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Abstract: The Chinese Loess Plateau is an ecologically fragile and sensitive area. The carbon storage
dynamics in this region and the contributions from land use/land cover change (LUCC) and carbon
density from 2000 to 2010 were analyzed in this paper. Normalized difference vegetation index
(NDVI), biomass and soil carbon data in 2000 were used for regression analysis of biomass and soil
carbon, and an inversion analysis was used to estimate biomass and soil carbon in 2005 and 2010.
Quadrat data, including aboveground biomass and soil organic carbon, were used to calibrate the
model output. Carbon storage and sequestration were calculated by the InVEST toolset with four
carbon pools, including aboveground biomass, belowground biomass, dead wood and soil carbon.
The results showed that carbon storage increased steadily from 2000 to 2010, increasing by 0.260
billion tons, and that woodland area increased and arable land decreased; the overall trend in land
cover improved, but the improvement was not pronounced. Carbon storage in the Loess Plateau
was correlated with geographical factors. We found that when assuming a constant carbon density,
carbon storage decreased, accounting for −1% of the carbon storage dynamics. When assuming no
land conversion, carbon storage increased, accounting for 101% of the carbon storage dynamics.

Keywords: carbon storage; the Loess Plateau; InVEST; carbon density; normalized difference
vegetation index (NDVI)

1. Introduction

Land use/land cover change (LUCC) has prominent impacts on carbon storage and sequestration
dynamics in ecosystems [1–5]. LUCC influences carbon storage in two ways: via land conversion
and land modification. Several studies have focused on land conversion, whereas studies on land
modification are scarce. LUCC has been a popular research topic in resource-related and environmental
disciplines and is the core program for three international organizations, namely, the International
Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP),
and the World Climate Research Program (WCRP) [1–3]. If we cannot quickly and accurately
understand LUCC information, we cannot correctly evaluate LUCC effects, such as soil erosion, on the
ecological environment, making it impossible to accurately estimate the capacity of the ecosystem
carbon cycle [4]. China has adopted a variety of ecological restoration projects to improve the ecological
environment; these projects include the Natural Forest Protection Project and the Grain for Green
Program (GGP). The GGP is the largest reforestation project in China [5]. According to domestic and
foreign scholars, since the implementation of this project, which returned farmland to forest from 1990
to 2010, China has had the largest afforestation area in the world [6]. The Kyoto Protocol went into
effect on 16 February 2005, and clearly stated that humans could increase carbon sequestration through
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the effective management of LUCC, for example, by reducing deforestation, increasing afforestation
and effectively managing terrestrial ecosystem services [7].

Global carbon change has become a popular research topic [8], with many scholars having
estimated carbon storage and sequestration, and estimation accuracy has gradually improved [9,10].
Most carbon is stored in the soil, terrestrial vegetation and atmosphere; approximately 1400–1500 Gt
of carbon exists in the soil, approximately 500 Gt of carbon exists in terrestrial vegetation,
and approximately 750 Gt of carbon exists in the atmosphere [11].

The ecological system of the Loess Plateau is fragile and sensitive, in recent decades, China has
implemented several major ecological construction projects, including GGP, Ecological Construction
Program, Sand Source Improvement Project, Small Watershed-Based Management Program, etc.
The implementation of the abovementioned national level program greatly changed the land use and
land cover. These changes have induced a big change in carbon storage. With the continuous efforts
in ecological protections, the crop land reduced and natural vegetation area increased, especially the
forest area increased which immensely improved ecological quality, and the carbon sequestration
capacity increased. Study of carbon storage change induced mainly by LUCC and other factors can
enhance the understanding of the process of carbon storage change. Thus, developing a carbon sink
in Loess Plateau based on the previous development of carbon sequestration in forests, grasslands
and wetlands to form a multilevel and multidimensional carbon trading market. It also can enhance
economic and social development in Loess Plateau to achieve green development while sharing
development goals. This study can therefore provide references for making decisions about ecological
conservation and regional development.

2. Materials and Methods

2.1. Study Area

The Loess Plateau (34~40◦ N, 103~114◦ E) is the largest loess deposition area in the world
with an elevation of 1000~1500 m. It spans seven provinces, namely, Qinghai, Gansu, Ningxia,
Inner Mongolia, Shaanxi, Shanxi and Henan, 50 prefectural-level divisions and 284 county-level
divisions [12]. The Loess Plateau is in a semiarid, subhumid area that is has a continental monsoon
climate; the annual average temperature is 6~14 ◦C, and the average rainfall is 200~700 mm. The Loess
Plateau has attracted the attention of domestic and foreign scholars for many years due to the complex
relationships between humans and the Earth, the deteriorating ecological environment and serious
soil erosion. To date, research on the ecosystem services of the Loess Plateau has been focused at the
river-basin and single-forest (mostly locust forest) scales, and functional analyses of the ecosystem
services in the entire region of the Loess Plateau are lacking [13–16].

Large-scale soil and water conservation projects have been implemented in Loess Plateau since
the 1970s. China also implemented a restoration project to return farmland to forest and grassland after
1999, and the Loess Plateau was the regional focus of the implementation. Over the past few decades,
many artificial forests have been planted in the area, which account for 59.8% of the total forest area in
the Loess Plateau. Locust is the primary tree species that has been planted in Loess Plateau because it
has a rapidly growing, drought-resistant, infertile root system. Locusts account for 90% of the artificial
forest area.

2.2. Data Sources

2.2.1. LUCC Data

Land use in China at the 1:100,000 scale from remote sensing monitoring data sets represents the
land use monitoring data product with the highest precision in China. In this study, three years were
considered: 2000, 2005 and 2010. Remote sensing images from Landsat TM/ETM were the main data
source and were analyzed through artificial visual interpretation. Six primary types of land use data
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were used, namely, data for cultivated land, forestland, grassland, water area, building area (urban
land and rural land) and unused land, and 25 secondary types were used. During the process of
analyzing carbon storage, five primary land use types were used: cultivated land, forestland, grassland,
building land and unused land. Mountain paddy fields and hilly paddy fields, plain paddy fields
and 18 other land use types were also analyzed. Water, sand and other area types were not included.
The data set was provided by the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (RESDC) (http://www.resdc.cn).

2.2.2. NDVI

The NDVI data were from MOD13Q1, which has a temporal resolution of 16 days and a spatial
resolution of 250 m. The current study used the average NDVI during the growing season from
June to August in 2000, 2005, and 2010. The data set was provided by the International Scientific &
Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn).

2.2.3. Digital Elevation Model (DEM)

The DEM data were from SRTMDEMUTM, which has a spatial resolution of 90 m. The data
set was provided by the International Scientific & Technical Data Mirror Site, Computer Network
Information Center, Chinese Academy of Sciences (http://www.gscloud.cn).

2.2.4. Slope

The DEM data were processed using the slope function in ArcGIS Spatial Analyst. The slope
data at 90-m spatial resolution were obtained from the slope calculated from the DEM data in the
study area.

2.2.5. Precision-Test Data

Precision-test data were acquired from MYD17A2 and MOD17A2, which each have a spatial
resolution of 1000 m and a temporal resolution of 8 days. The data set was provided by the International
Scientific & Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of
Sciences (http://www.gscloud.cn). In addition, survey data, 146 soil samples, 12 tree plots, and three
grassland surveys were used.

2.2.6. Carbon Density Parameters of 2000

Biomass carbon density data were acquired from the Carbon Dioxide Information Analysis Center
(CDIAC) [17] and were based on the biomass carbon density from the Intergovernmental Panel on
Climate Change (IPCC). Then, 1 km global biological carbon density raster data were generated from
the land use and vegetation flora data. Soil carbon density data were acquired from the Joint Research
Center (JRC) of the European Union in Brussels along with surface soil organic carbon (0–30 cm)
data [18]. Humus carbon data and root-to-shoot ratios were determined from the IPCC 2006 national
greenhouse gas emissions [19].

2.3. Research Methods

We used the data set in 2000 to construct two regression models: an NDVI and biomass regression
model and a biomass and soil organic carbon regression model. Then, the biomass and soil organic
carbon data in 2005 and 2010 were modeled based on model inversion. Biomass was converted
into aboveground biomass and underground biomass based on the root-to-shoot ratio. Because the
humus carbon pool is small and stable, the humus carbon density data in this paper represent the
data collected in 2000. Then, the land cover and carbon density parameters were input into Integrated
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Valuation of Ecosystem Services and Trade (InVEST) to determine the carbon storage in 2005 and 2010
in the Loess Plateau.

(1) The key carbon library parameter inversion

GIS spatial analysis was used to acquire the mean NDVI, biomass and soil organic carbon values
of the 18 land use types. Then, a statistical analysis was conducted in SPSS 21.0. NDVI, biomass,
and soil organic carbon (SOC) exhibit a normal distribution. NDVI and biomass were significantly
related to SOC (alpha = 0.05), yielding correlation coefficients of R2 = 0.883 and R2 = 0.716, respectively.
Biomass was significantly related to SOC (alpha = 0.05), with a correlation coefficient of R2 = 0.900,
according to the regression analysis. In accordance with the requirement of a strong correlation, a high
biomass-NDVI quadratic curve model and an SOC-biomass quadratic curve model were constructed
(Figure 1). The equation was derived from an analysis of variance and a regression coefficient t-test
(p < 0.01). The regression equation was based on NDVI, biomass and SOC as well as the inversion of
the key parameters measured in 2005 and 2010, such as biomass and SOC.
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Figure 1. Biomass-NDVI and SOC-NDVI regression analyses.

(2) Ecosystem carbon storage simulation

InVEST, developed at Stanford University, is a comprehensive ecosystem service evaluation
model that can assess various ecosystem services, provide comprehensive analysis for planning
ecological restoration, pay ecosystem services (PES), and assess developmental effects and space
permits. Cooperation risk management plays an increasingly important role in promoting biodiversity
conservation, and the coordinated development of human well-being is of great significance [20].
Land cover and biomass data as well as soil carbon and humus carbon data collected in the study
area in 2000, 2005, and 2010 were used as InVEST input data to simulate carbon storage during the
corresponding years. Then, the behavior and spatial differentiation of carbon storage in Loess Plateau
from 2000–2010 was analyzed. The carbon computation formula in the carbon module of the InVEST
model is described as follows:

Czone = ∑ Ci × Ai (1)

C = Cabove + Cbelow + Cdead + Csoil (2)

where Czone is the carbon of the zone, C is the total carbon, Ai is the area of class I, Ci is the carbon
density of class I (t C/ha), Cabove represents aboveground biomass, Cbelow represents root biomass, Cdead
represents humus carbon, and Csoil represents soil organic carbon.
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(3) Carbon storage function change analysis of contributing factors

In general, changes in land use can be divided into changes in land cover type (land conversion)
and changes in the internal quality of a specific land cover type (land modification). Accordingly,
changes in the regional carbon storage function involve changes in land cover type and carbon density
and the contributions of different factors that affect the carbon storage function. The model of this
process is described as follows:

(1) Changes in regional carbon storage function based on two carbon available libraries using
the∆C characteristic:

∆C = ∑n
i=1 (Ai2Di2 − Ai1Di1) (3)

where ∆C is regional carbon storage change; Ai1 and Ai2 are the areas of class i before and after
the change, respectively; and Di1 and Di2 are the carbon densities of class i before and after the
change, respectively.

(2) Assuming that the carbon density of each land use/land cover type is constant and that the
carbon storage changes are caused only by changes in land use/land cover, the carbon storage change
can be represented as follows:

∆C1 = ∑n
i=1 (Ai2 − Ai1)Di1 (4)

where ∆C1 is the carbon storage change due only to changes in land use/land cover.
(3) Assuming that land use/land cover is constant and that the carbon storage changes are caused

only by carbon density changes, the carbon storage change can be represented as follows:

∆Cd = ∑n
i=1 Ai1(Di2 − Di1) (5)

where ∆Cd is the carbon storage change due only to C carbon density changes.
(4) The contribution rate of the change in land use/land cover types to carbon storage (Rl) and

the contribution rate of the change in carbon density to carbon storage (Rd) can be calculated using the
following formulas:

Rl = ∆Cl/(∆Cl + ∆Cd)× 100% (6)

Rd = ∆Cd/(∆Cl + ∆Cd)× 100% (7)

where Rl is the contribution rate of the change in land use/land cover types to carbon storage and Rd
is the contribution rate of the change in carbon density to carbon storage.

2.4. Precision Testing and Sample Analysis

Remote sensing images and sampling point data were used to verify the accuracy of the models.
The entire Loess Plateau area and the individual land areas and points were tested to determine if this
method was reliable.

The area of the Loess Plateau is vast, and the terrain is complex. Thus, carbon storage in the
Loess Plateau was simulated and analyzed over a large scale, and the accuracy of the simulation was
assessed over the entire surface area and at a typical area. The accuracy over the surface area in this
study was verified by the MODIS MOD17A2 and MYD17A2 data products for 2010. The vegetation
biomass data and the soil organic matter data were used to verify the accuracy over the typical area.

The MODIS total primary productivity products, MYD17A2 and MOD17A2, depict the cumulative
biological (mainly green plants) organic carbon fixed through the photosynthetic pathway, which is
same as the biomass (total of aboveground biomass and belowground biomass) parameters in the
InVEST model. In this study, the total primary productivity of the Loess Plateau in 2010 was
8.61 × 108 t C, which was calculated by the carbon parameter inversion. The total primary productivity
estimated from the MYD17A2 data product in the Loess Plateau in 2010 was 8.16 × 108 t C; the relative
error was 5.2%. The total productivity estimated from the MOD17A2 data product in the Loess Plateau
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in 2010 was 8.95 × 108 t C; the relative error was −3.9%. Therefore, the simulation results of this study
can be used for further dynamic change analysis.

The typical area (Figure 2) considered in this study is in Shilou County, Shanxi Province, which is
an experimental area where farmland was converted to forest (36◦56′ N, 110◦46′ E). The study area is
near the east bank of the Yellow River. The terrain is high in the east and low in the west, and there are
rolling mountains, crisscrossed gullies, and broken terrain. The study area is located along the middle
reaches of the Yellow River, where soil erosion is very serious. The landform type is typical of the loess
hilly and gully region of the Loess Plateau, and the total area of the district is 2.02 km2. The terrain
is undulating, with a relative height difference of more than 200 m. Most trenches have been cut to
bedrock. The soil in this area mainly comprises yellow and gray-brown soils, which are characterized
as silty clay loam, and the parent material is loess.
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Figure 2. Location of the typical experimental area.

The area has a warm temperate continental monsoon climate. The meteorological data of the area
for 1981–2010 are as follows: mean temperature of 9.8 ◦C; average monthly rainfall of 38.7 mm mainly
concentrated from July to September; and monthly average humidity of 55.3%. From 2011 to 2015,
the average monthly temperature was 10.7 ◦C; the average monthly rainfall was 45.6 mm, which was
also mostly concentrated from July to September, accounting for more than 60% of the annual rainfall;
and the average monthly humidity was 53%.

The main land cover/land use types in the typical area are locust forest, hill dryland, low-coverage
grassland, and low human interference. In recent years, the Hong Kong Forces Planted Charitable
Foundation improved the ecological environment of the typical experimental area by continuously
growing artificial forest over 130 hectares of the area. Locusts were the primary trees planted,
accounting for more than 98% of the tree planting area, followed by Armeniaca sibirica, Sophora japonica,
and Rhus typhina. The main plantation model involved digging equal pits (2 m long, 50 cm wide,
and 50 cm deep) in a “triangle”-shaped arrangement, with the center of the pit 3 m from the column
and 1.5 m from the row, and there were approximately 2250 pits per ha.
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The survival rate of the plants in this typical area is greater than 80%, which is much higher than
the local afforestation survival rate. The forest development is good, which is conducive to improving
soil conditions and conserving water. The area has been cultivated for more than 30 years, and the
crop plants are grown once per year. The main crops are corn and millet. Cirsium setosum, Artemisia
annua, Setaria viridis and other plants are the more common in weeds in the area.

Twelve forest plots were randomly selected in the typical experimental area, and the size of each
plot was 10 × 10 m. The survey indicators mainly included planting density, tree height, branch
height, basal diameter, diameter at breast height (DBH), crown width and biomass. The heights of
the trees were measured using a TruPulse200 rangefinder (Laser Technology, Inc., Centennial, CO,
USA), and the diameter at breast height was measured in feet. The crown width was measured using
a steel tape; then, the biomass was calculated using the relationships between Robinia pseudoacacia
growth parameters (tree height, DBH) and biomass. In addition, forest-herb samples were randomly
selected under the trees in each locust sample. Each 1 × 1 m forest-herb sample was selected randomly.
After the grass was mowed, cleaned, and dried, the ground biomass was weighed to the nearest 0.01 g
(Guangzheng YP-B electronic scale, Shanghai, China), and its carbon content was converted by a ratio
of 0.47. In the typical experimental area, we randomly selected grassland samples, and the size and
treatment methods were the same as those applied to the forest-herb samples.

The soil in the typical experimental area was sampled in May 2016. Four layers of soil were
surveyed at each sample point: 0–10 cm, 10–20 cm, 20–40 cm, and 40–60 cm. After sampling,
the samples were taken to the laboratory for physical and chemical analyses. The SOC and bulk density
were analyzed. There was a total of 140 forest soil samples, 12 grassland samples, and 12 cultivated land
samples, yielding an overall total of 164 samples. The SOC was measured by potassium dichromate
oxidation spectrophotometry (HJ615-2011).

(1) Calculation of the carbon density of the forest

The planting distance and seedling growth of the acacia forest are the same, which is consistent
with individual nutrition space. Outside these growing conditions, reproductive success is difficult
without human interference. Therefore, when the survey found sparsely scattered biomass in the
forest, the forest aboveground biomass depended on the density of the living trees, the biomass per
tree and the biomass of the understory plants. Locust forest biomass included the biomass of five
parts: trunks, branches, leaves, bark and roots. The locust biomass was calculated using the allometric
equations published by the SFA (State Forestry Administration) [21] as follows:

WT = 0.02583× (D2H)
0.6841

(8)

WB = 0.00464× D3.2181 (9)

WL = 0.02340× D1.9277 (10)

Wp = 0.00763× (D2H)
0.0447

(11)

WR = 0.01779× D2.6148 (12)

where WT, WB, WL, WP, and WR represent the biomass of trunks, branches, leaves, bark and roots
per tree (kg), respectively; D represents the breast diameter (cm); and H represents the height of the
tree (m).

The biomass of each part was calculated and then multiplied by the carbon content coefficient and
the corresponding stand density to obtain the aboveground carbon density. According to the survey,
the stand density was 330 trees per ha, and the carbon contents coefficient of the trunks, branches,
leaves, bark and roots were 0.497, 0.481, 0.465, 0.458 and 0.460, respectively.
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(2) Calculation of the carbon density of understory plants or grassland

The chemical substance return rate and the biomass reduction rate of understory plants are
higher than those of the upper layer of the forest, and the effect of ecosystem circulation cannot
be underestimated. The carbon storage of the forest-herb under the trees was calculated using the
aboveground biomass, which was then converted to carbon content. In addition, the method used to
calculate the carbon content of the grassland was the same as that used to calculate the carbon content
of the understory plants:

Cg = BIOg × Tg (13)

where Cg represents the carbon content of the forest-herb under the trees (t C/ha), BIOg represents
the dry weight of the aboveground biomass per ha (t), and Tg represents the conversion of
carbon-containing herbs (%). In addition, grassland carbon was calculated in the same manner
as the carbon of the understory plants, and the carbon-containing herb conversion [19].

According to the allometric growth equation, the carbon density of the locust trees in the typical
experimental area was 12.54 t C/ha, and the carbon density of understory plants was 0.89 t C/ha.
Thus, the carbon density of the forest was 13.43 t C/ha, whereas the carbon density in the model
was 13.07 t C/ha in 2010, representing an accuracy of 97.3%. The amount of aboveground biomass
per year is directly related to climate, rainfall, light and other parameters. The aboveground biomass
fluctuates over time and is not a steadily increasing or fixed value. However, woodlands are different
from cultivated lands, as trees continue to grow and the biomass continues to increase. The accuracy is
within the allowable range of error, indicating that the model could be used for further simulation
and analysis.

In the survey, the grassland carbon density was 1.38 t C/ha. The corresponding density in the
model was 1.54 t C/ha due to drought in the typical experimental area that year and the influences
of vegetation growth, thus resulting in the low accuracy of 88.4%. Because of the special climate
conditions in the typical experimental area during that year, the model precision is adaptable when
considering the Loess Plateau.

(3) Calculation of soil carbon density

Regional differences in soil carbon density are obvious, but the values are largely stable over time.
Changes in soil carbon density are closely related to land use/land cover. The soil carbon density
calculation method is as follows:

SOCi = 0.1× Ci × Di × Ei × (1− G)/100 (14)

where SOCi represents the soil carbon storage (Mg/ha), Ci represents the soil carbon organic content
of the i-th layer (g/kg), Di represents the soil bulk density (g/cm3), Ei represents the thickness of the
i-th layer of soil (cm); and Gi represents the volume content, which is the gravel in the soil greater
than 2 mm in the i-th layer (%). As the loess, hilly and gully region is developed from loess parental
material, the gravel content is low, so Gi = 0.5.

Based on the calculation of soil carbon density of the 164 soil samples, the soil carbon density
of the locust forest was 51.66 t C/ha. The coverage of weeds in the typical experimental area was
low, and the carbon density was 62.18 t C/ha. The soil carbon density of the hilly dryland was
56.17 t C/ha. According to the regression curve of the model, the soil carbon density of the shrubwood
was 53.85 t C/ha and 51.66 t C/ha in 2005 and 2010, respectively, and the accuracy was 95.76% and
97.06%, respectively. The soil carbon density of the hilly dryland was 54.91 t C/ha and 58.13 t C/ha in
2005 and 2010, respectively, and the accuracy was 97.76% and 96.51%, respectively. The soil carbon
density of the low-coverage grassland was 62.51 t C/ha and 62.94 t C/ha, and the accuracy was 99.47%
and 98.78%. Therefore, the regression curve and model could be used for further analysis.
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3. Results

The land use/land cover data and the corresponding types of carbon densities were input into the
InVEST model, and carbon storage and sequestration were simulated in the Loess Plateau for the three
years of 2000, 2005, and 2010. In addition, the contribution of land use change to carbon sequestration,
the contribution of carbon footprint change to carbon storage, and the relationships between carbon
storage change and geographical factors (elevation, slope) were analyzed.

3.1. Carbon Storage Patterns

From 2000 to 2010, carbon storage increased steadily in the Loess Plateau. Carbon storage in
2000, 2005 and 2010 was 3.95, 3.96, and 4.21 billion tons, respectively. Total carbon storage increased
by 0.26 billion tons, and carbon storage showed steady growth. The land cover types distributed
from the northwest to the southeast were grassland, forest and cultivated land. Vegetation coverage
increased gradually across the Loess Plateau. Due to measures such as the return of farmland to forest,
afforestation, the planting of grass, the construction of horizontal terraces, the implementation of
water conservancy projects and the comprehensive management of small watersheds in Loess Plateau,
the vegetation area of the Loess Plateau is gradually increasing, and vegetation growth is improving.
The distribution pattern of carbon storage is consistent with that of natural zonation, and carbon
storage in the ecosystem gradually increased from the northwest to the southeast (Figure 3).
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3.2. The Contribution of Changes in Land Use Type to Carbon Storage

The climate of the Loess Plateau shifts from warm subhumid to semiarid climate to arid from
the southeast to the northwest. The natural vegetation corresponds to the climate type and is
forest-grassland, grassland, and sand-grassland. The difference in the terrain of the land use type and
vegetation coverage is obvious. The growth rate of vegetation is significant, and reconstruction and
conservation occurred in the major areas of vegetation restoration on the sloping fields between 2000
and 2005.

The effect of LUCC on vegetation coverage increased, and the growth rate of vegetation coverage
in the LUCC area was significantly higher than that in the unchanged area. From 2000 to 2010,
the growth rates of the areas where farmland was returned to forest and grassland were especially
prominent. Grassland areas first decreased and then increased. The area with high grassland coverage
increased to approximately 1153 km2, and the area with moderate or low grassland coverage decreased
to 1789 km2. The areas of all types of forest increased markedly. The forest area increased by 503 km2,
the shrubwood area increased by 449 km2, the sparse-woods area increased by 134 km2, and other
woodlands increased by 1723 km2. The area with zero carbon increased by 1159 km2, representing a
percentage increase of 0.2%. The areas of rivers and canals, reservoir pits, other construction lands,
desert, bare lands and bare rock mass all increased. The areas of lakes, bottomland and the Gobi Desert
all decreased. The areas of urban and rural land increased, the saline-alkali soil area decreased, and the
marshland area increased. The total area of cultivated land, such as mountain paddy fields, hill paddy
fields, plain paddy fields, mountain dryland, hilly dryland, plain dryland and dryland (>25 slope),
decreased from 216,476 km2 to 211,736 km2 (Figure 4).

Assuming that the carbon density is constant, the carbon storage changes caused only by the
changes in land use/land cover type were considered. From 2000 to 2010, the carbon storage in Loess
Plateau decreased by 0.3 million tons, accounting for −1% of the carbon storage dynamics (Figure 5).
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3.3. The Contribution of Carbon Density to Carbon Storage

From 2000 to 2010, the carbon densities of the areas with high carbon densities increased; these
areas included forestland, shrubwood, sparse woods, and cultivated land. The carbon densities of
most types of land increased. The carbon density slightly decreased in only four types of land, namely,
high-coverage grassland, moderate-coverage grassland, low-coverage grassland and mountain paddy
fields. The carbon densities of sparse woods and hilly drylands first decreased and then increased,
and the overall trend was one of increase. The carbon density of the saline-alkali soil first increased
and then decreased, and the overall trend was one of increase. The carbon densities of the other land
use types, such as forestland, shrubwood, other woodlands, urban land, rural land, marshland, hilly
paddy fields, plain paddy fields, mountain dryland, plain dryland and dryland (>15 slope), steadily
increased (Table 1).
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Table 1. The carbon density of different land use types and changes in carbon density during 2000–2010.

Land Type 2000/(t/ha) 2005/(t/ha) 2010/(t/ha) 2010–2000/(t/ha) 2005–2000/(t/ha) 2010–2005/(t/ha)

Forest land 91.79 107.17 118.99 15.38 11.83 27.2
Shrubwood 86.91 90.77 104.04 3.86 13.27 17.13

Sparse woods 73.68 71.66 81.26 −2.02 9.6 7.58
Other woodland 58.79 56.73 60.18 −2.06 3.45 1.39

High-coverage grassland 74.85 67.76 71.07 −7.08 3.31 −3.77
Moderate-coverage grassland 66.80 62.94 64.41 −3.86 1.47 −2.39

Low-coverage grassland 65.42 62.51 62.94 −2.91 0.43 −2.48
Urban land 51.38 53.55 53.60 2.17 0.06 2.23
Rural land 52.86 58.03 60.27 5.18 2.23 7.41

Saline-alkali soil 52.30 54.69 53.77 2.39 −0.92 1.47
Marshland 51.09 54.48 55.56 3.39 1.08 4.47

Mountain paddy field 157.03 146.18 155.55 −10.85 9.37 −1.48
Hills paddy field 59.00 62.92 75.61 3.92 12.7 16.61
Plain paddy field 64.92 69.02 71.79 4.1 2.77 6.87

Mountain dryland 60.64 63.05 73.42 12.78 2.41 10.38
Hill dryland 55.53 54.91 58.13 2.60 −0.62 3.22

Plain dryland 52.86 58.48 61.72 8.86 5.62 3.24
Dryland (>25 slope) 66.32 73.44 86.61 20.29 7.12 13.17

In total, the average carbon density steadily increased from 69.01 t/ha in 2000 to 70.46 t/ha in
2005 and to 76.05 in 2010, and the average increase was 7.04 t/ha. Assuming no land conversion,
the carbon storage changes due only to the changes in carbon density were considered. The Loess
Plateau carbon storage increased by 26.2 million tons, accounting for 100.1% of the carbon storage
dynamics (Figure 6).Energies 2018, 11, x FOR PEER REVIEW  12 of 17 
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3.4. The Relationships between Carbon Storage and Geographical Factors

A DEM, a discrete digital representation of the surface topography of the earth [11], can be used to
extract terrain factors, such as slope, aspect and slope position, and is widely used in geoanalysis [22].
In this study, the differences in carbon storage among different slope conditions were analyzed based
on a DEM. Slope is a terrain factor derived from the DEM and not only represents the degree of tilt but
also affects the redistribution of materials, such as soil, water, heat, and nutrients [23].

Carbon storage significantly differed among different slopes (Table 2). The vegetation on the
Loess Plateau was mainly distributed in the areas with slopes of 0~26◦. The vegetation area decreased
with increasing slope. The 0◦, flat region along both sides of the Yellow River is mostly cultivated
land, and the Mausu Desert is in the northwest region of the Loess Plateau. As the slope increased,
the land use type transitioned to woodland and grassland, the vegetation coverage improved, human
disturbance decreased, and the average carbon density steadily increased (Figure 7).
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Table 2. Carbon density of areas with different slopes in the Loess Plateau.

Slope (◦) 2000 (t/ha) 2005 (t/ha) 2010 (t/ha)

0 61.70 62.37 65.14
1 63.79 63.68 67.29
2 65.52 65.41 69.62
3 67.16 67.21 71.84
4 68.92 69.29 74.39
5 70.97 71.71 77.28
6 72.87 74.17 80.28
7 74.28 75.85 82.34
8 75.27 77.05 83.70
9 76.16 77.85 84.67
10 77.27 79.51 86.61
11 77.47 79.72 86.81
12 77.74 79.97 87.13
13 78.58 81.33 88.75
14 78.59 81.33 88.79
15 78.26 80.93 88.33
16 78.82 81.74 89.05
17 79.20 82.53 89.92
18 79.26 82.45 90.40
19 79.19 82.08 89.54
20 79.51 83.24 91.18
21 80.08 84.29 92.62
22 79.41 85.50 93.34
23 81.03 83.19 92.12
24 86.14 94.03 103.02
25 83.32 87.47 95.03
26 91.79 107.17 118.99
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Figure 7. Relationship between slope and carbon density on the Loess Plateau. 

A change in altitude causes a change in climate factors, which impacts vegetation growth, 
development and physiological metabolism [24,25]. Accordingly, vegetation biomass and SOC were 
affected by altitude [21,26]. This study found that altitude in the Loess Plateau was significantly 
correlated with the average carbon density (p < 0.01), and the correlation coefficients were 0.747 in 
2000, 0.543 in 2005, and 0.457 in 2010. However, total carbon storage was negatively correlated with 
altitude, with correlation coefficients of −0.481 in 2000, −0.487 in 2005, and −0.487 in 2010. 

Figure 7. Relationship between slope and carbon density on the Loess Plateau.

The slope of the Loess Plateau was positively correlated with the mean carbon density (p = 0.01),
with correlation coefficients of 0.923 in 2000, 0.905 in 2005, and 0.907 in 2010. In addition, the carbon
density exhibited three curve relations with slope, with a fitting degree of 0.963. The vegetation
coverage in the area with a slope of 0~1◦ first decreased and then increased, and the total reduction
was 887 km2 from 2000 to 2010. The vegetation coverage in the area with a slope of 3~13◦ declined
throughout the study period; from 2000–2005, it decreased by 210 km2, and from 2005–2010,
it decreased by 61 km2. The vegetation coverage in the area with a slope of 14~26◦ remained stable
over time. Furthermore, as the slope increased, the vegetation area decreased. Total carbon storage
was negatively correlated with slope, with correlation coefficients of −0.718 in 2000, −0.719 in 2005,
and −0.723 in 2010.
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A change in altitude causes a change in climate factors, which impacts vegetation growth,
development and physiological metabolism [24,25]. Accordingly, vegetation biomass and SOC were
affected by altitude [21,26]. This study found that altitude in the Loess Plateau was significantly
correlated with the average carbon density (p < 0.01), and the correlation coefficients were 0.747 in
2000, 0.543 in 2005, and 0.457 in 2010. However, total carbon storage was negatively correlated with
altitude, with correlation coefficients of −0.481 in 2000, −0.487 in 2005, and −0.487 in 2010.

As altitude increased, land area decreased. Altitude and land area were significantly negatively
correlated, with correlation coefficients of −0.498 in 2000, −0.498 in 2005, and −0.497 in 2010.
Correspondingly, as altitude increased, forest area increased, and carbon density gradually increased
(Figure 8). The Loess Plateau area is divided into seven grades according to altitude, <100 m, 100–200 m,
200–500 m, 500–1000 m, 1000–2000 m, 2000–3000 m and >3000 m, and the average carbon densities
were 60.34, 59.79, 59.83, 64.92, 67.94, 67.85 and 73.32 t C/ha, respectively (Table 3).
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Table 3. Carbon densities at different altitudes.

Altitude (m) 2000 (t/ha) 2005 (t/ha) 2010 (t/ha) Average (t/ha)

<100 57.31 59.97 63.73 60.34
100~200 56.56 60.08 62.74 59.79
200–500 56.90 59.59 63.01 59.83
500–1000 62.02 64.17 68.57 64.92

1000–2000 66.53 66.61 70.68 67.94
2000–3000 66.94 66.41 70.21 67.85

>3000 72.94 71.11 75.92 73.32

4. Discussion

This study used raster data of global biomass and SOC along with sampling data to inversely
calculate the aboveground biomass, belowground biomass, and SOC in the Loess Plateau. Then,
the aboveground biomass, belowground biomass, SOC and humus carbon were determined.
In addition, the accuracies of the inversion parameters were evaluated using the field-measured
data, which indicated that the parameters were appropriate for further simulation and analysis.
The InVEST model was used to simulate carbon storage, and the relationships between geographical
factors and carbon storage, carbon density and land use/land cover type were analyzed. The accuracies
of the results were verified using MYD17A2 and MOD17A2 products and soil and biomass survey
data in the study area.

In this study, we found that the overall average value of carbon density ranged from 69.01 t/ha to
76.05 t/ha. The values are very different from those in other regions of China and global averages.
This difference may be due to several factors. First, study differences in the number of data sets and
sampling methods might be responsible. The Loess Plateau is a typical area and cannot reflect the
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world carbon distribution; its spatial heterogeneity might have contributed to the subtle differences
between the woodlands of the study area and woodlands around the world. Second, the measurement
accuracy of the NDVI data might have affected the uncertainties of the biomass estimates. Third,
differences might be caused by natural selection expressed through plant morphology [27–30].

The spatial resolution of the simulated data in the Loess Plateau was 1 km, which is low, leading
to uncertainty in the accuracy of the simulation result. The spatial resolution of the data used in the
analysis of the geographical factors, such as elevation and slope, was 1 km, and there will be differences
in the analyses of small terrain features or areas, which supports the view that differences in data sets
and sampling methods may affect the results. Furthermore, the spatial resolution of the NDVI data
and the processing methods affect the precision.

In addition, as reported in this study, not surprisingly, we found that carbon density or carbon
storage was strongly related to geographical driving factors, thus supporting our hypothesis that
carbon density is influenced by abiotic driving factors. Here, we explore and illustrate the relative
contributions of geographical driving factors on carbon density.

Biomass is directly affected by plant traits and indirectly affected by soil properties [31,32]. In the
present study, biomass was affected by slope and altitude because slope and elevation affect moisture
and temperature, which affect plant growth. Geographical factors have direct effects on biomass owing
to resource competition (e.g., light capture), and biomass is controlled more by land cover type and
plant height, resulting in carbon storage [33,34]. In addition, soil properties have effects on biomass
owing to the contribution of soil nutrients to the decomposition and mineralization of organic matter.
In addition, SOC has strong effects on biomass through its effects on belowground biomass, which acts
as a large nutrition source for root biomass storage [35–38].

There are a number of factors, such as light, temperature, rainfall, and plant species, that affect
carbon sequestration. In this paper, the effects of only vegetation type, elevation and slope on carbon
storage were evaluated. According to the carbon density analysis, the soil carbon density increased
by 67.46 million tons of carbon, accounting for 25.94% of the total increase in carbon storage, over
the ten-year study period. Soil carbon sequestration not only is a strategy to achieve food security
through the improvement of soil quality but can also increase the global carbon reserves and improve
the environment. Furthermore, soil carbon is a vitally important secondary product of increasing crop
yield or enhancing the biomass of land cover. When carbon dioxide emissions into the air are reduced,
soil carbon can improve and sustain biomass productivity. SOC is a very valuable natural resource.
Regardless of climate change, soil carbon must be restored and improved. However, the close links
between soil carbon sequestration and global food security or production and climate change cannot
be overemphasized or ignored.

In addition, biomass increases have a major impact on carbon storage. Our results provide
evidence to support the proposal in the Kyoto Protocol that carbon sequestration by afforestation or
reforestation has the potential to partly offset carbon dioxide emissions from fossil fuel consumption,
even though the increased carbon uptake is viewed as temporary. The Kyoto Protocol does not
require commitments from developing countries, including China, but recent decreases in the rate
of deforestation in China have already contributed to reduced carbon dioxide emissions. We believe
that continuing the practice of nationwide afforestation and reforestation projects can contribute
significantly to global carbon storage.

5. Conclusions

Carbon accumulation in the Loess Plateau region was simulated based on the InVEST model.
The attribution analysis of the change of carbon storage identified the contributions of changes in
carbon density and land cover to carbon storage. Moreover, the analyses of slope, elevation and
other geographical factors revealed that these factors also affect carbon storage. This study found that
the vegetation in the Loess Plateau gradually improved between 2000 and 2010. During this time,
the biomass increased, and carbon storage slowly increased by 0.26 billion tons.
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The overall change in land cover in the Loess Plateau was not large. The increases in the carbon
densities of cultivated land and grassland were the most prominent. The carbon densities of areas with
high carbon densities, such as woodland, shrubwood, forest and arable land, all increased. The carbon
density of grassland decreased slightly, and the carbon densities of saline-alkali land and bog increased.

The study of carbon density and land cover change revealed that the contribution of land cover
change to carbon storage was −1.0%. The effect of carbon density on carbon storage was 100.1%,
which was mainly due to the implementation of the policy of returning farmland to forest (grassland)
in the late 1990s [8]. This policy effectively promoted the restoration and reconstruction of vegetation in
the Loess Plateau, including the existing vegetation area. In addition, it promoted the conservation and
restoration of cropland and grassland and the restoration and reconstruction of low-vegetation-cover
areas. These policies improved both the vegetation cover and the ecosystem carbon storage function.
In addition, these factors are subject to climate change, which affects vegetation growth. Elevation and
slope are also significantly correlated with carbon storage, which is directly related to meteorological
and environmental factors, such as temperature, light, and water.

These findings reveal the driving factors influencing carbon storage and raise interesting questions:
How is carbon storage regulated by vegetation growth and distribution in the Loess Plateau? Do plant
biomass distribution, ecological environment and geographical factors drive carbon storage, and if so,
what is the mechanism of interaction between these environmental driving factors and the storage of
carbon? Future research will answer these questions.
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