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Abstract: Current sharing control is a challenge for a discontinuous conduction mode (DCM)
micro-inverter based on interleaved flyback topology. To solve this problem, this study proposes
a novel and systemic model-based approach. Firstly, an accurate fourth-order model is presented
for the interleaved flyback circuit, which takes the two flybacks’ parameter mismatch and coupling
into account. Secondly, based on the presented model, a continuous time sliding mode current
controller is proposed to tackle the output imbalance caused by parameter mismatch, coupling and
disturbance. The proposed controller is derived from the Lyapunov function without switching
conditions. Finally, the effectiveness of the proposed model and control method is validated by
simulation tests using MATLAB/SIMULINK. Simulation results show that the proposed approach
improves the current sharing for the interleaved flyback micro-inverter when compared to the
conventional current sharing approach.
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1. Introduction

In recent years, power generation technology has been a popular research topic in the photovoltaic
(PV) and wind energy field [1–3]. The typical PV generation module, which is called the micro-inverter,
makes it possible to realize the individual maximum power point tracking (MPPT) of each PV
panel. While a large number of studies have been done on the topology and control strategy for
the micro-inverters [4–6], the flyback topology has attracted significant interest due to its simple
structure, low cost and high reliability. It not only enables individual operation of each module,
but also reduces the power loss caused by the mismatch between modules [7–9]. Furthermore,
the parallel and interleaved structure of the flyback can reduce the system loss, decrease current ripple,
prevent the single point failure, and offer ‘plug and play’ feature to the system [10–13].

Flyback converters operating in discontinuous conduction mode (DCM) are widely used because
their output current is easy to control [14]. Despite much research [14–16] having been conducted
on the DCM converter with regard to conversion efficiency enhancement, harmonic reduction and
compensation of output current phase-leg, the current sharing between dual-flyback converters has
been ignored under the assumption that the design parameters of the two flyback converters are
the same. However, such an assumption is not generally true in the industrial field, as the precise
parameters may not be guaranteed under a cost-effective manufacturing procedure. Additionally,
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the two converters would not be operating under the exact same conditions in practice due to parameter
variations caused by device ageing and other uncertainties. Together with the coupling between
the two flyback converters, the parameter mismatch could cause the output current imbalance,
which potentially overloads one of the converters. Consequently, the efficiency and reliability of
the micro-converter system drops. In the worst case, the output current imbalance may cause
the overloaded converter to suffer from thermal runaway [17,18]. Although there has been a
great deal of research into dynamic performances such as conversion efficiency and output current
ripple, current sharing has not been completely studied. To address the output imbalance issue,
current sharing control strategies for the dual-flyback converters should be studied, the aim of which
would be to build up an accurate model describing the dynamic characteristic of the converters and
their couplings.

When converters such as buck, boost and flyback operate in DCM, there are two modeling
methods, namely, the average small-signal [16,19–21] and the duty-ratio constraint method [22–28].
The average small-signal modeling method has mainly been employed to study system conversion
efficiency [16,20] and harmonic distortion [19,21]. The average small-signal modeling method
is over-simplified through ignoring the equivalent series resistances of the inductances in
primary/secondary side of transformer, which could result in large differences and discrepancies at
high frequencies due to the high-frequency pole. The duty-radio constraint method is a modified
average-state-space method, in which the parasitic parameters of the converter can be taken into
consideration. Consequently, the resulting models have good dynamic performance at low frequency
and at high frequency [22]. Accordingly, the models based on the duty-ratio constraint method have
been widely employed in application fields that call for high accuracy models, such as studying the
relationship of the transfer function of the duty-cycle to the weighted-output-voltage of single-input
multiple-output flyback converters [23], analyzing the influence of parasitic parameters on input
current distortion with a boost power factor correction converter [24], and discussing power flow
between two inputs of an interleaved-boost full-bridge three-port converter [25]. Considering that
current sharing requires a precise model of flyback micro-inverter, the duty-ratio constraint method is
a good candidate for modeling, but the modeling issue has not been covered in the existing literature.

The available methods of achieving current sharing can be categorized into two types,
hardware-added type [29–31] and hardware-free type. The first type requires additional hardware,
such as equivalent resonant capacitor and series bus capacitors, which would increase the system
cost directly. The second type uses a current sharing control method, which includes the droop
control method [32–34], distributed control method [35] and PI control [17,18]. The droop control
and distributed control have been applied to power supply modules. The droop control method
noted for being simple, inexpensive and efficient, since there is no communication connection among
power supply modules [33]. The distributed control method uses the consensus algorithm, in which
information such as current and voltage of the distributed modules is required [35]. The current
sharing is achieved through feedback of output signals to the control duty cycle, which could cause a
control delay compared to the method of controlling the primary side current directly [19]. Meanwhile,
these methods are inapplicable to the dual flyback converters when the duty cycles of two flyback
converters are unfixed. For the CCM interleaved flyback micro-inverter, the multiple PI controllers are
developed in [17,18] to achieve the current sharing, but they could not track the sinusoidal reference
current without static error [36] and may increase the total harmonic distortions (THDs) of system.
Besides, there are several parameters require to design for PI controllers, which increase the design
complexity. Therefore, the current sharing control for DCM flyback micro-inverter needs to be studied.

To solve the aforementioned issue, a model-based current sharing approach for the DCM
Interleaved Flyback micro-inverter is proposed in this paper. On one hand, the accurate and novel
full-fourth-order model is established in the DCM interleaved flyback micro-inverter, showing the
imbalance of the system parameters and coupling of the two flyback converters. On the other hand,
to solve the load imbalance caused by parameter imbalance and disturbance, a current controller
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based on sliding mode control (SMC) for dual-flyback converter is designed, which ensures equal
sharing of the injected current, and improves the dynamic performance of the system. In the proposed
SMC, the primary currents of the presented model are used as controlled variables to achieve current
sharing. This ensures equal sharing of the injected current and improves the dynamic performance
of the system. The remaining sections are organized as follows: the accurate fourth-order model
operating in DCM is introduced and analyzed in Section 2. The SMC controller is designed in Section 3,
and Section 4 presents the simulations in MATLAB/SIMULINK. Finally, Section 5 concludes the study.

2. Working Principle and Dynamic Modeling

2.1. Working Principle

The DCM interleaved flyback has been widely used in AC-PV modules, because its output current
is easy to control and it can achieve high efficiency [16]. Figure 1 illustrates the circuit of the interleaved
flyback micro-inverter, which is comprised of a PV module, an input capacitor Cpv, the Flyback 1
converter, the Flyback 2 converter, an unfolding H-bridge inverter (M1, M2, M3, M4) and an output CL
filter. Vpv is the PV voltage. n is the transformer turns ratio. Lm1, Lm2 are the primary magnetizing
inductances of the transformer, respectively. im1, im2 are the primary currents of the transformer,
respectively. is1, is2 are the secondary currents of the transformer, respectively. Lf is the filter inductor.
Cf is the filter capacitor. Rp1, Rp2 are the equivalent series resistances of the primary magnetizing
inductance, respectively. Rs1, Rs2 are the equivalent series resistances of the secondary magnetizing
inductance, respectively. Rf is the equivalent series resistance of the output filter inductor. D is main
MOSFET duty cycle.
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Figure 1. The interleaved flyback mirco-inverter topology. 
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Figure 1. The interleaved flyback mirco-inverter topology.

As shown in Figure 1, the circuit diagram is a double-stage topology. The preceding stage is made
up of a PV module and two flyback converters. This stage is controlled to extract maximum power
from the PV module and to provide a semi-sinusoidal output current. The post-stage circuit consists
of an unfolding H-bridge circuit, which forms a current-unfolding circuit for injecting sinusoidal AC
current into the grid. How to control switches Q1 and Q2 in the preceding stage is studied in this paper.

There are two circumstances (D > 0.5 or D < 0.5) for the PWM singles, which are used to control
switches Q1 and Q2 during one switching cycle [14]; the PWM waveforms are shown in detail in
Figure 2. Meanwhile, the corresponding equivalent circuits of steady-state operation are illustrated
in Figure 3, and Table 1 identifies the operating phases for switches and diodes (Q1, Q2, Diode 1
and Diode 2) with respect to the equivalent circuits. When D < 0.5, the primary and secondary
current waveforms of the interleaved flyback micro-inverter are shown in Figure 2b. The matching
current flowing paths in one switching cycle for steady-state path (1) are: Interval 1 → Interval 2
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→ Interval 3 → Interval 4 → Interval 5 → Interval 3. When the next cycle arrives, the secondary
inductor currents is1 and is2 are reduced to zero, and the steady-state path (2) of matching the current
flow is Interval 1→ Interval 2→ Interval 3→ Interval 6→ Interval 4→ Interval 5→ Interval 3→
Interval 6. Additionally, when D > 0.5, there are six current flowing paths during one switching cycle,
and the steady-state operation path is Interval 1→ Interval 2→ Interval 7→ Interval 4→ Interval 5→
Interval 7. The model operating in steady-state path (1) is established and explicitly described below.

Table 1. Circuit steady-state operations.

Interval Switch Q1 Switch Q2 Diode 1 Diode 2

1 ON OFF OFF ON
2 ON OFF OFF OFF
3 OFF OFF ON ON
4 OFF ON ON OFF
5 OFF ON OFF OFF
6 OFF OFF OFF OFF
7 ON ON OFF OFF
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2.2. Accurate Dynamic Model in DCM Operation

In order to facilitate modeling and analysis, the following assumptions are made in this paper:

1. The DC side decoupling capacitor Cpv is large enough to neglect the current ripple across the Cpv;
2. The equivalent series resistances (ESR) of the inductances in primary/secondary side of

transformer and the output filter are considered. The transformer leakage inductance is ignored.

As shown in Figure 2b, one switching interval is divided into six subintervals.
Accurately representing the dynamic of the converter circuit, a precise full-order averaged
model [22,23,25] of the converter circuit is used.

.
x =

(
H

∑
k=1

(dkAk)

)
Φx +

(
H

∑
k=1

(dkBk)

)
(1)

where x represents the average of x in one switching period. H denotes the number of steady-state
subintervals in the DCM interleaved flyback (H = 6). Ak and Bk are presented as steady-state equations
in k-interval. Equation (1) revises the conventional state-space average equation through matrix Φ,
which can accurately predict performance at high frequency (above one-tenth of the switching
frequency), particularly in the phase response [22].

Φ = diag

[ 1
do f f _1+don_1

1
do f f _2+don_2︸ ︷︷ ︸

nL

. . . 1
]

(2)

where doff_1 = d3 + d4, doff_2 = d6 + d1, don_1 = d1 + d2 and don_2 = d4 + d5. nL denotes the number of
inductor currents of the transformer. don_1 and don_2 denote duty cycles of switches Q1 and Q2 when
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they are on, respectively. doff_1 and doff_2 represent the time intervals from turn-off of switches Q1 and
Q2 to the decreasing to zero of the transformer inductor currents, respectively.

From Equations (1) and (2), the state-space averaged large signal model of the interleaved flyback
micro-inverter is derived as


dim1

dt
dim2

dt
diac
dt

dvac
dt

 =



−
don_1Rp1+do f f _1

Rs1
n2

Lm1 (don_1+do f f _1 )
0 0 −

do f f _1
Lm1

0 −
don_2Rp2+do f f _2

Rs2
n2

Lm2 (don_2+do f f _2)
0 −

do f f _2
Lm2

0 0 − R f
L f

1
L f

don_1
nC f (don_1+do f f _1)

d2,on
nC f (d2,on+do f f _2 )

− 1
C f

0




im1

im2

iac

vac

+


don_1
Lm1

0
don_2
Lm2

0
0 − 1

L f

0 0


[

Vpv∣∣Vg
∣∣
]

(3)

The correlations between doff_i(i = 1,2) and don_i(i = 1,2) are shown as follows

do f f _1 = 2Lm1im1/(don_1Vpv(t)Ts)− don_1 (4)

do f f _2 = 2Lm2im2/
(
don_2Vpv(t)Ts

)
− don_2 (5)

According to Equations (4) and (5), and linearizing Equation (3), the small signal model is derived
as follows: .

x̃(t) = ADCM x̃ + BDCM d̃ + WDCMZ
y =

[
0 0 1 0

]
x̃

(6)

where x̃ = [ ĩm1 ĩm2 ĩac ṽac ]
T

, Z = [ Ṽpv Ṽg ]
T

, and the parameters ADCM, BDCM and WDCM
are derived in Appendix A.

2.3. Comparisons between the Accurate Dynamic Model and the Existing Model

To analyze the relationships between dual-flyback converters and output grid current of the
accurate dynamic model and existing models, the output current to duty cycle transfer functions of
these models are established. The analysis and comparisons between the accurate model and the
existing models are shown as follows.

2.3.1. The Proposed Fourth-Order Model

Assume the difference between d̃on_1 and d̃on_2 is ignored, then the condition of d̃ = d̃on_1 = d̃on_2

is satisfied. From Equation (6), the output current to duty cycle transfer function of the proposed
fourth-order model Gdt4 is shown as

Gdt4(s) =
ĩac(s)
d̃(s)

=
a2s2 + a1s + a0

s4 + b3s3 + b2s2 + b1s + b0
(7)

when the two flyback converters’ parameters are identical, the fourth-order model Gdt4 is reduced to a
third-order model Gdt3_1.

Gdt3_1(s) =
ĩac(s)
d̃(s)

=
c1s + c0 + c′0

s3 + (j2 + f2)s2 + (j1 + f1)s + (j0 + f0)
(8)

2.3.2. The Third-Order Model Based on Single-Phase Flyback Converter

For the sake of simplification, by assuming the two flyback converters identical and connected
in parallel, some researchers have treated the dual-flyback micro-inverter as a single-phase flyback
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micro-inverter [23]. The third-order model Gdt3_2 based on a single-phase flyback converter is studied
instead of Gdt3_1, which is expressed as

Gdt3_2(s) =
ĩac(s)
d̃(s)

=
c1s + c0

s3 + j2s2 + j1s + j0
(9)

2.3.3. The Second-Order Model Based on Average Small Signal

The second-order model based on a voltage-controlled current source is studied in [16,19,37–41].
This model is applied to reduce current stress and THDs and improve system efficiency.
The second-order model is expressed as

Gd2 =
ĩac

d̃
=

h2

s2 + h1s + h0
(10)

where the parameters a2 ~a0, b3 ~b0, c1 ~c0, c′0, j2 ~j0, f 2 ~f 0 and h2 ~h0 are given in Appendix A.
Comparing Equations (9) and (10), the second-order model is further simplified. The equivalent

parasitic resistances Rp1, Rp2, Rs1 and Rs2 of transformer magnetizing inductance are ignored.
The model Gd2 can only accurately predict the low-frequency behavior of the converter, but the
model Gdt3_2 can precisely predict the behavior of the converter at high and low frequencies [22], so the
model Gdt3_2 has more accuracy. On the other hand, Gdt3_1 is much more accurate than Gdt3_2 since the
coupling terms c′0, f 2, f 1 and f 0 between dual-flyback are considered. In addition, Gdt4 is better than
Gdt3_1 since parameter mismatch is taken into account. Therefore, with all that analysis, the sequence
of models’ accuracy is Gdt4 > Gdt3_1 > Gdt3_2 > Gd2.

On the other hand, in the second-order model Gd2 and in the third-order model Gdt3_2, the primary
magnetizing inductance currents im1 and im2 are not used as state variables. Therefore, these two
models cannot be used to control the primary current to achieve current sharing. The proposed model
Gdt4 in this paper shows the parameter inconsistency and coupling between the two flybacks, which are
the major sources of the current imbalance between the two flybacks. Meanwhile, the model takes
im1 and im2 into account. Thus, it should be able to supply a solid basis to meet the current sharing
requirement. Plus, a model-based current balance control strategy could be developed based on the
proposed model.

3. Current Controller Using Sliding Mode Control

In this section, to solve the output imbalance between the two flybacks caused by coupling,
parameter inconsistency and disturbance, a novel sliding mode control (SMC) current controller is
designed, since the SMC would realize good dynamic response, strong robustness and good regulation
performance [42–45]. In this paper, the SMC current sharing controller is constructed based on the
presented accurate fourth-order mathematical model, and the target of current sharing is realized by
controlling the primary currents of dual-flyback converters to regulate the duty cycles of switches Q1

and Q2. The flow chart for designing the sliding mode current sharing controller are shown in Figure 4.
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According to Figure 4, the design steps of SMC are as follows:
Step 1: A stable sliding surface is selected. Equation (6) can be written in matrix form as

u = A
.
x + Bx + r (11)

where x = [im1 im2]T, u = [don_1 don_2]T, r is the external disturbances of the input and output voltages.
The parameters of matrix A, B and r are given in Appendix A.

e1 and e2 are defined as the current tracking errors of Flyback 1 and Flyback 2, respectively.
Meanwhile, e is defined as the error vector, e = [e1 e2]T. The tracking error dynamics are

e1 = I1re f − im1

e2 = I2re f − im2
(12)

where, I1ref and I2ref are the primary currents references of the Flyback 1 and Flyback 2 converters,
respectively, which are given in [16,19].

According to Equations (11) and (12), the current tracking errors dynamic can be written as:

.
e =

.
Ire f − A−1(u− r− Bx) (13)

where, the reference current Iref is denoted as [I1ref I2ref]T. Let current sharing error α between two
circuits be presented as (e1 − e2). Then the error matrix [e1 e2 α]T would be calculated from individual
tracking error by using the following transformation F:[

e1 e2 α
]T

= Fe (14)

where F =

[
1 0 1
0 1 −1

]T

.

The overall objective of the controller is to minimize all the errors presented in Equation (14),
namely the current tracking error and the current sharing error of the interleaved flyback circuit.
Then a 3× 1 dimensional sliding surface S is defined as:

S =
[

S1 S2 S3

]T
= λFe (15)

where λ = diag (λ1, λ2, λ3) is the sliding coefficient, it defines the convergence speed of the errors on
the sliding surface.

Step 2: The disturbance observer is designed. To ensure the controller has good robustness and
the system has zero steady-state error, the disturbance observer is designed by integrating the sliding
surface. The disturbance observer is defined as

r̂ =

[
r̂1

r̂2

]
= ρβ

∫
Sdτ = ρβλF

∫
edτ (16)

where ρ is the observer gain matrix, which is a tuning variable for the sliding mode controller. β is
coefficient matrix for limiting integral gain. Additionally, only when the transfer matrix ρβ satisfies
the following conditions is the integration performed.

ρβ =

[
ρ1β1 0 0
0 ρ2β2 0

]
(17)

Step 3. A stable SMC control law is derived (Barbalat Lemma [46]).
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The stable SMC control law is presented as

u = A
.
Ire f + Bx + r̂ + F−1λ−1KS (18)

where the matrix K = diag(K1, K2, K3) is a positive definite feedback gain matrix. The stability of the
system and errors asymptotically converge to the origin point, as proved in Appendix B.

Substituting Equation (16) into Equation (18), the synchronization sliding control law shown in
Equation (18) is revised. The modified sliding control law is:

u = A
.
Ire f + Bx +

IntegralGain︷ ︸︸ ︷
ρβ
∫

Sdτ +

proportionalGain︷ ︸︸ ︷
F−1λ−1KS

= A
.
Ire f + Bx + S(kp, smc + ki, smc/s)

(19)

where, F−1 is the pseudo-inverse of F.
Equation (19) indicates the sliding mode control law u is made up of two items, (A

.
Ire f + Bx)

and (kp, smc + ki, smc/s). The first item presents as feed-forward, which can improve the tracking
bandwidth and reject the measured disturbance, the parameters A and B of (A

.
Ire f + Bx) can be obtained

from system parameters. The second item can present as PI gain, so there are only two parameters
kp,smc and ki,smc need to design. In other words, the proposed sliding mode current sharing controller
converts the control problem of multiple PI controllers into a single PI controller, reducing complexity
of design.

4. Simulation

To prove the validity and feasibility of the proposed model and controller, the dynamic
performance is compared with the PI current control by MATLAB/Simulink (2016b, MathWorks,
Natick, MA, USA). A 250 W digitally controlled DCM interleaved flyback micro-inverter prototype
is designed, where each flyback circuit is 125 W, and the PV output voltage is 20 V–55 V. The system
parameters of the interleaved flyback micro-inverter are shown in Table 2, where the inductances
of the transformer secondary side are 216 uH, and P0 is the rated power of the interleaved
flyback micro-inverter.

Table 2. System parameters.

Parameters Value Parameters Value

CPV 11 mF Rp1, Rp2 0.15 Ω
Lm1, Lm2 6 µH Rs1, Rs2 0.05 Ω

Cf 0.68 µF Rf 0.29 Ω
Lf 600 µH Vg 220 V
n 6 f g 50 Hz
fs 100 kHz P0 250 W

The control diagrams of SMC and PI current controller are illustrated in Figures 5 and 6,
respectively. Figure 5 demonstrates the proposed sliding mode current sharing control adopts an
open-loop control. The current sharing is achieved through sensing and controlling the primary switch
currents. In order to meet the consistency of the comparison conditions, the current open-loop control
mode is adopted in the conventional PI current sharing controller; the PI control diagram is indicated
in Figure 6. It shows the PI current sharing controller consists of 3 PI controllers, which increases
the design complexity. The designed sliding mode control law u is presented as Equation (17),
the parameters matrix A, B can be obtained from the system parameters. From Equation (19),
the coefficients of kp,smc and ki,smc refer to F−1λ−1K and ρβ, respectively. In order to meet the condition
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of asymptotic convergence, the parameters of F−1λ−1K and ρβ are obtained from ρ = I, β1 = 0.08,
β2 = 0.08, λ = I and K = I, where I is the unit matrix.Energies 2018, 11, x FOR PEER REVIEW  10 of 20 
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In order to compare dynamic performances between the PI current sharing and the proposed
sliding mode current sharing controller, the two cases are designed as follows. The output voltage
Vrms is 220 V:

Case 1: The two converters, Flyback 1 and Flyback 2, have the same parameters in the flyback
micro-inverter. The output power Pout is changed from 200 W (80% P0) to 125 W (50% P0) at 0.06 s.

Figure 7 shows the waveform of the output grid current iac and reference signal iac_ref of the
interleaved flyback micro-inverter with the PI current sharing controller. There are large current
ripples in simulation’s waveform. When the output power decreases to 50% P0, the PI controller
regulates the output current to track the desired output current, which shows the ability to reject
the disturbance, but oscillation still exists. Through the Fast Fourier Transformation (FFT) analysis,
when 0.02 s ≤ t ≤ 0.06 s, the THDs of output current is 6.43%; when 0.06 s < t ≤ 0.1 s, the THDs of
output current is 6.58%.
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Figure 7. Simulation results of case 1: output grid current response of the interleaved flyback
micro-inverter controlled by a PI controller.

Figure 8 shows the waveforms of the output grid current iac of the interleaved flyback
micro-inverter and reference signal iac_ref with the sliding mode current sharing controller. When the
output power Pout changes from 80% P0 to 50% P0, the effective value of the output current iac is from
0.908 A to 0.565 A, where only a small transient current is observed in the current waveforms. Through
the FFT analysis, when 0.02 s ≤ t ≤ 0.06 s, the output current THDs of the SMC controller is 2.97%;
when 0.06 s < t ≤ 0.1 s, the output current THDs of the SMC controller is 2.45%.
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Figure 8. Simulation results of case 1: output grid current response of the interleaved flyback
micro-inverter controlled by a SMC controller.

The simulation results show that the proposed SMC controller has stronger robustness to solve the
output imbalance caused by disturbance when the output power decreases. Moreover, compared with
the PI controller, the output current iac of the proposed SMC controller has lower THDs.

Case 2: The two converters, Flyback 1 and Flyback 2, have different parameters in the flyback
micro-inverter. The output power Pout is also changed from 200 W (80% P0) to 125 W (50% P0) at 0.06 s.
The different parameters are given in Table 3.

Table 3. Different system parameters.

Parameters Value Parameters Value Parameters Value

Lm1 5.8 µH Rp1 0.15 Ω Rs1 0.051 Ω
Lm2 6.2 µH Rp2 0.18 Ω Rs2 0.085 Ω
Ls1 216 µH Ls2 223 µH - -



Energies 2018, 11, 1685 12 of 21

Figure 9 describes the waveform of the output grid current iac of the interleaved flyback
micro-inverter using the PI current sharing controller, which tracks the reference current Iref well.
The output current ripple becomes large when the output current is biggest. As the output power
reduces to 50% P0, the output current stays away from the balance point and then converges in short
time. Through the FFT analysis, when 0.02 < t < 0.06, the output current THDs of the PI controller are
6.85%; when 0.06 ≤ t ≤ 0.1 s, the output current THDs of the PI controller are 6.87%.
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Figure 9. Simulation results of Case 2: output gird current response of interleaved flyback
micro-inverter by a PI controller.

Figure 10 shows the waveform of the output grid current iac of interleaved flyback micro-inverter
using the proposed sliding mode current sharing controller. There is a small current transient when
output power decreases to 125 W. Through the FFT analysis, when 0.02 < t < 0.06, the THD of
output current is 3.44%; when 0.06 ≤ t ≤ 0.1 s, the THD of output current is 2.83%. The results of
Figures 9 and 10 confirm that SMC has better robustness than the PI controller when a parameter
imbalance exists.
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Figure 11. Waveforms for primary currents by two current sharing controllers: (a) PI current sharing 

control; (b) sliding mode current sharing control. 

Figure 10. Simulation results of Case 2: output gird current response of interleaved flyback
micro-inverter by a SMC controller.

Figure 11a,b demonstrates the waveforms of primary currents im1 and im2 with the PI controller,
and those with the sliding mode controller, respectively. It is very clear that the peak current difference
between the two primary currents is about 0.318 A with the PI current sharing control, while that with
the sliding mode controller is much less, and its value is approximate 0.05 A. From the results, it is
found that the proposed controller achieved better current sharing in comparison to the PI controller,
which would avoid one of the converters being overloaded, resulting in lower efficiency and reliability
of the system, and even reducing the life of hardware. Figure 12 shows the current sharing errors
after two current sharing controllers, and the results indicate that the current sharing errors with both
controllers are almost negligible, but the THDs of the output current with the PI controller are bigger.
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In summary, the simulation results show that the proposed SMC has good robustness to solve
output imbalance caused by coupling, parameter inconsistency and disturbance. No matter whether
the parameters are identical or not, compared with the PI current sharing controller, the proposed SMC
tracks a sinusoidal reference effectively and achieves current sharing. Simultaneously, it has stronger
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anti-interference ability when the load power changes. In addition to that, there is a lower THD of iac

when the proposed SMC is applied. The detailed simulation results are presented in Table 4.

Table 4. Simulink results.

Controller Pout
Case 1 Case 2

α THDs α THDs

the proposed SMC 200 W 0.001 2.97% 0.01 3.44%
PI controller 200 W 0.01 6.43% 0.32 6.85%

the proposed SMC 150 W 0.001 2.45% 0.05 2.83%
PI controller 150 W 0.005 6.58% 0.318 6.87%

5. Conclusions

This paper has proposed a current sharing control approach for the DCM interleaved flyback
micro-inverter. To do this, an accurate fourth-order model has firstly been built up, which is used
to analyze the output imbalance problem caused by coupling and mismatched parameters between
two flyback converters, such as the equivalent series resistances and magnetizing inductances of the
primary/secondary magnetizing inductance. The accuracy of the proposed model has been analyzed
through comparing it to the third-order and second-order models, and the analysis results have shown
that the proposed model is more accurate than the existing models.

Then, a sliding mode current sharing controller based on the full-fourth-order model has been
developed, which solves the output imbalance caused by parameter imbalance and disturbance.
The developed sliding mode controller comprises two parts: the feed-forward part, which can improve
the tracking bandwidth and reject the measured disturbance, and the feedback part, which is in a
form of PI. Thus, the proposed sliding mode controller can use the conventional PI blocks for current
sharing. Since the parameters of the sliding control law can be designed by the proposed model and
Lyapunov energy function, it is convenient to design compared to the PI current sharing controllers
with four gains.

Finally, simulation studies were carried out in MATLAB/Simulink to validate the model accuracy,
and the sliding mode current sharing controller. Results showed that the sliding mode controller tracks
sinusoidal reference signals smoothly, and controls the current sharing between two flyback converters
effectively when compared to the PI controllers.
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Nomenclature

Cpv input capacitor mF
Vpv PV voltage V
n the transformer turns ratio -

Lm1, Lm2
the primary magnetizing inductances of the
transformer

uH

im1, im2 the primary currents of the transformer A
is1, is2 the secondary currents of the transformer A
Lf the filter inductor uH
Cf filter capacitor uH
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Rp1, Rp2 ESRs of the primary magnetizing inductance Ω
Rs1, Rs2 ESRs of the secondary magnetizing inductance Ω
Rf ESR of the output filter inductor Ω
iac output current A
iac_ref the reference of iac A
f s switching frequency kHZ
f g frequency of gird HZ
Vg grid voltage V
P0 rated power W
D main MOSFET duty cycle -

x, x̃
the average and small signal of x in one
switching period

-

H the number of steady-state subinterval -
Ak and Bk steady state equations in k-interval -
di(i = 1, . . . , k) k-interval duty cycle -
Φ revised matrix -
nL the number of inductor -

don_1, don_2
duty cycles of switches Q1 and Q2 when they
are on

-

doff_1, doff_2

the time intervals from turn-off of switches Q1
and Q2 to the decreasing to zero of transformer
inductor currents

-

ADCM, BDCM, WDCM The coefficient matrixes of the proposed model -

Gdt4, Gdt3_1, Gdt3_2, Gd2

The transfer functions of the proposed fourth-
order model, the reduced to third-order model,
the third-order model based on single-phase
flyback converter and second-order model

-

a2 ~a0, b3 ~b0, c1 ~c0, c′0, j2
~j0, f 2 ~f 0, h2 ~h0

the coefficients of Gdt4, Gdt3_1, Gdt_2 and Gd2 -

e1 e2 tracking errors of Flyback1 and Flyabck2 A
α current sharing error A

I1ref , I2ref
the primary current references of Flyback1 and
Flyback2 converters

A

S the sliding surface -
λ sliding coefficient -
ρ observer gain matrix -
β coefficient matrix for limiting integral gain -
K positive definite feedback gain matrix -
kp,smc, ki,smc proportional and integral of sliding mode law -

Appendix A.

The parameters ADCM, BDCM and WDCM of Equation (6) are given

ADCM =


−( Rs1

n2Lm1
+ 2Vac

nDon_1TsVpv
) 0 0 − 2Im1

nDon_1TsVpv
+

Don_1
nLm1

0 −( Rs2
n2Lm2

+ 2Vac
nDon_2TsVpv

) 0 − 2Im2
nDon_2TsVpv

+
Don_2
nLm2

0 0 − R f
L f

1
L f

1
nC f

1
nC f

− 1
C f

0

 (A1)
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BDCM =



2Im1Vac
nD2

on_1TsVpv
−

Don_1TsVpv(Rρ1−
Rs1
n2 )

L2
m1

+ Vac
nLm1

+
Vpv
Lm1

2Im2Vac
nD2

on_2TsVpv
−

Don_2TsVpv(Rρ2−
Rs2
n2 )

L2
m2

+ Vac
nLm2

+
Vpv
Lm2

0
− TsVpv

nC f
(

Don_1
Lm1

+
Don_2
Lm2

)


(A2)

WDCM =



2Im1Vac
nDon_1TsV2

pv
−

Don_1Ts(Rρ1−
Rs1
n2 )

2L2
m1

+
Don_1
Lm1

0

2Im2Vac
nDon_2TsV2

pv
−

Don_2Ts(Rρ1−
Rs1
n2 )

2L2
m2

+
Don_1
Lm2

0

0 − 1
L f

− Ts
2nC f

(
D2

on_1
Lm1

+
D2

on_2
Lm2

) 0


(A3)

The coefficient parameters a2 ~a0, b3 ~b0 of Gdt4, c1 ~c0, j2 ~j0 and f 2 ~f 0 of Gdt3_1, and h2 ~h0 of
Gd2 are given as.

η1 =
Rs1

n2Lm1

+
2Vac

nDTsVpv
(A5)

η2 =
Rs2

n2Lm2

+
2Vac

nDTsVpv
(A6)

η3 = − 2Im1

nDTsVpv
+

D
nLm1

(A7)

η4 = − 2Im2

nDTsVpv
+

D
nLm2

(A8)

• a2 ~a0:

a2 =
DTsVpv

nC f L f
(

Lm1 + Lm2

Lm1 Lm2

) (A9)

a1 =
−DTsVpv Lm2 (Rρ1−

Rs1
n2 )+DTsVpv Lm1 (Rρ2−

Rs2
n2 )

nC f L f Lm1 Lm2
+

DTsVpv
nC f L f

(
Lm1+Lm2
Lm1 Lm2

)( Rs1
n2Lm1

+ Rs2
n2Lm2

+ 4Vac
nDTsVpv

)

+ 2(Im1−Im2)Vac
n2D2 TsVpvC f L f

+
( Vac

n +Vpv)(Lm2−Lm1 )
nC f L f Lm1 Lm2

(A10)

a0 = 2η2 Im1Vac
n2D2 TsVpvC f L f

−
DTsVpvη2(Rρ1−

Rs1
n2 )

nLm1 C f L f
+

η2Vac+nη2Vpv
n2Lm1 C f L f

+ η1+η2
L f

( 2Im2Vac
nD2 TsVpv

−
DTsVpv(Rρ2−

Rs2
n2 )

Lm2
+ Vac

nLm2

+
Vpv
Lm2

+
DTsVpv

nC f
(

Lm1+Lm2
Lm1 Lm2

))
(A11)

• b3 ~b0:

b3 = η1 + η2 +
R f

L f
(A12)

b2 = −
(η3 + η4)L f

nC f
+

1
L f C f

+ η1η2 +
R f (η1 + η2)

L f
(A13)

b1 = −
(η1η4 + η2η3)L f + (η3 + η4)R f − n(η1 + η2)− nη1η2R f C f

nC f L f
(A14)

b0 = −
(η2η3 + η1η4)R f − n(η1η2)

nC f L f
(A15)

• c1 ~c0:

c1 = −
DTsVpv

nLm1C f L f
(A16)
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c0 = −

η1
Lm1
− Vpv

Lm1
− Vac

nLm1
−

DTs(Rp1−
Rs1
n2 )

L2
m1

− 2Im1Vac
nD2TsVpv

nL f C f
(A17)

• j2 ~j0:

j2 =
R f
C f
− η3− η1 +

Rp1
2 + Rs1

2n2Lm1
+

(−D2Lm1Ts
2Vpv

2n2+3nVacD2Lm1TsVpv−2nIm1Vac Lm1)

2D3Lm1Ts2Vpv2n2 (A18)

j1 = η1η3 +
1

C f L f
−

(1 + nR f )(η1 + η3)

nC f
− d0

2 +
d0(η1 + η3 −

R f
C f
)

2D3Lm1Ts2Vpv2n2
(A19)

j0 =
R f η1η3

L f
− η1 + η3

C f L f
+

2η1η3 +
R f
C f
(η1 + η3)

nC f
− d0d1 +

d1(η1 + η3 −
R f
C f
)

2D3Lm1Ts2Vpv2n2
(A20)

• f 2 ~f 0:

f2 = η3−
Rp1

2
− Rs1

2n2Lm1
−

(−D2Lm1Ts
2Vpv

2n2 + 3nVacD2Lm1TsVpv − 2nIm1VacLm1)

2D3Lm1Ts2Vpv2n2
(A21)

f1 = −η1η3 +
η1 + η3 + nR f (η3 − η1)

nC f
+ d0

2 −
d0(η1 + η3 −

R f
C f
)

2D3Lm1Ts2Vpv2n2
(A22)

f0 = −
R f η1η3

L f
+

η1 + η3

C f L f
−

2η1η3 +
R f
C f
(η1 + η3)

nC f
+ d0d1 −

a1(η1 + η3 −
R f
C f
)

2D3Lm1Ts2Vpv2n2
(A23)

• h2 ~h0:
h2 = D′2V2

pvTs/(C f L f Lm1Vac) (A24)

h1 = (Lm1V0C f R f +
D′2V2

pvTsL f

2Vac
)/(C f L f Lm1Vac) (A25)

h0 = (Lm1Vac +
D′2V2

pvTsR f

2Vac
)/(C f L f Lm1Vac) (A26)

The parameters of matrix A, B shown in Equation (11) are given as

A =

[
a11 0
0 a12

]
(A27)

a11 =
2Im1L2

m1
Vac − nD3 T2

s V2
pv(Rρ1 − Rs1

n2 ) + VacD2 TsVpvLm1 + nD2 TsV2
pv Lm1

nD2 TsVpvL2
m1

(A28)

a12 =
2Im2L2

m2
Vac − nD3 T2

s V2
pv(Rρ2 − Rs2

n2 ) + VacD2 TsVpvLm2 + nD2 TsV2
pv Lm2

nD2 TsVpvL2
m2

(A29)

B =

[ a11(DTsVpvRs1+2nLm1 Vac)

n2DTsVpv Lm1

0

0
a12(DTsVpvRs2+2nLm2 Vac)

n2DTsVpv Lm2

]
(A30)
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Appendix B. Robustness of the Proposed SMC

Remark 1. The Lyapunov energy function V satisfies the condition of being lower bounded, so the V is
constructed as

V =
1
2
[STS + (r− r̂)T(Mρ)−1(r− r̂)] > 0 (A31)

It is assumed that the SMC controller for current sharing is stable in the interleaved flyback
micro-inverter. V represents the total energy of the system, which depends on the sliding
surface dynamics by the STS term, also depends on the adaptive disturbance error by the
(r− r̂)T(Mρ)−1(r− r̂) term.

Remark 2. The derivative of the Lyapunov function
.
V must be negative semi-definite to generate a stable SMC

control law. As a result, asymptotic stability of the overall system may be achieved.

It should be noted that the disturbance is regarded as a slowly varying quantity, so that the
derivative of the actual disturbance is considered to be zero,

.
r = 0. Then, the derivative of the Lyapunov

energy function is obtained from Equation (A31) and computed as:

.
V = 1

2 [
.
S

T
S + ST

.
S + (

.
r−

.
r̂)

T
(Mρ)−1(r− r̂) + (r− r̂)T(Mρ)−1(

.
r−

.
r̂)]

= ST
.
S− (r− r̂)T(Mρ)−1 .

r̂
(A32)

According to Equations (15) and (16), Equation (A32) can be expressed as

.
V = ST [λF

.
Ire f − λFA−1(u− Bx)] + STλFA−1r̂ + ST(λF− βT)A−1(r− r̂) (A33)

In order to meet the requirement of
.

V < 0, the matrix β should be designed to satisfy the condition
of ST(λF− βT)A−1(r− r̂) < 0, which makes the disturbance observable. Next, to ensure the system
asymptotically converges (

.
V satisfies the condition of negative semi-definite). Then the derivative of

the Lyapunov energy function is designed as follows:

.
V = ST [λF

.
Ire f − λFA−1(u− Bx)] + STλFA−1r̂ = −STKS (A34)

Substituting Equation (16) into Equation (A34), the SMC control law u is obtained, which is given
in Equation (18).

Remark 3. The
.

V should satisfy the condition of being uniformly continuous in time, or
..
V should satisfy the

condition of being bounded.

According to Equation (A34), the differential of
.

V is given as

..
V = −2STK

.
S (A35)

In order to satisfy the boundary condition, the S and
.
S should be bounded.

Next, let Equations (13) and (15) be substituted into Equation (A34), then

.
S + KS = λFA−1(r− r̂) (A36)

From Equation (A36), it is shown that the sliding surface S and differential of S are bounded,
since the term of (r− r̂) is abounded. Therefore, it is proved that

..
V satisfies the condition of being
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bounded, since S and
.
S are bounded. So

.
V satisfies the condition of being uniformly continuous

in time.
According to Barbalat’s lemma [46], when three remarks are satisfied, it ensures that all the errors

can converge to the sliding surface. Finally, it is proved that the errors e1, e2 and α can converge to a
zero point and the designed controller is stable.
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boost ćuk converter configuration. Energies 2017, 10, 1513. [CrossRef]

http://dx.doi.org/10.1049/iet-pel.2012.0168
http://dx.doi.org/10.1109/TPEL.2017.2668605
http://dx.doi.org/10.1002/cta.2467
http://dx.doi.org/10.1109/TPEL.2016.2549015
http://dx.doi.org/10.1109/TIA.2016.2606604
http://dx.doi.org/10.1080/03772063.2017.1361871
http://dx.doi.org/10.1109/TPEL.2016.2614602
http://dx.doi.org/10.1109/TPEL.2017.2653081
http://dx.doi.org/10.1109/TPEL.2017.2661066
http://dx.doi.org/10.1109/TPEL.2014.2334896
http://dx.doi.org/10.1109/TIA.2011.2168592
http://dx.doi.org/10.1109/TIE.2017.2677328
http://dx.doi.org/10.1109/TSG.2016.2546551
http://dx.doi.org/10.1016/j.automatica.2017.12.051
http://dx.doi.org/10.1109/TIA.2016.2581152
http://dx.doi.org/10.1109/TPEL.2006.876848
http://dx.doi.org/10.1109/TEC.2007.895854
http://dx.doi.org/10.1109/TIE.2013.2281153
http://dx.doi.org/10.3390/en10101513


Energies 2018, 11, 1685 21 of 21

43. Huang, M.; Liu, Y.; Zhang, N.; Xiong, N.; Liu, A.; Zeng, Z.; Song, H. A services routing based caching scheme
for cloud assisted CRNs. IEEE Access. 2018, 6, 15787–15805. [CrossRef]

44. Sencer, B.; Mori, T.; Shamotoc, E. Design and application of a sliding mode controller for accurate motion
synchronization of dual servo systems. Control Eng. Pract. 2013, 21, 1519–1530. [CrossRef]

45. Song, D.; Yang, J.; Cai, Z.; Dong, M.; Joo, Y.H. Model predictive control with finite control set for
variable-speed wind turbines. Energy 2017, 126, 564–572. [CrossRef]

46. Slotine, J.J.E.; Weiping, L. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991;
Volume 199.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2018.2815039
http://dx.doi.org/10.1016/j.conengprac.2013.07.001
http://dx.doi.org/10.1016/j.energy.2017.02.149
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Working Principle and Dynamic Modeling 
	Working Principle 
	Accurate Dynamic Model in DCM Operation 
	Comparisons between the Accurate Dynamic Model and the Existing Model 
	The Proposed Fourth-Order Model 
	The Third-Order Model Based on Single-Phase Flyback Converter 
	The Second-Order Model Based on Average Small Signal 


	Current Controller Using Sliding Mode Control 
	Simulation 
	Conclusions 
	
	Robustness of the Proposed SMC 
	References

