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Abstract: A rim driven thruster (RDT) is an integrated deep-sea motor thruster that has been widely
studied. In order to improve the performance of RDT, a novel RDT motor with a modular stator
is proposed in this paper. The electromagnetic performance of the new RDT motor is analyzed
by the finite element method (FEM). The influence of structure parameters on the electromagnetic
performance of the new RDT motor are analyzed in detail. It is shown that the effect of additional
tooth width and pole arc coefficient on the electromagnetic performance of the stator modular RDT
motor is significant. To obtain the optimal design with a maximum average electromagnetic torque
and minimum torque fluctuation ratio, a multi-objective optimization design method combining the
non-dominated sorting genetic algorithm II (NSGA-II), Kriging method and FEM is presented in this
paper. A set of Pareto optimal solutions is obtained, and the optimal design point is selected from the
Pareto fronts. Compared with the initial design, the average electromagnetic torque of the optimized
model is improved by 16.591% and the fluctuation ratio is reduced to 3.18%.

Keywords: stator modular rim driven thruster (RDT) motor; electromagnetic performance; finite element
method (FEM); multi-objective optimization design; Kriging method; NSGA-II algorithm

1. Introduction

The ocean area accounts for over two-thirds of the earth’s surface, most of which are deep sea areas
that still remain to be explored. With the rapid development of marine technology, interest in deep sea
exploration is increasing both in the scientific and business communities [1]. Motor thruster is one of
the core components of deep-sea exploration equipment, and affects their overall performance directly.

The deep-sea environment is characterized by the total absence of sunlight and high hydrostatic
pressure [2]. The requirements for the motor thruster are as follows:

(1) High pressure resistance: The deep-sea motor thruster must be able to work under deep sea
water pressure.

(2) Corrosion resistance: The part of the motor thruster that is in direct contact with seawater must
have seawater corrosion resistance.

(3) High power density: Increasing the power density can effectively reduce the weight of the
motor thruster.

(4) High efficiency: Deep sea exploration equipment has limited energy which is hard to replenish.
Increasing the propulsion efficiency means further voyage and higher working performance.
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(5) Low noise: Propeller noise may affect the acquisition and transmission of signals.
(6) Fault-tolerant performance: Deep-sea detection equipment requires the motor thruster to

be able to operate reliably and continuously. Therefore, it is required to have a high
fault-tolerant performance.

The initial motor thruster for the deep-sea is developed from ordinary shallow water thrusters,
such as podded drive propulsion. It uses complex mechanical seals or magnetic coupling seals to
replace simple sealing structures, while increasing the wall thickness of the motor housing or using
oil filled pressure balance to withstand deep-sea pressure [3,4]. This structure results in the increased
weight and low power density of the deep-sea motor thruster.

In order to simplify the structure of the deep-sea thruster and improve its overall performance,
the integrated motor propulsor named the rim driven thruster (RDT) has been widely studied in the
past 20 years (as shown in Figure 1) [5,6]. The permanent magnets are surface-mounted in a rim around
the tips of the blades and the motor stator is mounted in the duct. The RDT shows many advantages
over conventional propulsion system, such a as more simple structure due to the elimination of the
gear and shafts, lower noise and vibration due to the less tip vortices, space savings and more flexible
installation due to the compact design [7–9]. The open water efficiency of the propeller of RDT is also
higher than that of a podded drive propulsion [10].

There are many factors that affect the overall performance of the RDT, including the output
characteristics of the motor, the matching of the motor and the propeller, the shape of the duct and
the structure of the bearing, among which the motor is the most important and influential factor [8].
Research on this type of motor focuses on the optimization of electromagnetic performance, motor
sealing, anti-corrosion, cooling, control system, weight and thickness, and cost [8,11]. The structure of
the RDT determines that the permanent magnet motor used in RDT has the characteristics of a large
inner diameter and a short axial length, and it is required to reduce the thickness of the duct to reduce
its impact on the hydrodynamic performance of the thruster [12]. Because permanent magnet (PM)
motors have the characteristics of a simple structure, large air gap, small radial thickness, and large
power density, most researchers prefer to use PM motors in their RDT designs. In 2004, a 100 kW PM
motor with 22 magnetic poles and a two-layer fractional winding was designed [13]. The axial flux
PM motor had also been considered in RDT, and has better performance in terms of compactness and
thermal behavior [14]. In the paper [11], an integrated magnetically slotless PM Brushless motor with
a two-segment Halbach array was developed to meet the requirements of compact size and low noise.
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Nevertheless, all the previous PM motors in RDT have a whole piece of stator, which have the
characteristics of high processing costs and poor fault-tolerance. From the viewpoint of reducing the
cost and improving the performance of RDT, a novel RDT motor with a modular stator is proposed
in this paper. The average electromagnetic torque and torque fluctuation ratio are taken as the
optimization objectives, since they are very important for the RDT motor.

The multi-objective optimization design of motor is a nonlinear problem. The most popular
method is performed using FEM coupled with surrogate models and optimization algorithms [15].
However, the optimization algorithms are not very efficient, especially for the optimal design of
new-structure motors [16]. Another global optimization technique is the Taguchi method, which is
developed based on orthogonal experimental design and statistical analysis [17]. The Taguchi method
can significantly reduce the computational time, but the suboptimal solution is often obtained [18,19].
For the novel RDT motor proposed in this paper, the design space, cost and computational time of
the multi-objective optimization design must be reduced. A hybrid method combining NSGA-II,
Kriging method and FEM is described in this paper. The structure and electromagnetic performance of
new RDT motor will first be studied in detail. Then, the impact of the RDT design parameters including
additional tooth height, additional tooth width, slot opening width, and pole arc coefficient on the
electromagnetic performance of the new RDT motor are investigated by using FEM. Through the above
analysis, the additional tooth width and the polar arc coefficient are selected as the main influence
factors. 56 samples are identified and resolved by orthogonal design and their electromagnetic
performances are studied by FEM. Based on the Kriging method, two surrogate models are established.
Finally, the NSGA-II algorithm is applied to complete the multi-objective optimization process and get
the optimum design point of the new RDT motor.

2. Geometry Configuration

For RDT, its input power Pin and output mechanical power Pout could be expressed as:

Pin = U × I (1)

Pout = T ×Va (2)

where, U is the effective value of the input voltage, I is the effective value of the input current, T is
the thrust of propeller, and Va is the freestream fluid velocity. So, the overall efficiency of RDT can be
calculated by equation, as below:

η =
Pout

Pin
=

T ×Va

U × I
(3)

In recent years, there have been many prototype processing and experimental studies on RDT.
A traditional RDT prototype that has been processed and tested by our team is shown in Figure 2a,
and its overall efficiency curve obtained from hydrodynamic experiments is shown in Figure 2b.
The advance ratio (J) means the ratio of the freestream fluid speed to the propeller tip speed, i.e., J is
defined as below [20]:

J =
Va

nD
(4)

where n is the propeller’s rotational speed in rotations per second, D is the propeller’s diameter. It can
be seen that the maximum overall efficiency of the RDT is only 50.9%. Therefore, it is necessary
to improve the design of RDT, including the structure of the motor, the propeller, the duct and the
connection mechanism, etc.

If the efficiency of the motor is defined as ηm, the efficiency of the propeller with the duct is
defined as ηp, and the other mechanical loss is denoted by a coefficient kL. Then, the overall efficiency
of RDT could also be expressed as:

η = ηm × ηp × kL (5)



Energies 2018, 11, 1598 4 of 23

The efficiency of the motor and propeller for RDT could be expressed as below:

ηm =
ωTe

P1
=

2π × n
60

× Te

U × I
(6)

ηp =
J

2π
× KT

KQ
(7)

where Te is the electromagnetic torque, KT is the total thrust coefficient, and KQ is the total torque
coefficient. Since the propeller of RDT has a duct, KT is the sum of the thrust coefficient of the propeller
and duct, while KQ is the sum of the torque coefficient of propeller and duct, as below [21,22]:

KT = KTB + KTN (8)

KQ = KQB + KQN (9)

KTB =
TB

ρn2D4 (10)

KQB =
QB

ρn2D5 (11)

KTN =
TN

ρn2D4 (12)

KQN =
QN

ρn2D5 (13)

where KTB is the thrust coefficient of propeller, KQB is the torque coefficient of propeller, KTN is the
thrust coefficient of duct, KQV is the torque coefficient of duct, TB is the thrust of propeller, QB is the
torque of propeller, TN is the thrust of duct, and QN is the torque of duct. Propeller torque is provided
by the RDT motor. The electromagnetic torque and the propeller torque of the RDT are equal while
ignoring the loss of the torque transmission process. Using the virtual work method, the expression of
the electromagnetic torque Te of RDT motor is as follows [23,24]:

Te = −
∂Wm

∂θ
= − 1

2µo

y

V

[
∂

∂θ
(BPr + BWr)

2
]

dV (14)

where Wm is the magnetic field energy, θ is the rotor position angle, and BPr and BWr are radial
components of the main magnetic field and armature winding magnetic field respectively.

This paper focus on the improvement of motor performance. Figure 3 shows the stator armature
of the traditional RDT. It adopts distributed windings with skew-slot, which have the disadvantages
of long end windings, large copper loss, low fault-tolerant capability, high processing costs and so on.
The structure of the new RDT proposed in this paper is shown in Figure 4. Its stator is composed of
stator part I and stator part II, the stator part I is the winding tooth segment, and the stator part II is the
additional tooth segment. The additional tooth segment can help to fix the winding teeth, and achieves
isolation between windings. Obviously, this structure reduces the difficulty of stator processing,
significantly decreases the length of the end winding, and at the same time, it can realize the physical,
thermal and electromagnetic isolation of each phase winding, and improves fault tolerance capability.
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The structure parameters of the new RDT stator is shown in Figure 5. ba and ha are the width
and height of the additional tooth respectively, bs is the slot opening width. When changing the
height and width of the additional tooth, the effective area of the slot remains unchanged, that is to
say, the thickness and height of the winding are not changed without changing the inner and outer
diameters of the rotor and the thickness of the stator yoke. The stator modular RDT motor is initially
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designed, and some parameters of the initial stator modular RDT motor and the traditional RDT motor
are given in Table 1.Energies 2018, 11, x FOR PEER REVIEW  6 of 23 
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Table 1. Main parameters of two RDT motors.

Main Parameters Traditional RDT Motor Initial Stator Modular RDT Motor

Stator outer diameter (mm) 380 380
Stator inner diameter (mm) 324 324

Stack length (mm) 39 39
Air gap length (mm) 2.5 2.5

Pole number 20 20
Magnet thickness (mm) 3.5 3.5

Rotor inner diameter (mm) 300 300
Slot number 60 24

Slot opening width bs (mm) 2.8 2.0
Tooth width (mm) 6.6 14.5

Height of additional tooth ha (mm) — 14
Width of additional tooth ba (mm) — 2.0

Pole arc coefficient α 0.67 0.67
Number of coil turns/phase 90 100
Number of parallel branches 2 2

Wire diameter (mm) 2.3 4.3
Slot filling factor 77% 77%

Phase resistance (Ω) 0.1186 0.033

Numerical simulation is a precise and high-efficient investigation approach of RDT motors.
Ignoring the end-effect and coupling the electromagnetic field with the circuit, the electromagnetic
performance of the RDT motor can be accurately predicted by two-dimensional (2D) FEM.
All of the numerical simulations are carried out using the electromagnetic field analysis software
Infolytica/MagNet (Mentor Graphics Corporation, Wilsonville, OR, USA). The computer used for the
calculation is a Lenovo-P320 workstation (Shangdi Information Industry Base, Beijing, China) dual
CPU, 16 GB of memory, 2TB storage and windows 7 64-bit operating system.(Microsoft Corporation,
Redmond, WA, USA) The calculation time for each RDT motor sample is approximately 2 h.

Figure 6 shows the phase back-EMF of the traditional RDT motor that obtained by 2D FEM
and experiment. It can be seen that the phase back-FEM waveform of the 2D FEM results are
in good agreement with the experimental results. That means the numerical simulation using
Infolytica/MagNet is acceptable.
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The static magnetic field distribution of two motors is shown in Figure 7. It can be seen that there
is no obvious magnetic saturation in the case of keeping the stator yoke thickness constant. However,
compared to the traditional motor, stator modular RDT motor motors has obvious zigzag leakage
fluxes at the top of the tooth, and the zigzag leakage coefficient is shown in Table 2. Figure 8 is the
normalized phase back-EMF of two RDT motors. Compared with the traditional RDT motor, the stator
modular RDT motor is more suitable for sine wave drive. Harmonic analysis of the back-EMF
(as shown in Figure 9) shows that the stator modular RDT motor increases the fundamental and 3rd
harmonic, and basically eliminates the 5th harmonic.

Table 2. Zigzag leakage coefficient.

RDT Motor Traditional RDT Motor Stator Modular RDT Motor

Zigzag Leakage Coefficient 1.064 1.233
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Figure 9. Harmonic analysis of the phase back–EMF.

For RDT, output torque characteristics of its motor directly affect the propeller’s efficiency and
noise performance. The electromagnetic torque of two RDT motors is shown in Figure 10. Obviously,
the electromagnetic torque of stator modular RDT motor is much smaller than that of the traditional
RDT motor. Figure 11 shows the cogging torque of two RDT motors. The new stator modular RDT
motor basically eliminates the cogging torque without using the skew-slot. Overall, the novel RDT
motor can effectively decrease the output torque fluctuations and reduce the processing difficulty, so it
is suitable for underwater propulsion.
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Figure 10. Electromagnetic torque.
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Figure 11. Cogging torque.

3. Influence of Structural Parameters on the New RDT Motor

The stator modular RDT motor proposed in this paper uses fractional-slot concentrated
windings and has a unique additional tooth structure. The design optimization of a PM motor
is a high-dimensional multi-objective problem because of the great number of design parameters,
objectives, and constraints [16,25]. In actual production, the manufacturing tolerances also need to
be taken into account [26]. This paper focuses on the influence of the four design parameters on the
electromagnetic performance of the RDT motor, and neglects the manufacturing tolerances.

The influence of these structure parameters, including additional tooth height, additional tooth
width, slot opening width, and pole arc coefficient on the electromagnetic performance of the new
RDT motor are analyzed in detail by 2D FEM.

3.1. Influence of the Slot Opening Width

The slot opening width bs is varied from 1 mm to 4.0 mm with a 0.5 mm interval, and the
other design parameters remained unchanged. 7 models are established and their electromagnetic
performances are obtained by the finite element method. Figure 11 shows the influence of the slot
opening on the electromagnetic performance of the stator modular RDT motor. The peak value of
cogging torque of the new RDT motor with a different slot opening width is predicted and shown in
Figure 12a. When the slot opening width is quite small, the cogging torque slightly changes. However,
when the slot opening width is greater, more flux leakage will go through the additional tooth, and the
cogging torque increases rapidly. Figure 12b,c are the back-EMF and the harmonic distribution for
the new RDT motor with different slot opening width. Figure 12d,e are the average electromagnetic
torque and the fluctuation ratio of the electromagnetic torque.

With the increase of the slot opening width, the average electromagnetic torque decreases, and the
fluctuation ratio increases. The main reason for the decrease of the average electromagnetic torque
is that with the increase of the slot opening width, the amplitude of the 3rd and 11th harmonics are
greatly reduced, which exceeds the influence of the amplitudes of the 1st and the 9th harmonics on the
electromagnetic torque. It can also be seen from the figure that the variation trend of the fluctuation
ratio of electromagnetic torque is similar to that of the cogging torque. This is because the change of
the electromagnetic torque is codetermined by the cogging torque and the harmonic distribution of
back-EMF. Figure 12f is the curve of the stator iron loss. The stator iron loss slightly decreases with
the increase of the slot opening width. This is due to the increase of the slot opening leading to the
reduction of the tooth tip. For the new RDT motor, reduce tooth tip means that the magnetic field
oversaturated area becomes smaller.

The influence of the slot opening width on electromagnetic torque and torque fluctuation is
monotonous, that is, as the notch width increases, the electromagnetic torque decreases, while the
torque ripple increases. So, the slot opening width of the new RDT motor should be 1 mm.
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Figure 12. Influence of the slot opening width (a) Cogging torque (b) Back—EMF (c) Harmonic analysis
of the phase back—EMF (d) Average electromagnetic torque (e) Fluctuation ratio of electromagnetic
torque (f) Iron loss.

3.2. Influence of the Additional Tooth Height

The additional tooth height ha changes from 10 mm to 14 mm with a 1 mm interval. Figure 13
shows the influence of the additional tooth height on the electromagnetic performance of the stator
modular RDT motor. It can be seen from the figure that the influence of the additional tooth height on
the back-EMF and the average electromagnetic torque is very weak. However, with the increase in the
height of the additional tooth, the cogging torque and fluctuation ratio of electromagnetic torque are
significantly reduced, and the iron loss is also slightly reduced. Therefore, the additional tooth height
should be the maximum value, i.e., ha = 14 mm.
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Figure 13. Influence of the additional tooth height (a) Cogging torque (b) Back—EMF (c) Average
electromagnetic torque (d) Fluctuation ratio of electromagnetic torque (e) Iron loss.

3.3. Influence of the Additional Tooth Width

The change of the additional tooth width (ba) changes the position of the slot opening as
well as affecting the winding coefficient. As shown in Figure 14, the additional tooth width ba

changes from 1 mm to 8 mm with a 1 mm interval, with the increase of the additional tooth width,
the average electromagnetic torque increases first and then decreases, and the fluctuation ratio of the
electromagnetic torque increases continuously. The effect of additional tooth width on the average
electromagnetic torque and the fluctuation ratio is very significant. It also can be seen from the figure
that the iron loss continues to increase with the increase of the additional tooth width.
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Figure 14. Influence of the additional tooth width (a) Cogging torque (b) Back—EMF (c) Harmonic 
analysis of the phase back EMF (d) Average electromagnetic torque (e) Fluctuation ratio of 
electromagnetic torque (f) Iron loss. 
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3.4. Influence of the Pole Arc Coefficient

The pole arc coefficient α directly affects the air gap flux density and the stator magnetic field,
thereby affecting the electromagnetic performance of the stator modular RDT motor. As can be seen
from Figure 15, when the slot opening width is 2 mm, the additional tooth width is 2 mm, and the
additional tooth height is 14 mm, the peak value of the cogging torque fluctuates in a very small
range as the pole arc coefficient changes from 0.6 to 0.9, but the average electromagnetic torque and
electromagnetic torque fluctuation ratio change significantly, and the iron loss continues to increase.

From the above comparative analysis, it can be seen that in these four motor design parameters,
the effect of the additional tooth width and pole arc coefficient on the electromagnetic performance
of the stator modular RDT motor is significant and irregular. The average electromagnetic torque
of the motor at rated speed determines the torque of the propeller and affects the overall thrust of
the RDT. The torque fluctuation affects the thrust stability and noise performance of RDT. Therefore,
this paper takes the average electromagnetic torque and torque fluctuation ratio as the optimization
goal, and takes the additional tooth width and the polar arc coefficient as the influence factors to
perform the multi-objective optimization problem (MOP).
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Figure 15. Influence of the pole arc coefficient (a) Cogging torque (b) Back-EMF (c) Harmonic analysis
of the phase back EMF (d) Average electromagnetic torque (e) Fluctuation ratio of electromagnetic
torque (f) Iron loss.

4. Multi-Objective Optimization Design

Unlike the single-objective optimization problem which provides only a single optimal solution,
the multi-objective optimization problems (MOPs) need to coordinate the relationship between the
sub objective functions and provide a set of points known as Pareto optimal solutions. In this paper,
the Non-dominated sorting genetic algorithm-II (NSGA-II) was utilized to solve the MOP of the new
RDT motor. NSGA-II is one of the most widely used multi-objective optimization algorithms, which has
the characteristics of high efficiency, minimum user interaction, solutions uniformly distributed and so
on [27,28].

Generally, NSGA-II is a method of searching for the Pareto optimal solutions according to several
certain known models (surrogate models). In this paper, these surrogate models are established
using the Kriging method, such as maximal electromagnetic torque (Te(x)) and minimal torque
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fluctuation ratio (Kt(x)) The constraint conditions were given based on the actual size of the RDT
motor. The multi-objective function of the stator modular RDT motor could be defined as:

V : F(X) = MIN(−Te(X), Kt(X))

s.t 1 ≤ bt ≤ 8
0.6 ≤ α ≤ 0.9
X = [bt, α]T

(15)

NSGA-II could find a set of Pareto optimal solution and corresponding design parameters of the new
RDT motor.

4.1. Kriging Method

The Kriging Method proposed by Danie G. Krige in 1951 is a widely used surrogate model to
establish the response surface [29,30]. The Kriging method expresses the unknown function as the sum
of the linear regression part and the system deviation part:

ŷ(X) = f(X)T β + Z(X) (16)

f(X) = [ f1(X), f2(X), L, fk(X)]T (17)

β = [β1, β2, . . . , βk]
T (18)

where, f(x) is the regression function, β is the correlation coefficient, and z(x) represents a model of
a Gaussian and stationary random process with zero mean and covariance:

E[Z(X)] = 0 (19)

Var[Z(X)] = δ2 (20)

Cov
[
Z(Xi)Z

(
Xj
)]

= δ2R
(
Xi, Xj

)
(21)

where, δ2 is the variance of stationary random process, and R(Xi,Xj) is spatial correlation function.
There are several options for spatial functions. In the design and analysis of computer experiments
(DACE), it is generally defined as:

R
(
Xi, Xj

)
=

d

∏
k=1

e−θk(Xik−Xjk)
p
, θ ≥ 0, 0 ≤ p ≤ 2 (22)

where, θk is the kth element of the correlation vector parameter θ, xik and xjk are the kth element of
the training sample point Xi and Xj, p is the smoothness of the model (Gauss correlation function
corresponds to p = 2). The correlation matrix can be obtained as follows:

R =

 R(X1, X1) . . . R(X1, XN)
...

. . .
...

R(XN , X1) . . . R(XN , XN)

 (23)

where, R(XN XN) is the spatial correlation function of two known sample points. The correlation
between an unknown prediction point X̂ and the N sample points could be defined as:

r(X) = [R(X̂, X1), . . . , R(X̂, XN)]
T

(24)
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The best linear unbiased estimate for the unknown point X is [31]:

ŷ(X) = fT(X)β̂ + rT(X)R−1(Y− Pβ̂)P =
[
fT(X1), . . . , fT(XN)

]T
(25)

where, β̂ =
(
PT R−1 P

)−1PT R−1 Y is the least squares estimation of β. The uncertainty of Kriging
predictor ŷ = (X) is:

MSE = E[(ŷ(X)− y(X))2]= {1− rT(X)R−1r(X) +
[
1− PTR−1 r(X)

]2(
PTR−1

)−1
} (26)

MATLAB (MathWorks, Natick, MA, USA) is used for the Kriging method program writing.
Normalization method was carried out as following:

yi(X) =
yi(X)− yimin

yimax − yimin
(27)

where, yimin and yimax are the minimum and maximum of the ith sub objective function, yi(X) is the
ith sub objective function after dimensionless method.

The additional tooth width ba changes from 1 mm to 8 mm with a 1 mm interval and the pole arc
coefficient α changes from 0.6 to 0.9 with a 0.05 interval. 56 samples were analyzed by using the finite
element method (FEM). The normalized objective value y1(X) and y2(X) is shown in Tables 3 and 4.
The response surface of two sub objective function is built as shown in Figures 16 and 17.

Table 3. Normalized objective value y1(X).

y1(X)
Additional Tooth Width ba/mm

1 2 3 4 5 6 7 8

Pole arc coefficient
α

0.60 0.2655 0.3012 0.223 0.1881 0.1474 0.0987 0.0612 0
0.65 0.4340 0.4709 0.3968 0.3527 0.3219 0.2704 0.2326 0.1683
0.70 0.5879 0.6305 0.5461 0.4992 0.4631 0.4062 0.3606 0.2954
0.75 0.7061 0.7449 0.6632 0.6145 0.5818 0.5273 0.477 0.4083
0.80 0.8202 0.8606 0.7764 0.7259 0.6775 0.6219 0.5709 0.4988
0.85 0.9039 0.9454 0.8602 0.8096 0.7485 0.6887 0.6478 0.5752
0.90 0.9574 1 0.9123 0.8589 0.8191 0.7574 0.7125 0.6381
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Table 4. Normalized objective value y2(X).

y2(X)
Additional Tooth Width ba/mm

1 2 3 4 5 6 7 8

Pole arc coefficient
α

0.60 0.3438 0.2984 0.2072 0.3407 0.5378 0.7509 0.9109 1
0.65 0.3101 0.3927 0.4173 0.4965 0.6104 0.7005 0.7979 0.889
0.70 0.0693 0.228 0.3685 0.4678 0.5172 0.5547 0.5833 0.5985
0.75 0.2113 0.1931 0.1895 0.3083 0.4164 0.495 0.5429 0.5364
0.80 0.2455 0.2149 0.1785 0.1466 0.1407 0.225 0.3065 0.3492
0.85 0.0343 0.0584 0.0829 0.0845 0.0645 0.0519 0.067 0.1395
0.90 0 0.0612 0.1177 0.1729 0.2716 0.4001 0.4907 0.5224
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4.2. Optimization Algorithm (NSGA-II)

The flowchart of the multi-objective optimization design method combining NSGA-II, the Kriging
method and FEM is shown in Figure 18. The steps of the NSGA-II algorithm are presented as
follows [32,33]:

1. Setting the parameters to control the NSGA-II algorithm (number of individuals in the population
npop; maximum number of generations nmax

gen ; recombination rate trec and mutation rate tmut) and
the range of variables.

2. Randomly generate initial populations P0 that satisfy the constraint and calculate the objective
function value corresponding to each individual. The objective function value obtained from the
surrogate models established by using Kriging method.

3. Non-dominated sorting and crowding degree calculation of Pt. Rapid non-dominated sorting
based on the objective function values of average electromagnetic torque and torque fluctuation
ratio of each individual. The crowding degree is the crowding distance between solution i and
neighboring solutions i − 1 and i + 1. This technique can make the solutions evenly distributed
in the target space, prevent “stacking” and ensure the global optimization of the algorithm.
The crowding distance of the ith individual (L(i)) is defined as following:

L(i) =
r

∑
k=1

(L(i + 1)× fk − L(i− 1)× fk)/
(

f max
k − f min

k

)
(28)

where, fk is kth objective function value of solution set.
4. Perform genetic manipulations, including selection, crossover and mutation. This is the core part

of the optimization iteration of NSGA-II algorithm. Subpopulations can be obtained through
this step.
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5. Carry out the elite strategy. Combine the parent populations with sub populations, and generate
the next-generation parent population based on non-dominated sorting and crowding degree
calculation. Calculate iteratively until the number of iterations gets the maximum number of
generations nmax

gen .
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Figure 18. Flowchart of the multi-objective optimization design method combining NSGA-II,
the Kriging method and FEM.

Using NSGA-II to perform multi-objective optimization of the surrogate models −y1(X) and
y2(X) established by the Kriging method. The parameters are set as follows: The initial population
size npop is 100, the maximum number of the evolution generation nmax

gen is 50, the mutation probability
is tmut 0.05, and the recombination probability trec is 0.5.

Figure 19 shows the Pareto front of the average electromagnetic torque and its fluctuation
ratio. The points A and C are the optimum design points which can be obtained by single-objective
optimization. It can be seen from this figure that choosing appropriate values for design variables
for obtaining a better value of one objective would cause a worse value for the other objective.
Therefore, it is necessary to select an optimal design scheme in Pareto optimal solutions, so that the
electromagnetic torque and torque fluctuation ratio can meet the requirements. For the RDT motor, it is
necessary to achieve a given electromagnetic torque, while making the torque fluctuation as small as
possible. Setting the electromagnetic torque to 28 Nm, the optimum design points is marked with the
red five-pointed star B. The optimum design parameters and objective functions obtained by NSGA-II
are shown in Table 5.



Energies 2018, 11, 1598 18 of 23
Energies 2018, 11, x FOR PEER REVIEW  18 of 23 

18 

 
Figure 19. Pareto front of two optimization objectives. 

Table 5. Optimum design parameters and objective functions. 

Variable Value 
bt (mm) 1.56 
α 0.883 

Te (Nm) 28.013 
Kt (%) 3.037 

4.3. Analysis of Optimization Results 

According to the optimal design parameters, a finite element model with additional tooth width 
of 1.56 mm and pole arc coefficient of 0.883 is established. The electromagnetic torque of the 
optimized model is shown in Figure 20. Table 6 shows the comparison of the objective functions 
between the optimal design and initial design. The average torque calculated by the numerical 
method is 28.089 Nm and the absolute error between the NSGA-II optimization result and the 
numerical result is 0.076 Nm. The average electromagnetic torque of the optimized model is 
improved by 16.591% and the fluctuation ratio is reduced to 3.18% when compared with the initial 
design. 

 
Figure 20. Electromagnetic torque of the optimized model. 

27.5 27.6 27.7 27.8 27.9 28.0 28.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4
 Pareto optimal solutions  

F
lu

ct
u

at
io

n
 r

at
io

 (
%

)

Average electromagnetic torque (Nm)

0 5 10 15 20 25 30 35 40 45 50 55 60 65
20

21

22

23

24

25

26

27

28

29

30

Average value
is 24.092N.m

Torque fluctuation 
ratio is 8.669%

Average value
is 28.089N.m

Torque fluctuation 
ratio is 3.18%

E
le

ct
ro

m
ag

n
et

ic
 t

or
q

u
e 

T
e 

(N
.m

)

Rotor position (deg)

Optimized model
 Initial model

Figure 19. Pareto front of two optimization objectives.

Table 5. Optimum design parameters and objective functions.

Variable Value

bt (mm) 1.56
α 0.883

Te (Nm) 28.013
Kt (%) 3.037

4.3. Analysis of Optimization Results

According to the optimal design parameters, a finite element model with additional tooth width
of 1.56 mm and pole arc coefficient of 0.883 is established. The electromagnetic torque of the optimized
model is shown in Figure 20. Table 6 shows the comparison of the objective functions between the
optimal design and initial design. The average torque calculated by the numerical method is 28.089 Nm
and the absolute error between the NSGA-II optimization result and the numerical result is 0.076 Nm.
The average electromagnetic torque of the optimized model is improved by 16.591% and the fluctuation
ratio is reduced to 3.18% when compared with the initial design.
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Table 6. Comparison of the objective functions between the optimum design and initial design.

Type of the Design Optimum Design (FEM) Initial Design

Objective functions Te (Nm) 28.089 24.092
Kt (%) 3.18 8.669

Figure 21 shows the magnetic field distribution of the optimized model and the initial design
model. The flux density at the air gap is shown in Figure 22. It can be seen from Figures 20 and 21 that
the peak value and the average value of the air gap flux density of the optimized model increase when
compared with the initial design model. The effective magnetic flux of the optimized model is also
increased, as a result of the pole arc coefficient and additional tooth width change.

Figures 23 and 24 are the phase back-EMF and its spectra of the initial model and optimized
model. It is found that the amplitude of back-EMF of the optimized model larger than that of the initial
model, especially the amplitude of fundamental. This is the main reason why the electromagnetic
torque of the optimized model is greater than the initial model. The total harmonic distortion (THD)
of the optimized model and the initial model are 6.748% and 8.745% respectively. That means the
back-EMF of the optimized model is closer to the ideal sine wave, so the fluctuation ratio is smaller
than the initial model.
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5. Conclusions

In order to improve the performance of the RDT, a stator modular motor is proposed in this paper.
Compared with the traditional RDT motor, the stator modular RDT motor could reduce the difficulty
of stator processing, shorten the end winding and improve fault tolerance capability. The influence
of four design parameters of the new RDT motor on its electromagnetic performance is analyzed,
and it is found that the effect of additional tooth width and pole arc coefficient on the electromagnetic
performance of the stator modular RDT motor is significant. The average electromagnetic torque
and torque fluctuation ratio were taken as the optimization objectives. A hybrid multi-objective
optimization design method of the new RDT motor was established combining NSGA-II, the Kriging
method and FEM. This method can reduce the design space, cost and computational time of the
multi-objective optimization design. A set of Pareto optimal solutions was obtained, and the optimal
design point is selected from the Pareto fronts. A finite element RDT motor model with optimal
design parameters is established to verify the multi-objective optimization results. Compared with
the initial design, the average electromagnetic torque of the optimized model is improved by 16.591%
and the fluctuation ratio is reduced to 3.18%. These analysis and optimization results based on FEM
provide a theoretical guidance and reference for RDT motor design. Further work will focus on the
experimental research of the RDT motor, as well as the multi-level and multi-disciplinary optimization
of the overall performance of RDT.
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Nomenclature

Pin Input power of RDT
Pout Output mechanical power of RDT
U Effective value of the input voltage
I Effective value of the input current
T Thrust of propeller
Va Freestream fluid velocity
η Overall efficiency of RDT
J Advance ratio
n Propeller’s rotational speed
D Propeller’s diameter
ηm Efficiency of the motor
ηp Efficiency of the propeller
kL Mechanical loss coefficient
Te Electromagnetic torque
KT Total thrust coefficient
KQ Total torque coefficient
KTB Thrust coefficient of propeller
KQB Torque coefficient of propeller
KTN Thrust coefficient of duct
KQN Torque coefficient of duct
TB Thrust of propeller
QB Torque of propeller
TN Thurst of duct
QN Torque of duct
θ Rotor position angle
Wm Magnetic field energy
BPr Radial components of the main magnetic field
BWr Radial components of the armature winding magnetic field
ba Width of additional tooth
ha height of additional tooth
bs Slot opening width
bt Width of stator tooth
α Pole arc coefficient
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