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Abstract: To deal with extreme overvoltage scenarios with small probabilities in regional power
grids, the traditional reactive power planning model requires a huge VAR compensator investment.
Obviously, such a decision that makes a large investment to cope with a small probability event
is not economic. Therefore, based on the scenario analysis of power outputs of distributed
generations and load consumption, a novel reactive power planning model considering the active
and reactive power adjustments of distributed generations is proposed to derive the optimal
allocation of VAR compensators and ensure bus voltages within an acceptable range under extreme
overvoltage scenarios. The objective of the proposed reactive power planning model is to minimize
the VAR compensator investment cost and active power adjustment cost of distributed generations.
Moreover, since the proposed reactive power planning model is formulated as a mixed-integer
nonlinear programming problem, a primal-dual interior point method-based particle swarm
optimization algorithm is developed to effectively solve the proposed model. Simulation results were
conducted with the modified IEEE 30-bus system to verify the effectiveness of the proposed reactive
power planning model.

Keywords: reactive power planning; distributed generation; active power adjustment; mixed integer
nonlinear programming

1. Introduction

The increasing penetration of distributed generations (DGs) significantly alleviates the greenhouse
gas emission and energy supply shortage issue. However, the high penetration of DGs brings big
impacts on the secure and stable operation of the regional power grid. For example, the unidirectional
power flow pattern of the regional power grid is changing to the complicated bidirectional power
flow pattern [1–4]. Moreover, the large-scale integration of DGs influences the power quality of
regional power grids [5,6], especially the stability of voltage [7,8]. For example, in [8], the impacts of
different types of DGs, such as wind turbine (WT) and photovoltaic (PV), on the voltage profile of
the regional power grid was studied. The results showed that different types, locations, and sizes of
DGs have different influences on regional power grids. Therefore, it is imperative to perform voltage
management in regional power grids.
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Different means have been proposed to improve the voltage profile of power grids. In [9], the
author proposed a decision-making algorithm that can determine the optimal location and size for
DG based on the improvement of the voltage profile and the reduction of total reactive power losses.
The proposed algorithm was tested on the IEEE 33-bus radial regional power grid and simulation
results demonstrated that the proposed algorithm has an acceptable accuracy. In [10], the impacts of the
integration of energy storage systems (ESSs) of different capacity on the power network were analyzed.
The results showed that the integration of ESSs has positive an effect on the voltage profile of the power
grid integrated with DGs. In addition to the above means, reactive power planning (RPP) also plays
an important role in improving the voltage profile by optimizing the allocation of VAR compensators
in terms of location and size. In [11], a voltage stability index-based method was proposed to find the
best placement of static VAR compensators (SVCs) to avoid the voltage collapse. The proposed method
first identifies the critical path that experiences the maximum voltage drop and then determines the
best location for placing SVC. In [12], the author addressed the optimal placement of SVC devices by
formulating a nonlinear programming problem that maximizes system loading margin and constrains
voltage deviations. The proposed optimization was formulated based on the multi-scenario framework
and was solved by the bender decomposition technique incorporating multiple restarts. In [13], the
author presented an application of Cuckoo search algorithm to determine the location and size of
SVC device. The objective is to minimize the energy losses, voltage deviations and operational cost
of SVC. The results demonstrate that the Cuckoo search algorithm always gives the better solution
with the high performance.

Although the above methods are effective in determining the optimal placement of SVC, the
influence of the integration of DGs on reactive power planning is not considered. In [14], an RPP
model for the regional power grid integrated with DGs was proposed, in which the active power
output of DG was considered as its expected value that is calculated using the probability distribution
function (PDF) of DG actual power output. The objective function of the proposed model is to
minimize the SVC investment cost, system line losses and voltage deviations, and NSGA-II algorithm
was used to solve the proposed model. In [15], the scenario analysis method was adopted to deal
with the uncertainty of DG. According to the PDF of DG power output, multiple typical scenarios
were generated. Based on these scenarios, an RPP model was formulated to minimize the expected
SVC investment cost and expected system energy loss cost. In [16], a chance-constrained RPP model
was proposed for the distribution system integrated with wind farm. The author used the point
estimate method (PEM) as the probability power flow calculation methodology and formulated a
probabilistic model of wind turbine. In the RPP model, nodal voltage and branch power constraints are
formulated as chance-constrained constraints and the voltage stability index is considered to be one of
the multiple objectives. In [17], a cumulant-based stochastic RPP model considering stochastic nature
of wind power was proposed. Firstly, power outputs of DGs and load forecasts are modelled using
the PDF. Then, a stochastic optimization is proposed to minimize the cost of capacitors and annual
energy loss and is solved using the Logarithmic Barrier Interior Point (LBIP) method, which can offer
a linear relationship between the cumulants of input variables and output variables. Therefore, the
output variables, e.g., capacitor size, have their PDFs that can be reconstructed using the Gram-Charlier
Expansion theory.

However, the above-mentioned RPP models do not consider the reactive power adjustments
of DGs that can also be used to improve the voltage profile. The author in [18] pointed out that the
PV, WT, and hydropower plant can output reactive power within their capacity such that they can
participate in reactive power dispatch in power systems. Therefore, taking advantage of the reactive
power adjustments of DGs can reduce the VAR compensators investment cost in regional power grids.
The authors in [19] formulated a fuzzy stochastic RPP model considering reactive power supply from
wind generation. The proposed optimization minimizes the total cost of capacitor investment and
the annual energy loss while constrains voltages within limits. Moreover, the fuzzy optimization
models were used to represent bus voltage constraints in the proposed model. In [20], the RPP
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problem is formulated as a two-stage programming model, in which the reactive power adjustment
of DG is considered. The model first optimizes the location and size of VAR compensators in one
stage, and then minimizes the fuel cost in other stage and, eventually, finds the global optimal RPP
results iteratively.

In some extreme conditions, extreme overvoltage problem may occur in the real power system.
To cope with this situation, even if the reactive power adjustment of DG is considered in the RPP
model, it still requires huge VAR compensators investment due to the limited capacity of reactive
power adjustments. Obviously, such a decision is not economic because the occurrence probability of
the extreme overvoltage event is very small. It is not reasonable to require a huge VAR compensators
investment to deal with the event with very small occurrence probability. To deal with such a problem,
the active power adjustment of DG should also be considered in the proposed RPP model. It is
expected that the VAR compensator investment cost can be reduced if the active power adjustment of
DG can be used to regulate overvoltage under extreme overvoltage scenarios. To the best knowledge
of the authors, considering the active power adjustment of DG in the RPP model has not be studied.
Therefore, this paper proposes an RPP model considering the active and reactive power adjustments
of DGs to obtain an optimal decision for the allocation of VAR compensators.

Firstly, the Latin hypercube sampling (LHS) method [21] is used to generate scenarios of power
outputs of DGs and load consumption, and the number of generated scenarios is reduced using
the simultaneous backward reduction technique [22]. Secondly, based on the typical scenarios, an
RPP model considering the active and reactive power adjustments of DGs is proposed to determine
the optimal allocation of VAR compensators [23–25]. Finally, the proposed RPP model is solved
by the proposed primal dual interior point (PDIP) method-based particle swarm optimization
(PSO) algorithm.

2. The Proposed RPP Model Based on the Active and Reactive Power Adjustments of DGs

2.1. Scenario Generation and Reduction

In the study, the uncertainties of DGs and load consumption are dealt with using the scenario
analysis method. The LHS method is used to generate scenarios of active power outputs of DGs and
load consumption and the simultaneous backward reduction technique is used to reduce the number
of generated scenarios.

2.1.1. Latin Hypercube Sampling

The LHS method is a stratified sampling method, which ensures that the sampling points can be
uniformly and completely covered in the distribution range of the variable. The LHS method consists
of two steps, namely sampling and permutation.

Defining Fk (Xk) as the cumulative distribution function (CDF) of the input variable Xk (k = 1, 2,
. . . , m). Then, the scale of CDF is divided into N equal intervals. A value is extracted in each interval
and the sampling value is obtained through the transformation of the inverse function of Fk. The n-th
sampling value is as follows:

xn
k = F−1

k [(n− 0.5)/N] (1)

The sampling procedure is illustrated in Figure 1.
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Figure 1. Sampling procedure of the Latin hypercube sampling (LHS) method. 
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Since the correlation of derived sampling values does not reflect the practical correlation between
input variables, the permutation procedure is required. In the study, the PSO algorithm is used to
obtain the desired correlation between sampling values. The detailed procedures are as follows:

Step (1) Generating a population including a number (Np) of particles: X(j)
k and V(j)

k (k = 1, 2, . . . ,
Np) are the position and updating velocity, respectively, of the k-th particle in the j-th iteration. Here,
a particle represents a permutation operation.

Step (2) Defining a fitness function F(X(j)
k ) to represent the quality of X(j)

k . The fitness function is
as follows:

F
(

X(j)
k

)
= abs

(
f
(

X(j)
k

)
− c
)

, (2)

where f (X(j)
k ) is the correlation coefficient between sampling values after performing the permutation

operation denoted by X(j)
k on the sampling values; c is the desired correlation coefficient. The X(j)

k is
better when its fitness function is smaller. Accordingly, let Pk be the best position of the k-th particle
among all positions where it has passed, and let Pg be the best position among all Pk (k = 1,2, . . . ,Np).

Step (3) Updating X(j)
k and V(j)

k as follows: V(j+1)
k = eV(j)

k + c1r1

(
Pk − X(j)

k

)
+ c2r2

(
Pg − X(j)

k

)
X(j+1)

k = X(j)
k + V(j+1)

k

(3)

where, c1 and c2 are the learning factors; e is the inertial weight; and r1 and r2 are random numbers
between 0 and 1.

Step (4) Calculating the fitness functions for all particles in the j + 1 iteration. Comparing the
current position of the k-th particle with Pk, and set Pk to be the better one of them. Then, set Pg be
the best one of all Pk. Then, if the permutation operation denoted by Pg can make f (Pg) closer to the
desired correlation coefficient, the corresponding permutation operation is made on the sampling
values; otherwise, no permutation operation is performed.

Step (5) Iterative process stops when the correlation coefficient between samples reaches a desired
value; otherwise, back to step 3 and the iteration number increases by one.

2.1.2. Simultaneous Backward Reduction Technique

In the study, the simultaneous backward reduction technique is used to reduce the number of
generated scenarios. A scenario can be defined as follows:

w(i) =
[
λ
(i)
0 , λ

(i)
1 , λ

(i)
2 , ..., λ

(i)
l

]
, i = 1, 2, 3, ..., Ns (4)
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where w(i) represents i-th scenario; Ns is the number of generated scenarios; λ
(i)
s is the s-th element

of the i-th scenario; l is the length of the scenario. Accordingly, the Kantorovich distance between
scenario i and scenario j is as follows:

d
(

w(i), w(j)
)
=

(
l

∑
n=0

(
λ
(i)
n − λ

(j)
n

)2
)1/2

(5)

According to above definitions, the procedures of using the simultaneous backward reduction
technique to reduce the number of generated scenarios are as follows:

Step (1) Deleting the scenario w(s) that is closest to all the other scenarios. The scenario w(s)

satisfies the following equation:

π(s
∗)π(s)min

s∗ 6=s
d
(

w(s∗), w(s)
)
= min

m∈{1,2,...,Ns}
π(m)

{
min

n 6=m,n∈{1,2,...,Ns}
π(n)d

(
w(n), w(m)

)}
(6)

where π(s) is the occurrence probability of s-th scenario.
Step (2) The number of scenarios decreases by one and selecting the scenario w(s) that is closest to

the deleted scenario w(s) using the following equation:

d(w(s), w(s)) = min
s∗ 6=s

d
(

w(s∗), w(s)
)

(7)

Step (3) Changing the occurrence probability of the scenario w(s) using the following equation:

π(s) = π(s) + π(s) (8)

Step (4) Back to step 1 if the number of remaining scenarios is larger than the specified number;
otherwise, the reduction process stops.

2.2. Verification of the Effectiveness of the Active Power Adjustments of DGs under Extreme Overvoltage Scenarios

Based on the generated scenarios of active power outputs of DGs and load consumption, the PDF
of bus voltages in regional power grids can be obtained and an example of the PDF of bus voltages is
shown in Figure 2. It can be seen that the area I represents the qualified voltage area while area IV is the
extreme overvoltage area. Area II and III are the low voltage area and overvoltage area, respectively,
in which the reactive power adjustments of DGs and VAR compensators can meet the demand of
voltage management. In the extreme overvoltage area (area IV), the active power adjustments of
DGs can be used to manage voltages. The effectiveness of such a means for voltage management is
validated in this section.
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The modified IEEE 30-bus system is selected as the simulation system, as shown in Figure 3, in
which four DFIG-based wind turbines (WTs) are connected to bus 2 (WT2), bus 5 (WT5), bus 31 (WT31)
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and bus 33 (WT33), two small hydropower plants (HPs) are connected to bus 11 (HP11) and bus 13
(HP13). Detailed parameters of the system and DGs are given in the Section 4. It is assumed that the
required range of the bus voltage is 0.94 p.u.–1.06 p.u.

Three cases studies were conducted under the extreme overvoltage scenario. The power outputs
of DGs, which are connected in the distribution network, under the extreme overvoltage scenario
are listed in Table 1. In case 1, voltage management is not performed; in case 2, the reactive power
adjustments of DGs and VAR compensators are used to manage voltages; in case 3, the active and
reactive power adjustments of DGs and VAR compensators are used to manage voltages. The power
flow results of three cases are listed in Table A1 in Appendix A and illustrated in Figure 4. It can be
seen that, in case 1, there are extreme overvoltage problems, e.g., bus 25, bus 26 and bus 31, and low
voltage problem, e.g., bus 24. In case 2, power outputs of DGs after adjustments are listed in Table 1
and the location and size of VAR compensators are listed in Table A2 in Appendix A. It can be seen
that, in this case, WT31 absorbs reactive power to alleviate extreme overvoltage at bus 31; however,
as shown in Figure 4, an overvoltage problem still occurs at bus 31. In such a case, an additional
investment of VAR compensators is required to regulate voltages due to the limited capabilities of
reactive power adjustments of DGs. However, in case 3, the active power curtailment of DGs can
help alleviate overvoltage. The power outputs of DGs in case 3 are listed in Table 1, it can be seen
that the active power output of WT31 is reduced and overvoltage at bus 31 is alleviated. Therefore, it
can be concluded that the active power adjustments of DGs can be used to effectively improve the
voltage profile under extreme overvoltage scenarios. Therefore, the active power adjustment of DG
can be considered in the RPP model to deal with extreme overvoltage scenarios and obtain an optimal
allocation of VAR compensators. As a result, the cost of VAR compensator investment can be reduced.
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Table 1. Power outputs of distributed generations (DGs) under the extreme voltage scenario.

Cases Power Outputs WT31 WT33 HP11 HP13

extreme scenario
active power (MW) 18.62 18.62 16.15 16.15

reactive power (MVA) 0 0 10.01 10.01

case 1
active power (MW) 18.62 18.62 16.15 16.15

reactive power (MVA) 0 0 10.01 10.01

case 2
active power (MW) 18.62 18.62 16.15 16.15

reactive power (MVA) −2.92 0 10.01 10.01

case 3
active power (MW) 13.62 18.62 16.15 16.15

reactive power (MVA) −2.92 0 10.01 10.01
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2.3. Proposed RPP Model Based on the Active and Reactive Power Adjustments of DGs

Based on typical scenarios of active power outputs of DGs and loads, a novel RPP model
considering the active and reactive power adjustments of DGs is proposed. Since the active power
curtailment of DGs will reduce the profits of power generation companies, the objective of the proposed
RPP model is to minimize the cost of VAR compensator investment and the lost profits of power
generation companies for active power curtailment of DGs. Moreover, to accurately characterize the
VAR compensator investment cost, the life cycle cost (LCC) of VAR compensator is used to represent
the total cost over its entire life cycle.

Objective 1: Minimize the equivalent annual cost of VAR compensator investment.

f1 =

(
Nb

∑
i=1

kiLi

)
r(1 + r)n

(1 + rn)− 1
(9)

Li = CIi + CMi + CDi (10)

where Li is the life cycle cost of the VAR compensator at i-th bus; if a VAR compensator is installed at
i-th bus, ki = 1; otherwise, ki = 0; Nb is the number of buses in the system; r is annual discount rate; n
is the number of usable years of the VAR compensator; CIi, CMi and CDi are, respectively, the initial
investment cost, operating maintenance cost and the scrap cost of the VAR compensator.

Objective 2: Minimize the expected cost of active power curtailment under typical scenarios

f2 =
Ns

∑
s=1

π(s)c3T

(
G

∑
i=1

(
Ps,0

i − Ps
i

))
(11)

where Ns is the number of generated typical scenarios; G is the number of DGs that are used to regulate
voltages by adjusting their active power outputs; c3 is the retail tariff; T is the number of annual
operating hours; Ps,0

i is the expected power output of i-th DG under s-th scenario; Ps
i is the actual

power output of i-th DG under s-th scenario after the active power curtailment.
According to the objective 1 and objective 2, the objective function of the proposed RPP model

can be described as follows:
min f = f1 + f2 (12)

Moreover, a penalty term associated with voltage magnitudes can be added in the objective
Equation (12) to ensure bus voltages within the acceptable range as follows:

min f c = f1 + f2 + cp

Ns

∑
s=1

Nb

∑
i=1

∆Us
i (13)
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∆Us
i =


Umin

i −Us
i Us

i < Umin
i

Us
i −Umax

i Us
i > Umax

i
0 Umin

i < Us
i < Umax

i

(14)

where the third part of the objective Equation (13) is the penalty term; cp is the penalty factor; Us
i is the

voltage of i-th bus under s-th scenario; Umin
i and Umax

i are, respectively, the lower and upper limits of
bus voltages.

Finally, the proposed RPP model can be described as follows:

min f c

s.t
(15)


Ps

i − PL,s
i = Us

i

Nb
∑

j=1
Us

j (Gij cos δs
ij − Bij sin δs

ij)

Qs
i −QL,s

i −Qc,s
i = Us

i

Nb
∑

j=1
Us

j (Gij sin δs
ij − Bij cos δs

ij)

(16)

{
Pmin

i ≤ Ps
i ≤ Pmax

i
Qmin

i ≤ Qs
i ≤ Qmax

i
(17)

Qc,min
i ≤ Qc,s

i ≤ Qc,max
i (18)

where PL,s
i and QL,s

i are, respectively, active and reactive demands at node i under s-th scenario; Qc,s
i is

the reactive power output of i-th VAR compensators under s-th scenario; Qs
i is the reactive power output

of i-th DG under s-th scenario; δs
ij is the bus voltage angle difference; Pmax

i and Pmin
i are, respectively,

the upper and lower limits of active power output of i-th DG; Qmax
i and Qmin

i are, respectively, the
upper and lower limits of reactive power output of i-th DG; Qc,max

i and Qc,min
i are, respectively, the

upper and lower limits of reactive power output of i-th VAR compensators. Equation (16) represents
active and reactive power balance constraints under s-th scenario; the Equation (17) represents the
limits of active and reactive power adjustments of i-th DG under s-th scenario; the Equation (18)
represents the limit of reactive power output of i-th VAR compensator under s-th scenario.

It can be found that the minimum of the sum of the second part and third part in the objective
Equation (13) is zero when all bus voltages are within the acceptable range and active power
adjustments of DGs are not required. In such a case, the bus voltages can be effectively managed
by the installed VAR compensators and reactive power adjustments of DGs. However, when the
VAR compensators and reactive power adjustments of DGs cannot meet the requirement of voltage
management under extreme overvoltage scenarios, the active power adjustments of DGs are used in
the proposed RPP model.

The model Equation (15)–(18) is formulated as a mixed integer nonlinear programming (MINLP)
problem, the discrete variables are the location (k1, k2, . . . , ki), size (Qc,max

i , Qc,min
i ) and reactive power

output (Qc,s
i ) of VAR compensator that discretely provides reactive power. Continuous variables are

the active and reactive power outputs of DGs, voltage magnitudes, voltage angles and reactive power
output of the VAR compensator that can output reactive power continuously.

3. Proposed Primal-Dual Interior Point Based Particle Swarm Optimization Algorithm

Since the proposed RPP model is formulated as a MINLP problem, a PDIP-based PSO algorithm
is developed to effectively solve the proposed model.
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3.1. Primal-Dual Interior Point Method

The brief descriptions about PDIP are given in this subsection. An optimization problem can be
formulated in the following compact form:

min
X

f (X)

s.t. H(X) = 0
G(X) ≤ 0

(19)

where X is the vector of decision variables; f (X) is the objective function; H(X) represents equality
constraints; G(X) represents inequality constraints. The inequality constraints can be transformed into
equality constraints by adding slack variable Z and a logarithmic barrier function can be added in the
objective function to penalize the slack variable. The corresponding model is as follows:

min
X

[ f (X)− γ ln(Z)]

s.t. H(X) = 0
G(X) + Z = 0

Z > 0

(20)

where γ is the penalty coefficient. Based on Equation (20), the augmented Lagrangian function can be
formulated as follows:

L(X, Z, λ, µ) = f (X)− γ ln(Z) + λTH(X) + µT(G(X) + Z) (21)

where λ and µ are Lagrangian multipliers of equality constraints. Corresponding first order
Karush-Kuhn-Tucker (KKT) optimality conditions are as follows:

fX + λTHX + µTGX = 0
µT − γZ−1 = 0
H(X) = 0
G(X) + Z = 0
Z > 0
µ > 0

(22)

where fX = ∂ f
∂X ; HX = ∂H

∂X ; GX = ∂G
∂X .

Then, applying the newton method to the KKT condition Equation (22), the following newton
equations can be derived:

LXX 0 HT
X GT

X
0 µ 0 Z

HX 0 0 0
GX I 0 0




∆X
∆Z
∆λ

∆µ

 = −


fX + λTHX + µTGX

µT − γZ−1

H(X)
G(X) + Z

 (23)

where LXX = ∂
(

fX + λTHX + µTGX
)
/∂X. In each iteration of the newton method, the variables can be

updated using the following equations:(
X(k+1), Z(k+1), λ(k+1), µ(k+1)

)
=
(

X(k), Z(k), λ(k), µ(k)
)
+ α(k)

(
∆X(k), ∆Z(k), ∆λ(k), ∆µ(k)

)
, (24)

where α(k) is the step size. In addition, in each iteration, the coefficient γ can be update using the
following equation:

γ = σ
Zµ

n
(25)



Energies 2018, 11, 1606 10 of 17

where σ is the centering parameter between 0 and 1; n is the number of slack variables.
Repeating Equations (23)–(25) until the convergence conditions are satisfied.

3.2. Proposed PDIP Based PSO Algorithm

The proposed PDIP-based PSO algorithm has similar procedures as step 1-step 5 in Section 2.1.1
with the following differences.

Step (1) Generating a population including a number (Np) of particles: X(j)
k and V(j)

k (k = 1, 2, . . . ,
Np). Here, a particle represents the location (ki) and size (Qc,max

i , Qc,min
i ) of a VAR compensator.

Step (2) Defining a fitness function F(X(j)
k ), namely objective Equation (15), to represent the quality

of X(j)
k . For a given particle (X(j)

k ), the fitness function can be obtained by solving the model (15)–(18)
with fixed variables (ki, Qc,max

i , Qc,min
i ) using the PDIP method. Moreover, it should be mentioned that

the discrete variables (Qc,s
i ) are firstly assumed to be continuous and the PDIP method is used to search

the optimal solution. After obtaining the optimal solution, the derived continuous variables (Qc,s
i ) are

rounded and fixed. Then, the optimization model is solved again. The larger the fitness function, the
better is the X(j)

k .

Step (3) Updating X(j)
k and V(j)

k using (3).
Step (4) Calculating the fitness functions for all particles in the j + 1 iteration and resetting Pk and

Pg.
Step (5) Iterative process stops when the number of iterations reaches a preset maximum or other

termination conditions are satisfied, and output Pg as the result; otherwise, go to step (3) and the
iteration number increases by one.

The flow chart of the proposed algorithm is illustrated in Figure 5.
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4. Case Studies

4.1. System Data and Simulation Parameters

The effectiveness of the proposed RPP model is verified on the modified IEEE 30-bus system
shown in Figure 3. The WT2 and WT5 have a rated capacity of 50 MVA and the rest of WTs have a rated
capacity of 20 MVA. The HP11 and HP13 have a rated capacity of 20 MVA. The correlation coefficients
between the power outputs of WT2 and WT5, WT31 and WT33 are both 0.4, and the correlation
coefficient between HP11 and HP13 is 0.5. The initial investment parameter CI for shunt capacitors and
shunt reactors is 70 RMB (12 USD)/kVAR, for SVG is 300 (50 USD) RMB/kVAR. The annual operating
maintenance cost parameter CM is 6% of the initial investment, and the scrap cost parameter CD is 2%
of the initial investment. The discount rate r is 0.1 and the usable duration n is 10 years. The penalty
factor cp is 1 × 1010. The retail tariff of wind power c3 is 0.3 RMB (0.05 USD)/kWh. The number of
typical scenarios of power outputs of DGs (WTs, HPs) and load consumptions is 50. In the proposed
PDIP-based PSO algorithm, the number of particles is 100, the number of iterations is 400, the weight
factor e is 0.5, and the learning factors c1 and c2 are both 2. The simulations were conducted with a
desktop with a 2.5-GHz Intel Core i5-3210 CPU (Intel, Santa Clara, CA, USA) and 4.00 GB of RAM
(DDR3, Samsung, Seoul, South Korea).

In the study, LHS method is used to obtain 5000 sampling values for each WT and HP from their
historical statistic CDFs and for loads from typical load curves. Take the WT2 as an example, the
effectiveness of the LHS method is validated in Figure 6. It can be seen that the PDF of sampling
values of active power output of WT2 is very closer to its actual PDF. In particular, with the increasing
number of samplings, the fitting effect is better. After obtaining sampling values of all the WTs
and HPs, the PSO algorithm is used to derive the desired correlation coefficients by performing the
permutation process. After that, the number of generated scenarios is reduced to be 50 by using the
simultaneous backward reduction technique.
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4.2. Case Studies Results

After obtaining 50 typical scenarios, four RPP models were implemented and compared in
this section. Case 1 is the RPP model proposed in this paper, in which VAR compensators, the
active and reactive power adjustments of DGs are coordinated to regulate voltages under extreme
overvoltage scenarios. In case 2, VAR compensators and reactive power adjustments of DGs are
combined to regulate voltages under extreme overvoltage scenarios. In case 3, the active and reactive
power adjustments of DGs are used to regulate voltages under extreme overvoltage scenarios. In case 4,
only VAR compensators are used to regulate voltages.
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To reduce the search space of the proposed algorithm, the over-limit probability analysis of bus
voltages is performed to determine the candidate installation buses of VAR compensators. Power flow
study is carried out for each scenario (5000 scenarios in total) and the over-limit probability of each
bus is calculated according to the following equation: prup

i =
Nup

i
Nt

prlo
i =

Nlo
i

Nt

(26)

where are prup
i and prlo

i , respectively, the over-upper limit probability and over-lower limit probability
of i-th bus; Nt is the number of total scenarios; Nup

i is the number of scenarios in which overvoltage
occurs at i-th bus; Nlo

i is the number of scenarios in which low voltage occurs at i-th bus. According to
statistic results listed in Table 2, the nodes 18, 19, 20, 21, 22, 24 are candidate installation buses of shunt
capacitors because they have high over-lower limit probabilities. The buses 25, 26, 27, 29, 32, 33 are
candidate installation buses of shunt reactors because they have high over-upper limit probabilities.
The bus 30 and bus 31 are candidate installation buses of SVGs because both the over-lower limit
probability and the over-upper limit probability are high.

The reactive power planning results of the four RPP models are listed in Table 3. In case 4,
voltages are regulated by VAR compensators only; therefore, the required installation capacity of VAR
compensators is the largest. In case 2, VAR compensators and reactive power adjustments of DGs are
combined to regulate voltages under extreme overvoltage scenarios such that the installation capacity
of VAR compensators can be reduced. In case 1, VAR compensators, active and reactive adjustment
of DGs are coordinated to regulate voltages under the extreme overvoltage scenarios; therefore, the
installation capacity of VAR compensators can be further reduced. In case 3, since extreme overvoltage
are only regulated by active and reactive power adjustments of the DGs, the installation capacity of
VAR compensators is the lowest.

Table 2. Probability of over-limit of bus voltage.

Bus Over-Lower Limit Over-Upper Limit Bus Over-Lower Limit Over-Upper Limit

18 19.22% - 26 12.90% 60.56%
19 23.94% - 27 7.60% 53.70%
20 17.96% - 29 7.32% 64.80%
21 24.82% - 32 - 30.24%
22 24.42% - 33 6.66% 56.28%
24 59.90% - 30 16.94% 47.24%
25 9.56% 62.08% 31 21.06% 42.70%

Table 3. Results of four reactive power planning (RPP) Models.

Bus Case 1
Capacity/MVAR

Case 2
Capacity/MVAR

Case 3
Capacity/MVAR

Case 4
Capacity/MVAR

18 - - - 2
19 2 2 2 3
20 - - - 3
21 2 2 2 -
22 1 1 1 3
24 7 7 7 6
25 1 1 1 3
30 1 1 1 3
31 3 6 0 2
32 - - - 3

Total Capacity 17 20 14 28
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In addition, the serial number of the scenario that requires active power adjustments of DGs
under four cases are listed in Table 4. Accordingly, the required active power curtailment value under
each scenario is also listed in Table 4. It can be seen the number of scenarios requiring active power
curtailment in case 3 is larger than the one in case 1, because VAR compensators can help alleviate
overvoltage in case 1. There is no scenario requiring active power curtailment in case 2 and case 4,
because active power adjustment of DG does not participate in regulating overvoltage in the extreme
overvoltage scenarios.

The total costs (VAR compensator investment cost plus active power curtailment cost) of four cases
are listed in Table 5. It can be seen that case 3 has the minimum VAR compensator investment cost while
there are many scenarios that need active power curtailment of DGs (as shown in Table 4). Therefore, it
requires large active power curtailment cost, resulting in the largest total cost. Although case 1 requires
active power curtailment in a few scenarios when comparing with case 2, the curtailment values are
small, and the VAR compensator investment cost can be significantly reduced. Therefore, case 1 has
the minimum total cost, which demonstrates the cost-efficiency of the proposed RPP model.

Table 4. Active power curtailment value of DGs under the extreme overvoltage scenario.

Scenario Case 1/MW Case 2/MW Case 3/MW Case 4/MW

4 0 0 6.10 0
5 0 0 5.03 0
8 0.45 0 11.29 0
13 0 0 5.15 0
14 0 0 5.60 0
15 0 0 0.39 0
26 0 0 1.10 0
34 7.69 0 17.36 0

Table 5. Total costs of four cases.

Case 1 Case 2 Case 3 Case 4

Grid-side

VAR compensator
Capacity/MVAR 17 20 14 28

Cost of VAR compensators
investment/¥10,000 54.7 (9.12) 1 78.0 (13) 1 31.4 (5.23) 1 80.6 (13.43) 1

Percentage of investment
saving/% 29.9 - 59.7 -

Generation
company

Cost of active power
adjustment/¥10,000 8.3 (1.38) 1 - 185.4 (30.9) 1 -

Profit of generation
company/¥10,000 1922.7 (320.45) 1 1931.1 (321.85) 1 1745.7 (190.95) 1 -

Percentage of profit lost/% 0.43 - 9.6 -

Total Cost/¥10,000 63.0 (10.5) 1 78.0 (13) 1 216.8 (36.13) 1 80.6 (13.43) 1

() 1 parameter in USD ($10,000).

In addition, considering case 2 as a benchmark case, the percentage of the VAR compensator
investment saving at power grid side and the percentage of lost profits of power generation companies
are listed in Table 5. For the proposed RPP model in case 1, the generation companies lose 0.43% of
profits while the percentage of the VAR compensator investment saving reaches 29.9%. Therefore, the
power grid can offer appropriate compensation to power generation companies so that generation
companies can accept the proposed RPP model. In case 3, although the power gird side can save 59.7%
of the VAR compensator investment cost, generation companies lose 9.6% of profits. In such a case, the
lost profit is high and case 3 is unacceptable to power generation companies. Based on above analyses,
the proposed RPP model can minimize to the maximum extent the VAR compensator investment cost
without requiring large lost profits of power generation companies.
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In addition, the iteration process of the proposed algorithm is illustrated in Figure 7. It can be
seen that after 350 iterations, an optimal solution of the proposed RPP model can be obtained. It takes
almost 90 min to reach the convergence.Energies 2018, 11, x FOR PEER REVIEW  14 of 17 
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5. Discussion

The comparison results of the four types of RPP models are summarized in this section.
From the perspective of the VAR compensators investment cost, case 3 has the minimum VAR

compensator investment cost because overvoltage is regulated by the active power and reactive power
adjustments of DGs under extreme overvoltage scenarios. Case 4 has the maximum investment cost
because only VAR compensators are used to regulate overvoltage under extreme overvoltage scenarios.
Compared with case 4, the VAR compensator investment cost can be reduced in case 3 because reactive
power adjustment of DG can be used to help alleviate overvoltage under extreme overvoltage scenarios.
In case 1, the VAR compensator investment cost can be further reduced because active power
adjustment of DG can be used as the additional means to alleviate overvoltage under extreme
overvoltage scenarios.

From the perspective of the active power curtailment cost of DG, there is no active power
curtailment cost in case 2 and case 4 because the active power adjustment of DG is not used to regulate
overvoltage under extreme overvoltage scenarios in these two cases. In case 3, the active power
curtailment cost is the largest because only the active and reactive power adjustments of DGs are
used to alleviate overvoltage under the extreme overvoltage scenario. However, in case 1, the VAR
compensators can also be used to help alleviate overvoltage; therefore, the active power curtailment
cost can be reduced.

From the perspective of the total cost, the proposed RPP model in case 1 has the minimum total
cost. For case 3, although case 3 has the minimum VAR compensator investment cost, it has the largest
active power curtailment cost, resulting in the largest total cost. For case 2 and case 4, although there
is no active power curtailment cost, they have higher VAR compensator investment cost than case 1.
Consequently, they have higher total costs than case 1.

Above analyses demonstrate the economic efficiency of the proposed RPP model. In addition,
the feasibility of the proposed RPP model is also analyzed. As shown in Table 5, for the proposed
RPP model in case 1, the generation companies lose 0.43% of profits while the percentage of VAR
compensator investment saving at power gird side reaches 29.9%. Therefore, the power grid can offer
appropriate compensation to power generation companies so that generation companies can accept
the proposed RPP model.
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6. Conclusions

To economically deal with extreme overvoltage problems, this paper proposes a novel RPP model
based on the active and reactive power adjustments of DGs. Firstly, several typical scenarios of power
outputs of DGs and load consumption are produced. Secondly, based on typical scenarios, an RPP
model considering the active and reactive power adjustments of DGs is proposed to determine the
optimal allocation of VAR compensators. Finally, the proposed RPP model is solved by the proposed
PDIP-based PSO algorithm. The simulation results demonstrate that the proposed model can not
only significantly reduce the VAR compensator investment, but also reduce the total cost of voltage
management in power systems.
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Appendix

Table A1. Power flow results of three cases.

Bus Case 1 Case 2 Case 3

Cases Voltage
Mag. (p.u.)

Voltage
Angle (deg.)

Voltage
Mag. (p.u.)

Voltage
Angle (deg.)

Voltage
Mag. (p.u.)

Voltage
Angle (deg.)

1 1.050 0.000 1.050 0.000 1.050 0.000
2 1.014 −2.493 1.013 −2.485 1.013 −2.582
3 1.000 −3.772 0.999 −3.761 0.999 −3.916
4 0.988 −4.597 0.987 −4.584 0.987 −4.777
5 0.968 −6.399 0.967 −6.393 0.967 −6.566
6 0.984 −5.101 0.982 −5.081 0.982 −5.336
7 0.968 −6.273 0.967 −6.261 0.967 −6.482
8 1.000 −3.720 1.000 −3.739 1.000 −4.159
9 0.999 −8.174 1.004 −8.159 1.004 −8.404
10 0.987 −10.872 0.995 −10.833 0.995 −11.073
11 1.019 −6.264 1.024 −6.266 1.024 −6.510
12 1.014 −9.581 1.017 −9.510 1.017 −9.722
13 1.026 −8.533 1.029 −8.467 1.028 −8.679
14 0.997 −10.621 1.000 −10.543 1.000 −10.757
15 0.993 −10.696 0.996 −10.623 0.996 −10.838
16 0.994 −10.421 0.998 −10.371 0.998 −10.595
17 0.984 −11.008 0.990 −10.959 0.990 −11.194
18 0.964 −12.142 0.970 −12.072 0.969 −12.300
19 0.959 −12.358 0.965 −12.291 0.965 −12.523
20 0.965 −12.059 0.972 −11.998 0.972 −12.232
21 0.958 −12.120 0.969 −12.153 0.969 −12.393
22 0.958 −12.125 0.970 −12.176 0.970 −12.416
23 0.978 −11.336 0.981 −11.259 0.981 −11.474
24 0.922 −13.623 0.945 −13.992 0.945 −14.233
25 1.141 1.618 1.041 5.342 1.023 2.056
26 1.135 1.558 1.031 5.431 1.014 2.148
27 1.084 1.644 0.996 3.528 0.996 0.903
28 0.992 −4.407 0.986 −4.312 0.986 −4.737
29 1.062 0.471 0.971 2.131 0.971 −0.493
30 1.048 −0.354 0.955 1.142 0.956 −1.481
31 1.174 4.412 1.073 8.694 1.057 4.457
32 1.038 −1.142 0.989 −0.903 0.995 −2.325
33 1.089 2.922 1.000 5.042 1.001 2.41
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Table A2. Location and size of VAR compensator in Case 2.

Shunt Capacitor Shunt Reactor

Bus 24 25 26 27 31
Size (MVAR) 2 3 2 1 2
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