ri + 0.049 + jω
µ0

2π
ln

Dg
Ri

Zij = Zji = 0.05 + jω
µ0

2π
lg

Dg
dij

(19)


Pii =

1
2πε0

ln
2hi
Ri

Pij = Pji =
1

2πε0
ln

Dij

dij

(20)

where Zii is the self-impedance of conductor i, ri is the unit length impedance of conductor i, ω is the
angular frequency, µ0/2π = 2 × 10−4 H/km, Dg is the equivalent depth of the conductor–ground loop,
Ri is the equivalent radius, Zij is the mutual-impedance between the conductor i and the conductor
j, dij is the distance between the conductor i and the conductor j, Pii is the self-admittance of wire i,
ε0 = 1 × 10−6/(36π) and it is the vacuum dielectric constant, hi is the height of the wire i, Pij is the
mutual-admittance between the wire i and the wire j, and Dij is the distance between the wire i and
the image of the wire j.
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Figure 12. Multi-conductor transmission line system of the traction network.

Cascading the model of the traction network per unit length, the simulation model of the whole
traction network can be constructed as shown in Figure 14. The corresponding electrical parameters of
the test system are listed in Table A1. And autotransformer (AT) is a special transformer in which the
primary winding and the secondary winding are on the same tuning winding.
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Figure 14. The simulation model of traction power supply system. AC: alternating current.

4.2. Simulation of Multi-EMUs Accessed in the Traction Network Based on PI Control

In Figure 14, n EMUs are connected to the position between A and B in the uplink traction
substation in traction network. In Figure 15, the fluctuation of voltage and current of the traction
network is small when single EMU is connected. The traction network current is enlarged by 100 times
to facilitate the observation of the LFO phenomenon. The output DC-link voltage is stable at 3000V and
the voltage fluctuation is ±100 V. The THD of the current in traction network side is 25.35%. Therefore,
the coupling system of EMUs–traction network is stable. The voltage and current waveforms when 6
EMUs are connected are shown in Figure 16.
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Figure 14. The simulation model of traction power supply system. AC: alternating current. 
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As illustrated in Figure 16, the low-frequency modulation signal appears in the voltage and
current of traction network, and the oscillation frequency is about 5.6 Hz. In Figure 16a, the voltage
peak of traction network fluctuates between 33 kV and 39 kV. In Figure 16b, the fluctuation of DC-link
voltage is ±600V, which fluctuates more severely than that in Figure 15b. It can be found that the
instantaneous fluctuation of electric quantities indicates that the increase of load would result in the
increase of voltage and current fluctuation, and the dynamic tracking performance of PI controller
would decrease. The fluctuation of the line voltage and current of EMUs would result in the poor
performance of converter and even the traction blockade.
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4.3. Simulation of Multi-EMUs Accessed in Traction Network Based on H∞ Control

Based on the H∞ controller, when a single EMU is accessed in the traction network, the coupled
EMUs–traction network system is stable, and the voltage and current waveforms are shown in
Figure 17. The voltage and current of the traction network are stable, and the output DC-link voltage is
maintained at 3000 V in Figure 17. When 6 EMUs are accessed in the traction network, the system are
still in stable operation. The voltage and current waveforms of the six EMUs are shown in Figure 18.
When 6 EMUs are accessed, the fluctuation of voltage and current of the traction network is lower
than that in Figure 16a. The current of the traction network is stable at 175 A and the THD of current
decreases to 5.64%. The voltage of the traction network fluctuation is within the appropriate range.
The DC-link voltage is stable at 3060 V, and the voltage fluctuation is ±50 V. For the static performance,
the simulation results show that the electric quantities based on the H∞ controller can stabilize at the
reference value, while the static error of the PI controller increases when the load increases.
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4.4. Sensitivity of H∞ Control Law Analysis

To order to verify the robustness of the H∞ control law, the twofold four-quadrant line-side
converter of EMUs is tested by adding some high external noise, and the voltage and current waveforms
are shown in Figure 19. In Figure 19a, the waveforms of the line current without and with high external
noise are basically consistent, and the THD of the line current without and with high external noise is
5.28% and 5.58%, respectively. In Figure 19b, the waveforms of the DC-link voltage without and with
high external noise have almost no difference. Thus, the H∞ control law has good robustness.
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To further verify the robustness of the H∞ control law, the model parameters based on the H∞
controller and PI controller are analyzed and compared when seven EMUs are connected in the traction
network and the control parameters are kept the same. The model parameters are randomly selected,
and they vary from 100 times the original values to 1 percent of the original values. The results are
shown in Tables 4 and 5, respectively. In Tables 4 and 5, it is indicated that the model parameters will
affect the control performance and the H∞ control law has better robustness than the PI control law.

Table 4. Parameter effect based on PI.

Case
Parameter Rs Ls Results

1 0.1 0.002 Stable
2 0.5 0.002 Stable
3 1 0.002 Stable
4 10 0.002 Stable, the THD of the current is large
5 0.02 0.002 Stable
6 0.01 0.002 Stable, the THD of the current is large
7 0.001 0.002 Unstable
8 0.1 0.01 Stable
9 0.1 0.02 LFO

10 0.1 0.2 Rectification failure
11 0.1 0.0004 Stable
12 0.1 0.0002 Stable, the THD of the current is large
13 0.1 0.00002 Stable, the THD of the current is large
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Table 5. Parameter effect based on H∞.

Case
Parameter Rs Ls Results

1 0.1 0.002 Stable
2 0.5 0.002 Stable
3 1 0.002 Stable
4 10 0.002 Stable, the THD of the current is large
5 0.02 0.002 Stable
6 0.01 0.002 Stable
7 0.001 0.002 Stable
8 0.1 0.01 Stable
9 0.1 0.02 Stable

10 0.1 0.2 Rectification failure
11 0.1 0.0004 Stable
12 0.1 0.0002 Stable
13 0.1 0.00002 Stable

To find out the influence factors on the stability of the EMUs–traction network system, the analysis
of parameter sensitivity is necessary. The control parameters of the H∞ controller and the PI controller
are analyzed and compared when seven EMUs are connected in the traction network. The results are
shown in Tables 6 and 7, respectively.

The control parameters vary from 100 times the original values to 1 percent of the original values.
In Table 6, it is shown that three control parameters, Kp, Ki and Ku, of the PI controller have an impact
on the EMUs–traction network system, and the effect of parameter Ki is less than that of parameters Kp

and Ku. The changes of parameters Kp and Ku will result in an LFO. A change in parameter Ki will
cause a rectification failure. In Table 7, the control parameter K1 of the H∞ controller has an impact
on the EMUs–traction network system, and parameters K2 and K3 have little effect on the system.
Changes in parameters K1 and K3 can lead to a DC-link voltage of 12 kV. Therefore, the robustness of
the H∞ controller for the EMUs–traction network system is verified.

Table 6. Parameter effect based on PI.

Case
Parameter Kp Ki Ku Results

1 0.3 10 1 Stable
2 30 10 1 LFO
3 10 10 1 LFO
4 3 10 1 LFO
5 0.03 10 1 Stable
6 0.01 10 1 Stable
7 0.003 10 1 Stable
8 0.3 1000 1 Rectification failure
9 0.3 500 1 Rectification failure

10 0.3 100 1 Stable
11 0.3 1 1 Stable
12 0.3 0.5 1 Stable
13 0.3 0.1 1 Stable
14 0.3 10 100 Stable
15 0.3 10 50 Stable
16 0.3 10 10 Stable
17 0.3 10 0.5 LFO
18 0.3 10 0.1 LFO
19 0.3 10 0.01 LFO
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Table 7. Parameter effect based on H∞.

Case
Parameter K1 K2 K3 Results

1 0.2 0.6 0.4 Stable
2 20 0.6 0.4 Stable, DC-link voltage is about 12 kV
3 10 0.6 0.4 Stable, DC-link voltage is about 12 kV
4 2 0.6 0.4 Stable, DC-link voltage is about 12 kV
5 0.02 0.6 0.4 Stable
6 0.004 0.6 0.4 Stable
7 0.002 0.6 0.4 Stable
8 0.2 60 0.4 Stable
9 0.2 30 0.4 Stable

10 0.2 6 0.4 Stable
11 0.2 0.06 0.4 Stable
12 0.2 0.012 0.4 Stable
13 0.2 0.006 0.4 Stable
14 0.2 0.6 40 Stable, DC-link voltage is about 12 kV
15 0.2 0.6 20 Stable
16 0.2 0.6 4 Stable
17 0.2 0.6 0.04 Stable
18 0.2 0.6 0.008 Stable
19 0.2 0.6 0.004 Stable

4.5. Discussion

The proposed controller that includes outside disturbances is designed based on the mathematical
model for the line-side converter. It can be extended to general situations involving large disturbances
and multiple uncertain parameters. The experiments based on off-line and real-time simulations are
implemented and tested, and the control parameters based on the H∞ controller and the PI controller
are analyzed in this paper. Through the analysis of theory and the verification of simulation, it is
proved that the H∞ controller has better performance than the PI controller.

(1) Better dynamic performance, such as smaller overshoot, shorter peak time and smaller
voltage fluctuation.

(2) Better static performance with rated load.
(3) The significant suppression capability of LFO in EMUs–traction network system.

Besides, it can be found that the model and control parameters based on the PI controller have a
greater impact on the stability of the EMUs–traction network system than those of the H∞ controller.
According to Tables 4–7, some discussions are given as follows.

(1) In Tables 4 and 5, the first set of data contains the original values of the model parameters.
In Table 4, when the model parameter Rs decreases or Ls increases, the EMUs–traction network
system becomes more unstable. LFO or a rectification failure will occur in the system based on PI
control when the model parameters change, and the THD of the current will be large. In Table 5,
the system is less affected when the model parameters change. Only when the model parameter
Ls is expanded to 100 times will a rectification failure occur in the system based on H∞ control.
Thus, H∞ control has better robustness than PI control.

(2) In Table 6, the first set of data is the original value of the PI controller. When the original value
of the control parameter Kp is exceeded, LFO will occur. If the control parameter Ku is reduced,
LFO will also occur. In addition, it is noted that the set of parameters that exceed the original
value of the control parameter Ki will cause a rectification failure. In Table 7, the first set of data
contains the original values of the H∞ controller. It can be indicated that the system is stable in
all cases. The control parameter K2 has a little influence on the stability of the system. However,
the phenomenon that the DC-link voltage is about 12 kV will appear when the original value of
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the control parameter K1 is exceeded. The set of parameters that exceed the original value of the
control parameter K3 can also cause this phenomenon. Actually, 12 kV DC-link voltage is not
permitted in real-life operation. Thus, the problem should be studied in the future.

However, as a design method for an optimized system, the optimal control problem of H∞ control
theory is difficult to solve. In this paper, H∞ sub-optional control is only used to obtain the approximate
solution at present. Although the H∞ control theory can solve robustness problems in the system,
some dynamic characteristics of the system are lost. Combined with linear-quadratic-Gaussian control,
the H∞ control theory may be a good solution. In addition, since the appropriate weighting functions
are difficult to find and the optimal controller is difficult to design, these should be investigated further.

5. Conclusions

The critical factor causing the LFO of EMUs–traction network in high-speed railway is the
application of traditional PI controller. In this paper, a nonlinear H∞ controller is designed based
on dq frame to improve the load characteristics of line-side converter of the EMUs. The state equation is
established and the weighting functions are chosen. And the H∞ controller is designed by solving the
Riccati inequalities. The H∞ controller for the line-side converter is analyzed, modeled, and constructed.
The simulation and experiment results show that the H∞ controller for the line-side converter has a
good performance. The analysis of the sensitivity of H∞ control law shows that the controller has better
robustness than PI controller. Besides this, it can ensure the smooth operation of EMUs and efficiently
suppress the LFO, which prove the feasibility and the validity of the proposed controller.
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Appendix A

The corresponding electrical parameters of the test system and the EMUs’ converter are listed in
Tables A1 and A2, respectively.

Table A1. Electrical parameters of the test system.

Traction Substation

Power utility short capacity 10 GVA
Rated voltages 220 × (1 ± 2 × 2.5%)/2 × 27.5 kV
Rated power 50/31.5/31.5 MVA

Short-circuit voltage 10.5%
Short-circuit losses 140.7 kW

Auto Transform in Auto Transform Station

Rated voltages 55/27.5 kV
Rated power 35 MVA

Short-circuit voltage 1.6%
Short-circuit losses 57.271 kW

Earth

Earth resistivity 100 Ω/m
Rail to earth conductance 2 S/km

Traction substation and auto transform station earth
network to Earth 4 S, 2 S
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Table A2. Component parameters of the EMUs’ converter.

System Component Value

Input voltage us = 1550 V
AC-side inductance L = 4.7 mH

Load resistance Rd = 10 Ω
DC-link reference voltage udc = 3000 V

Switching frequency fs = 350 Hz
Sampling frequency fc = 10.0 kHz
DC-link Capacitance Cd = 3 mF

References

1. Wang, H.; Wu, M. Test and analysis on low frequency oscillation of traction power system voltage caused
by EMUs. In Proceedings of the 27th China College Power System and Automation Annual Conference,
Qinghuangdao, China, 14–18 October 2011.

2. Liao, Y.C.; Liu, Z.G.; Zhang, G.N.; Xiang, C. Vehicle-grid system modeling and stability analysis with
forbidden region based criterion. IEEE Trans. Power Electron. 2017, 5, 3499–3512. [CrossRef]

3. Menth, S.; Meyer, M. Low frequency power oscillations in electric railway systems. Eb Elektrische Bahnen
2006, 5, 216–221.

4. Heising, C.; Bartelt, R.; Oettmeier, M.; Staudt, V. Improvement of low-frequency system stability in 50-Hz
railway-power grids by multivariable line-converter control in a distance-variation scenario. In Proceedings
of the Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, 19–21 October 2010.

5. Zhang, G.; Liu, Z.; Yao, S. Suppression of low-frequency oscillation in traction network of high-speed railway
based on auto-disturbance rejection control. Trans. Transport. Electrific. 2016, 2, 244–255. [CrossRef]

6. Wang, H.; Wu, M.; Sun, J. Analysis of low-frequency oscillation in electric railways based on small-signal
modeling of vehicle-grid system in dq frame. IEEE Trans. Power Electron. 2015, 9, 5318–5330. [CrossRef]

7. Assefa, H.Y.; Danielsen, S.; Molinas, M. Impact of PWM switching on modeling of low frequency power
oscillation in electrical rail vehicle. In Proceedings of the 13th European Conference on Power Electronics
and Applications, Barcelona, Spain, 8–10 September 2009.

8. Suarez, J.; Ladoux, P.; Roux, N.; Caron, H.; Guillame, E. Measurement of locomotive input admittance to
analyse low frequency instability on AC rail networks. In Proceedings of the 2014 International Symposium
Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, Italy, 18–20 June 2014.

9. Oettmeier, M.; Bartelt, R.; Heising, C.; Staudt, V.; Steimel, A. LQ optimized multivariable control for a
single-phase 50-kW, 16.7-Hz railway traction line-side converter. In Proceedings of the 13th European
Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009.

10. Bartelt, R.; Oettmeier, M.; Heising, C.; Staudt, V. Improvement of low-frequency system stability in
16.7-Hz railway power grids by multivariable line-converter control in a multiple traction vehicle scenario.
In Proceedings of the Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy,
19–21 October 2010.

11. Wang, Y.; Wang, J.; Zeng, W. H∞ Robust Control of an LCL-Type Grid-Connected Inverter with Large-Scale
Grid Impedance Perturbation. Energies 2018, 11, 57. [CrossRef]

12. Tan, P.; Morrison, R.E.; Holmes, D.G. Voltage from factor control and reactive power compensation in a
25-kV Electrified railway system using a shunt active filter based on voltage detection. IEEE Trans. Ind. Appl.
2003, 2, 575–581.

13. Jin, W.; Li, Y.; Sun, G. H∞ Repetitive Control Based on Active Damping with Reduced Computation Delay
for LCL-Type Grid-Connected Inverters. Energies 2017, 10, 586. [CrossRef]

14. Zhao, R.; Lu, S.; Tu, L. Design of decentralized controllers for parallel AC-DC system based on effective
relative gain array and mixed H2/H∞ control. Power Syst. Protect. Control 2016, 24, 44–51.

15. Feng, X. Electric Traction AC Drives and Control System; Higher Education Press: Beijing, China, 2009.
16. Gou, B.; Ge, X.; Wang, S.; Feng, X. An open-switch fault diagnosis method for single-phase PWM rectifier

using a model-based approach in high-speed railway electrical traction drive system. IEEE Trans. Power
Electron. 2016, 5, 3816–3826. [CrossRef]

http://dx.doi.org/10.1109/TPEL.2016.2587726
http://dx.doi.org/10.1109/TTE.2016.2554468
http://dx.doi.org/10.1109/TPEL.2015.2388796
http://dx.doi.org/10.3390/en11010057
http://dx.doi.org/10.3390/en10050586
http://dx.doi.org/10.1109/TPEL.2015.2465299


Energies 2018, 11, 1594 23 of 23

17. Green, A.W.; Boys, J.T.; Gates, G.F. 3-phase voltage sourced reversible rectifier. IEEE Proc. B Elec. Power Appl.
1988, 6, 362–370. [CrossRef]

18. Wu, G.R.; Xiao, X. Robust speed controller for a PMSM Drive. In Proceedings of the International Power
Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009.

19. Li, Q.; Chen, W.; Liu, S.; Liu, X. H∞ suboptimal control for proton exchange membrane fuel cell (PEMFC)
hybrid power generation system based on modified particle swarm optimization. Power Syst. Prot. Control
2010, 21, 126–131.

20. Dabra, V.; Paliwal, K.K.; Sharma, P. Optimization of photovoltaic power system: A comparative study.
Prot. Control Mod. Power Syst. 2017, 2, 3. [CrossRef]

21. Saptarshi, D.; Pan, I. On the mixed H-2/H-infinity loop-shaping tradeoffs in fractional-order control of the
AVR system. IEEE Trans. Ind. Inf. 2014, 4, 1982–1991.

22. Lee, H.; Lee, C.; Jang, G.; Kwon, S.H. Harmonic analysis of the Korean high-speed railway using the
eight-port representation model. IEEE Trans. Power Deliv. 2002, 2, 979–986. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/ip-b.1988.0040
http://dx.doi.org/10.1186/s41601-017-0036-2
http://dx.doi.org/10.1109/TPWRD.2006.870985
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	H Controller Design of the Line-Side Converter of EMUs 
	Model Review of the Line-Side Converter of EMUs 
	H Controller State Variable Problem 
	H Controller Mixed Sensitivity Problem 
	Design of Weighting Functions 

	Simulation and Analysis for the Dual Line-Side Converter 
	Off-Line Simulation 
	Real-Time Simulation 

	System Verification 
	Reduced-Order Model of a Traction Network 
	Simulation of Multi-EMUs Accessed in the Traction Network Based on PI Control 
	Simulation of Multi-EMUs Accessed in Traction Network Based on H Control 
	Sensitivity of H Control Law Analysis 
	Discussion 

	Conclusions 
	
	References

