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Abstract: This paper proposes a smoothly transitive fixed frequency hysteresis current control
(ST-FHCC) scheme applied to an active power filter (APF). First of all, a switching fixed frequency
hysteresis current control (S-FHCC) is introduced, which is based on phase-to-phase decoupling and
switching the control strategies under mode 0 or mode 1, and its weakness is described in detail.
To enhance it, an improved approach of regulating the hysteresis bandwidth is presented to fix
the switching frequency with switch phases being regulated, based on the optimal voltage space
vector (OVSV). Furthermore, a flexible division of the voltage-space-vectors diagram is developed to
divide the original voltage-space-vectors diagram into six sub-regions, upon which the control
strategies under mode 0 and mode 1 can be switched alternately in order to obtain a smooth
transition. As a consequence, ST-FHCC can thoroughly avoid the inherent weakness of S-FHCC of
switching that is not smooth as a result of the low control accuracy of current errors. Case studies
are carried out through power systems computer aided design/electromagnetic transients including
DC (PSCAD/EMTDC) while simulation results verify the effectiveness and superiority of ST-FHCC
compared to S-FHCC.

Keywords: active power filter; smoothly transitive fixed frequency hysteresis current control; optimal
voltage space vector; voltage-space-vectors diagram

1. Introduction

In the past decade, distributed generation (DG), including wind, hydro, solar, biomass,
geothermal, tidal, fuel cell, has been widely deployed which can provide a powerful solution for
the growing energy crisis resulting from the use of conventional fossil fuels, e.g., coal, gas, oil [1–8].
The integration of large-scale DG into the power grid will inevitably degrade power quality [9–11],
in which harmonics due to adoption of converters of DG have a severe impact on the devices connected
to the power system, which has gained enormous attention in recent year [12,13]. At present, the active
power filter (APF) is one of the most effective tools for harmonics reduction [14], which usually adopts
hysteresis current control (HCC) to realize an efficient harmonics compensation thanks to its elegant
merits of simple implementation, high accuracy and fast response [15].

Generally speaking, there are two types of HCC: fixed bandwidth HCC (BHCC) and fixed
frequency HCC (FHCC). Here, the fluctuation of switching frequency of BHCC often causes an
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unfavorable increase of switching losses, which will result in considerable noise and a difficulty in filter
design [16–18]. To handle the above issue, FHCC has been developed to fully suppress the fluctuation
of switching frequency via an accurate bandwidth regulation [19,20]. Hence, FHCC has become a
major technique for the current control of various power system devices, e.g., an uninterruptible power
supply (UPS), motor, converter, APF, etc.

So far, an enormous variety of control schemes for FHCC has been designed. In [21], an FHCC
without bandwidth was reported with the features of simple control, easy implementation in a digital
way, robustness to the filter inductor, and excellent steady and dynamic performance, in which
the hysteresis band is cancelled, and the switching frequency is fixed by adjusting online the
sampling period while accurate system parameters are required. By comparison, [21,22] presented a
constant-frequency hysteresis current control without a hysteresis bandwidth for a grid-connected
voltage source inverter with the concept of formulating the switching function for dictating the
switching times of the switches in the inverter within a predefined switching period by predicting the
current reference, system dynamic behavior, and past time. The technique retains the benefit of the
hysteresis control having fast dynamic response and tackles the drawback of the standard hysteresis
control having variable switching frequency. In [23], a variable-bandwidth hysteresis-modulation
sliding-mode control was presented to realize the pulse frequency modulation, which utilizes a
direct hysteresis modulation sliding-mode controller to perform the pulse width modulation (PWM),
and employs a quasi-indirect sliding-mode controller to control the bandwidth of the hysteresis
modulation. By using this method, the control circuit is of low cost and is simple, together with
satisfactory transient and steady responses. Besides, [24] employed a fuzzy logic controller to facilitate
the discarding of uncertainty in the APF by incorporating an adaptive fuzzy hysteresis band, which has
a quite simple structure and is relatively easy to implement in practice. Moreover, [25] proposed a
constant hysteresis-band current controller with lower fixed switching frequency by adding a zero
mode control at a proper time, such that the hysteresis bandwidth and switching frequency can be
simultaneously fixed via the use of an extra k-band to create a degree of freedom. Furthermore, [26]
proposed a current-error space-vector-based hysteresis controller with online boundary computation,
which possesses the advantage that its phase voltage frequency spectrum is similar to that of a fixed
switching frequency space vector pulse width modulated (SVPWM) inverter. In [27], the switching
frequency control process was further improved by fine tuning the hysteresis bandwidth variations,
such that the zero crossings of the phase-leg current errors could be synchronized with a fixed reference
clock to achieve a nearest space vector switching sequence, as well as to ensure an optimal switched
output spectrum. In addition, [28] devised a mixed-signal hysteretic current controller with the
digital voltage-loop and the analog current-loop, such that a robust stability and parameter-insensitive
current ripple were achieved by asynchronous error-voltage sampling, together with a fixed switching
frequency via the real-time bandwidth adaptation. Besides, in [29], a new fixed frequency space-vector
hysteresis-band current control was presented to maintain the switching frequency constant through
the voltage vectors associated with the estimated outer hysteresis-band, which not only retains most
benefits of BHCC but also offers a fixed switching frequency and independent interphases. In particular,
the author of this paper previously proposed a switching fixed frequency hysteresis current control
(S-FHCC) based on an optimal voltage space vector (OVSV), which can increase the amplification gain
of DC-link voltage with respect to the line currents of APF. It can also enhance the tracking accuracy of
the current reference and decrease the power losses of the power electronic switches [30,31].

Nevertheless, the current error of the APF will exceed the limit when the voltage reference space
vector crosses the boundary of the adjacent sub-regions, which generally produces a periodical
surge of current error that often undesirably degrades the current tracking accuracy [30,31].
In order to overcome the above obstacle, this paper proposes a smoothly transitive fixed frequency
hysteresis current control (ST-FHCC) scheme based on OVSV. Firstly, S-FHCC is introduced based
on phase-to-phase decoupling and switching the control strategies under mode 0 or mode 1,
which requires an inner and outer hysteresis comparator. One of its weakness is that the control
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strategies will be switched only if current errors exceed the limit of the outer hysteresis bandwidth.
Then, an improved approach of regulating the hysteresis bandwidth is presented to fix the switching
frequency with switch phases being regulated, based on OVSV. Furthermore, a flexible division
of the voltage-space-vectors diagram is designed to divide the original region into six sub-regions.
By adopting the flexible division, the control strategies under mode 0 and mode 1 can be switched
alternately. Lastly, comprehensive case studies are undertaken to evaluate and compare the control
performance of S-FHCC and ST-FHCC.

The original contribution and novelty of this paper can be summarized into the following
three aspects:

• The paper considers an APF in a three-phase-three-wire power system, in which FHCC is
developed instead of the one given by [32–34]. Under such a configuration, the voltage
between neutral point and dc-link midpoint of the APF results in a strong control coupling
of three-phase, which has a dramatic impact on regulation of hysteresis bandwidth and fixed
frequency. Hence phase-to-phase decoupling is implemented to eliminate the voltage, such that
the two phase-to-phase current errors can be independently controlled by two switches with the
third switch being a constant;

• Compared to [33,34], an improved approach of variable hysteresis bandwidth is presented in this
paper, of which the midpoint of switch signals in the state of 0 is synchronized to the clock pulse
with a constant frequency. Meanwhile, the equation is given to calculate the hysteresis bandwidth
in the next period according to that in the current period. With this approach, fixed frequency and
regulation of switch phases can be obtained simultaneously, such that the switching frequency
can be constant while the uncontrollable phase-to-phase current error can be reduced greatly.

• A flexible division of the voltage-space-vector diagram is developed to divide the original
voltage-space-vectors diagram into six sub-regions, upon which the control strategies under mode
0 and mode 1 can be switched alternately. As a result, a smooth transition can be realized while
the inherent weakness of S-FHCC can be avoided, e.g., the control strategies will be switched only
if current errors exceed the limit of the outer hysteresis bandwidth. The switching is far smoother
with higher control accuracy and smaller current errors in ST-FHCC than those in S-FHCC.

The remainder of this paper is organized as follows: Section 2 aims to introduce the principle
of S-FHCC. In Section 3, an approach of the variable hysteresis bandwidth is presented. ST-FHCC is
described in detail in Section 4. Case studies are presented in Section 5 while some discussions about
the results generated is given in Section 6. The work presented in the paper and some concluding
remarks/findings are summarized in Section 7.

2. Switching Fixed Frequency Hysteresis Current Control (S-FHCC)

2.1. Active Power Filter (APF) Model

Figure 1 shows an equivalent circuit of a three-phase APF. Here, Sa, Sb and Sc represent three
switching functions and 1 or 0 are used to represent their states, respectively. Here, 1 means the upper
leg is turn-on and the lower leg is turn-off, while 0 means the opposite state. E is the DC-link capacitor
voltage. R and L are resistor and inductor connected to the inverter bridge with the power grid. u0 is
the voltage between neutral point and ground. ua, ub, uc are phase a, phase b and phase c terminal
voltage with respect to the neutral point of inverter bridge O, while ia, ib ic are phase a, phase b and
phase c line currents, respectively.
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Figure 1. Equivalent circuit of a three-phase active power filter (APF). 
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The decoupling of phase-to-phase currents is required to obtain S-FHCC [30], such that the
dynamics of current error can be written with a voltage-space-vector. Ignore the resistance, yields

L
d∆i
dt

= u∗ − u (1)

where ∆i is the difference between the line current space vector reference i* and line current space
vector i; u is a voltage-space-vector; and u* is a voltage-space-vector reference corresponding to i*,
respectively. Expand (1) into 

L d∆iab
dt = u∗ab − (Sa − Sb) · E

L d∆ibc
dt = u∗bc − (Sb − Sc) · E

L d∆ica
dt = u∗ca − (Sc − Sa) · E

(2)

where u∗ab, u∗bc, u∗ca are the line voltage references of phase ab, phase bc, phase ca, respectively.
∆iab, ∆ibc, ∆ica are given by

∆iab = i∗ab − iab
∆ibc = i∗bc − ibc
∆ica = i∗ca − ica

(3)

where i∗ab, i∗bc, i∗ca are the phase-to-phase current references of phase ab, phase bc, phase ca, and iab, ibc,
ica are the differences between ia and ib, ib and ic, ic and ia, respectively.

From Equation (2), one can see that the phase-to-phase current errors are only determined by the
corresponding two-phase switches, thus a decoupled current control could be realized. For instance,
set Sb = 0 or 1 and ∆iab and ∆ibc can be controlled by Sa and Sc, respectively. A similar control
strategy can be derived when Sa or Sc are set to be a constant. Therefore, as shown in Figure 2,
the voltage-space-vectors diagram can be divided into three parallelogram regions, each of which is
denoted to be either mode 0 (one of the three switches Sa, Sb or Sc is fixed to be 0 while the others are
arbitrary) or mode 1 (one of the three switches Sa, Sb or Sc is fixed to be 1 while the others are arbitrary).

The detailed control strategies under mode 0 and mode 1 in different parallelogram regions are
given by Table 1.

Table 1. Control strategies in different parallelogram regions under mode 0 and mode 1.

Regions Mode 0 Regions Mode 1

P01 Sa = 0 Sb controls ∆iab Sc controls ∆ica P11 Sa = 1 Sb controls ∆iab Sc controls ∆ica
P02 Sb = 0 Sc controls ∆ibc Sa controls ∆iab. P12 Sb = 1 Sc controls ∆ibc Sa controls ∆iab.
P03 Sc = 0 Sa controls ∆ica Sb controls ∆ibc P13 Sc = 1 Sa controls ∆ica Sb controls ∆ibc
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2.2. S-FHCC and Its Weakness

In literature [30,31], two hysteresis comparators employed in S-FHCC are depicted by Figure 3.
The inner hysteresis comparator is adopted to detect whether the current error exceeds the inner
bandwidth while the outer hysteresis comparator is used to detect whether the current error exceeds
the outer bandwidth, which is larger than the inner bandwidth, such that the location of u* could
be determined.
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Figure 3. Switching fixed frequency hysteresis current control (S-FHCC).

In Figure 3, Si and Se are logic vectors calculated by reversing the outputs of the inner hysteresis
comparator and the outer hysteresis comparator while 2hi and 2he are their hysteresis bandwidth,
respectively. In addition, S represents the switching vector, given by

Sa = Se
bcSe

caSi
ca + Se

abSe
bcSi

ab

Sb = Se
caSe

abSi
ab + Se

bcSe
caSi

bc

Sc = Se
abSe

bcSi
bc + Se

caSe
abSi

ca

(4)

Note that the location of u* can be determined by the signs of the three line-to-line voltage
references, i.e., u∗ab, u∗bc, u∗ca, which is indicated by Se. Besides, the phase lock aims at fixing the
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switching frequency of APF with a proportional-integral (PI) controller. More details of the S-FHCC
can be found in references [30,31] for interested readers.

Nevertheless, an inherent weakness of S-FHCC is that the change of the location of u* can be
detected only if one of the three current errors exceeds the limit of the corresponding outer hysteresis
bandwidth, such that the control strategy are changed. For instance, when u* moves from region VI to
region I shown by Figure 4a, the control strategy in region VI (Sc controls ∆ibc while Sa controls ∆iab) is
still adopted with the fact that ∆ibc will increase continuously despite the value of Sc until the current
error ∆ibc exceeds the limit of the outer hysteresis comparator, as clearly provided in Figure 4b.
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3. Fixed Swithcing Frequency Based on Optimal Voltage Space Vector (OVSV)

Since the uncontrollable current error is the negative sum of the other two phase-to-phase current
errors under control, e.g., ∆iab =−(∆ibc + ∆ica), ∆ibc and ∆ica should be as close as possible in amplitude
and opposite to each other in phase in order to decrease the amplitude of ∆iab. Thus, the hysteresis
bandwidth is required to fix switching frequency and to regulate the phase of two controllable switches.
Moreover, an approach of fixing switching frequency with switch phases being regulated is presented
such that the midpoint of switching signals in the state of 0 is synchronized to the clock pulse with a
constant frequency, which is demonstrated as follows.

Assume u* is in region P02, shown in Figure 2. It can be seen that Sc and Sa can independently
control ∆ibc and ∆iab, respectively. u* changes slightly during a switching period under high switching
frequency, which could be ignored. Hence, the current error increases or decreases linearly with respect
to time. The process of fixing the switching frequencies of Sa and Sc with switch phases being regulated
are depicted in Figure 5, by which the current error will cross the zero-point of the clock pulse in each
switching period. As a result, the switching frequencies of Sa and Sc remain constant, which is equal to
that of the clock pulse. More importantly, the phases of Sa and Sc are regulated to be almost opposite.

According to Figure 5, in order to synchronize the clock pulse and the midpoint of the switch
signals in the state of 0, the hysteresis bandwidths must satisfy:

(
hk

2hk/T2
+ ∆t) +

hk + hk+1
2hk/T1

+
hk+1

2hk/T2
= Ts (5)

where hk and hk+1 are the hysteresis bandwidth in the current switching period and in the next
switching period; T1 and T2 denote the durations of the switch signal that stayed at 1 and 0 in the
current switching period; Ts is a given switching period; and ∆t is the difference between the midpoint
of switch signal and clock pulse, respectively.
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In S-FHCC, the adopted voltage-space-vectors are not optimal when the three-phase switches
operate without regulating the phase of switches. In contrast, regulating the phase of switches cannot
only decrease current error and harmonics, but can also lead to an OVSV.

For example, when u* is in region I under mode 0, the waveforms of Sa, Sb, Sc and the sequence
of voltage-space-vectors are (V0, V1, V2, V3, V0) without regulating the phase of switches, as shown
in Figure 6a. Moreover, this also demonstrates that the currents are controllable in the whole
parallelogram region denoted by P03. However, there are three OVSVs, i.e., V0, V1, V2, and one
suboptimal voltage-space-vector, i.e., V3, in the adopted control set of voltage-space-vectors {V0, V1,
V2, V3} [30,31], which cannot all be optimal.Energies 2018, 11, x FOR PEER REVIEW  7 of 20 
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Figure 6. Operation sequences of switches and voltage-space-vectors variation. (a) voltage-space-vectors
operation without phase regulation; (b) optimal voltage space vector (OVSV) operation with
phase regulation.

With switch phases regulated, the waveforms of Sa, Sb, Sc and the operation sequence of
voltage-space-vectors are (V0, V1, V2, V1, V0), as shown in Figure 6b. Since region I belongs to
the parallelogram region, the current error is also controllable in the region I. Furthermore, the adopted
control set of voltage-space-vectors {V0, V1, V2} is all optimal.
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4. Smoothly Transitive Fixed-Frequency Hysteresis Current Control (ST-FHCC)

4.1. Flexible Division of Voltage-Space-Vector Diagram

To prevent the current error from exceeding its limit illustrated by Figure 4b, one should switch
between mode 0 and mode 1. As shown in Figure 7a, the inherent weakness can be thoroughly
overcome if the control strategy under mode 0 (Sb = 0, Sc→ ∆ibc, Sa→ ∆iab) is switched into the control
strategy under mode 1 (Sa = 1, Sb → ∆iab, Sc → ∆ica) before u* crosses the boundary VI-I. Similarly,
mode 1 should be switched into mode 0 before u* crosses the boundary I-II. The reason is that in the
overlapping area, two of the three current errors are always controllable, and the switching between
mode 0 and mode 1 will not lead to what Figure 4b describes. Therefore, in order to smoothly transit
the boundaries of the three parallelogram regions under mode 0 or mode 1, the control strategies under
mode 0 and mode 1 should be switched in the overlapping areas of the two parallelogram regions
under mode 0 and mode 1, respectively.
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More specifically, before u* crosses the boundary VI-I, mode 0 is switched into mode 1. Moreover,
when u* crosses the boundary VI-I, the operation sequence of voltage-space-vectors varies from S16

to S11, where S16 and S11 represent the operation sequences of (V7, V6, V1, V6, V7) and (V7, V2, V1,
V2, V7), respectively. With u* crossing the boundary VI-I, the duration of Sb staying at 0 decreases
gradually which is contrary to that of Sc staying at 0, such that a smooth transition of three-phase
switches can be realized, as shown from Figure 7b.

Remark 1. u* can be composed according to volt-second balance when u* is located in region VI, as

u∗ =
T′7
Ts

V7 +
T′6
Ts

V6 +
T′1
Ts

V1 (6)

where T′0 is the duration of V7; T′6 denotes the duration of V6 while T′1 denotes the duration of V1; and Ts is the
switching period.

With u* crossing the boundary VI-I, T′6 will decrease while T′1 will increase, which show that the
duty-cycle of Sb narrows gradually which is contrary to that of Sc in Figure 7b. Moreover, when u* is
just located in the boundary VI-I, T1 is equals to 0, which shows that the duty-cycle of Sb is equal to
that of Sc. After u* crosses the boundary, u* will be composed of

u∗ =
T′7
Ts

V7 +
T2
′

Ts
V2 +

T′1
Ts

V1 (7)
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where T′2 is the duration of V2.
With u* changing continuously, T′2 will increase while T′1 will decrease, which illustrates that the

duty-cycle of Sb decrease further which is contrary to that of Sc in Figure 7b.
The three parallelogram regions under mode 0 and those under mode 1 can produce six

overlapping areas, i.e., I-VI, as depicted in Figure 2. The control strategies under mode 0 (mode
1) should be switched into those under mode 1 (mode 0) in these overlapping areas, for two
controllable current errors are always under control by two switches in these overlapping areas.
Hence, a switching boundary needs to be set in each overlapping area in order to switch between
the control strategies under mode 0 and those under mode 1 in the overlapping areas. On the one
hand, the voltage-space-vectors diagram can be divided into six symmetric sub-regions, e.g., A to F,
in Figure 8a. Two different control modes are adopted to two adjacent sub-regions. The regions A,
C and E are controlled by mode 1 while regions B, D and E are controlled by mode 0. Under such a
scenario, the current error will not exceed its limit in the division boundaries. Besides, symmetrical
division can offer a fast and accurate regulation of hysteresis bandwidth and phase. The detailed
control strategies are tabulated in Table 2.
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Table 2. The detailed control strategies based on the flexible division.

Sub-Regions Control Strategy

A Sa = 1 Sb controls ∆iab Sc controls ∆ica
B Sc = 0 Sa controls ∆ica Sb controls ∆ibc
C Sb = 1 Sa controls ∆iab Sc controls ∆ibc
D Sa = 0 Sb controls ∆iab Sc controls ∆ica
E Sc = 1 Sa controls ∆ica Sb controls ∆ibc
F Sb = 0 Sa controls ∆iab Sc controls ∆ibc

On the other hand, the voltage-space-vectors diagram can also be divided more flexibly and even
asymmetrically in ST-FHCC, as illustrated by Figure 8b. Note that such a division provides more
margins for switching control strategies, which is due to the fact that even if there is a slight estimation
error of u*, the current errors are still under control.
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4.2. Switching of the Control Strategies in S-FHCC

As illustrated in Figure 9a, the operation sequence of voltage-space-vectors varies from S06 to
S01 with u* crossing from region VI to I, where S06 and S01 denote the operation sequences of (V0, V1,
V6, V1, V0) and (V0, V1, V2, V1, V0), respectively. In S06 or S01, u will be V0, V1, V6, V1, V0 or V0, V1,
V2, V1, V0 in sequence in a switching period. Consider that u* is approximated to be a constant in a
switching period, the derivatives of ∆i with respect to the time are obtained from Equation (1) and
depicted in Figure 9b, where (d∆i1/dt), (d∆i2/dt), (d∆i3/dt) are the derivatives of ∆i with respect to
the time with u equal to V0, V1, V6, respectively. Assume the initial ∆i is zero to simplify the analysis.
∆i will change in the directions of the derivatives of ∆i with respect to the time in sequence. There are
trajectories of ∆i in a solid line and in a dotted line corresponding with S06 and S01, as clearly shown
by Figure 9c. Moreover, the trajectories of ∆i will gradually change from S06 into S01 with u* changing.
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In order to achieve a smooth switching of current error, the ideal switching point should
be the zero-crossing of current errors according to Figure 9c, such that three-phase switches can
switch smoothly.

Based on the above analysis, the switching point is determined by detecting whether current
error exceeds the limit of the outer hysteresis bandwidth or not. In other words, the switching point
cannot be selected as the zero-crossing point of current errors, which usually results in a low control
accuracy and an unstable switching of three-phase switches that will affect the fixed-frequency control
and regulation of the switches phase.
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4.3. Smooth Switching of the Control Strategies in ST-FHCC

In ST-FHCC, when u* crosses the division boundary, the switching time of each phase is used
to determine the u* location at first. Then, the zero-crossing point of current errors (according to
the clock signal) is chosen as the switching point of mode 0 and mode 1 based on the u* location
and pre-divided voltage-space-vectors diagram, such that a smooth switching of current errors and
three-phase switches can be realized.

For example, when u* crosses from region A to B, the operation sequence of voltage-space-vectors
varies from S11 to S01, where S11 and S01 denote the operation sequences of (V7, V2, V1, V2, V7) and
(V0, V1, V2, V1, V0), respectively. The trajectories of current errors are depicted by Figure 10a, where
α0, α1, α2, α7 are the derivatives of ∆i with respect to time under the operations of V0, V1, V2, V7,
respectively. The ideal switching point should be the zero-crossing point of current errors based on
the clock signal in practice with the result that three-phase switches can switch smoothly, as shown in
Figure 10b.
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4.4. Detailed Procedure of ST-FHCC

The detail procedure of ST-FHCC is depicted by Figure 11. The three hysteresis comparators are
set to output 0 when the current errors exceed their upper bandwidths while set to be 1 when the
current errors exceed their lower bandwidths.

The following example illustrates the process of obtaining the ST-FHCC in detail.
When u* is located in region A, Sa is fixed to be 1, and Sb controls ∆iab while Sc controls ∆ica.

According to Equation (2), ∆iab will increase when Sb stays at 1 while ∆iab will decrease when Sb stays
at 0. On the contrary, ∆ica will decrease when Sc stays at 1 while ∆iab will increase when Sc stays at
0. If the hysteresis comparator 1 outputs 1, it means that ∆iab exceeds the lower bandwidth of the
hysteresis comparator and needs to be increased. Thus, S1 should be assigned to Sb. Similarly, if the
hysteresis comparator 3 outputs 1, it means that ∆ica exceeds the lower bandwidth of the hysteresis
comparator and needs to be increased. Thus, S3 should be assigned to Sc. Consequently, Table 3 can
be obtained.

Table 3. The relationship between S1, S2, S3 and Sa, Sb, Sc.

The Location of u* A B C D E F

The relationships
Sa = 1 Sa = S3 Sa = S1 Sa = 0 Sa = S3 Sa = S1

Sb = S1 Sb = S2 Sb = 1 Sb = S1 Sb = S2 Sb = 0
Sc = S3 Sc = 0 Sc = S2 Sc = S3 Sc = 1 Sc = S2
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(ST-FHCC) procedure.

According to Sa, Sb, and Sc, ∆ha, ∆hb, and ∆hc can be obtained by solving Equation (5), respectively.
Since Sb controls ∆iab while Sc controls ∆ica, ∆hb should be the bandwidth of hysteresis comparator 1 to
limit ∆iab, such that ∆hb is assigned to ∆h1 while ∆hc should be the bandwidth of hysteresis comparator
3 to limit ∆ica, such that ∆hc is assigned to ∆h3. Therefore, Table 4 can be obtained.

Table 4. The relationship between ∆ha, ∆hb, ∆hc and ∆h1, ∆h2, ∆h3.

The Location of u* A or D B or E C or F

The relationships
∆h1 = ∆hb ∆h1 = * ∆h1 = ∆ha

∆h2 = * ∆h2 = ∆hb ∆h2 = ∆hc
∆h3 = ∆hc ∆h3 = ∆ha ∆h3 = *

‘*’ means the hysteresis bandwidth can be set to an arbitrary constant.

Remark 2. The outer hysteresis comparator employed in S-FHCC is no longer required in ST-FHCC. The control
strategy under mode 0 (mode 1) is switched into that under mode 1 (mode 0) in the overlapping areas produced
by the parallelogram regions of mode 0 and those of mode 1, as two controllable current errors are always
under control by two switches in the overlapping areas. Therefore, the current errors will not exceed the
larger bandwidth of the outer hysteresis comparator with the switching procedures of ST-FHCC implemented.
Furthermore, the outer hysteresis comparator is no longer required to switch the control strategies in ST-FHCC.

5. Case Studies

The effectiveness of ST-FHCC is evaluated and compared with that of S-FHCC [30] by power
systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC). The test
system is given by Figure 12, in which the APF is used to compensate the harmonic currents produced
by the rectifier and the DC motor, while the system parameters are given as Ls = 0.001 H, LL = 0.003 H,
Lf = 0.0125 H, Rd = 37 Ω, Ld = 0.015 H, uc = 800 V. The root-mean-square (RMS) of phase-to-phase
voltage us is 380 V and the switching frequency of APF is 10 kHz. In addition, ia, ib, ic are the line
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currents of APF; iLa, iLb, iLc are the line currents of the non-linear load; isa, isb, isc denote the line currents
supplied by the three-phase power grid, respectively.Energies 2018, 11, x FOR PEER REVIEW  13 of 20 
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5.1. The Effect of Harmonics Compensation in ST-FHCC

Figure 13a,b show the load current of phase a and the system current of ST-FHCC after the
harmonics compensation, which demonstrate that the harmonic current produced by the load can be
effectively compensated. Moreover, Figure 13c illustrates that the current error of phase a is under
control which is bounded between −0.8 A to 0.8 A. Figure 13d shows that the total harmonic distortion
(THD) value of isa is reduced dramatically from 24.43 to 5.01% after isa is compensated by APF.
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Figure 13. Load current, current supplied by power system after compensation, and current error of
phase a between actual current of phase a and its reference. (a) current iLa; (b) current isa; (c) current
error of phase a between actual; (d) THDs of iLa and isa current of phase a and its reference.
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5.2. The Performance of the Current Errors in S-FHCC

The current error ∆iab obtained by S-FHCC is given in Figure 14a, which shows that the control
strategy is discontinuous with mode 1. When S-FHCC switches from Sa = 1 to Sb = 1, the phase-to-phase
current error ∆iab exceeds the limit, i.e., 2 A, of the outer hysteresis comparator. Here, Figure 14b enlarges
the results obtained near 0.0238 s, in which it can be found that S-FHCC can only be switched after the
current error exceeding the limit of the outer hysteresis comparator. During the switching, the transient
process of current error phase and three-phase switches operation is disordered, which greatly affects
the control of switching frequency and the switches phase.
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5.3. The Performance of the Current Errors in ST-FHCC

Figure 15a provides the changes of the phase-to-phase current error ∆iab and the hysteresis
bandwidth obtained during 0.02 s to 0.03 s, whose detailed variation is clearly shown by Figure 15b
obtained during 0.0254 s to 0.0258 s.
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obtained by ST-FHCC; (b) detailed current errors at the switching point.

From Figure 15a, one can observe that the current error ∆iab is uncontrollable in region E (Sc = 1)
and B (Sc = 0) while it becomes controllable in region F (Sb = 0) and A (Sa = 1), in which Sa controls ∆iab
in region F and Sb controls ∆iab in region A. Meanwhile, Figure 15a shows that the hysteresis bandwidth
is regulated continuously to fix the switching frequency in the region where ∆iab is controllable.

From Figure 15b, it can be seen that the switching frequency is constant while the midpoint of
two controllable switches in the state of 0 is synchronized to the clock signals, which results in an
uncontrollable current error even to be smaller than that of the others. This is the reason that ∆ica

satisfies the equation: ∆ica = −(∆iab + ∆ibc), and moreover, ∆iab and ∆ibc are as close as possible in
amplitude and opposite to each other in phase.

In particular, at the zero-crossing point of current errors near 0.02565 s, ST-FHCC switches
from Sb = 0 (Sa controls ∆iab and Sc controls ∆ibc) to Sa = 1 (Sb controls ∆iab and Sc controls ∆ica),



Energies 2018, 11, 1695 16 of 20

which corresponds to the analysis of Table 2. Moreover, the current errors and operation of three-phase
switches can change smoothly before and after the switching.

In addition, Figure 16 depicts the three-phase switching times by counting how three-phase switch
signals rise and fall during 0 s–0.06 s. One of the three-phase switches does not operate in Region
E, F, A and B, which is denoted by the horizontal straight lines. The operation times of the phase-C
switch can be calculated as 20,147 times per second during 0.02 s–0.03 s. As shown by Figure 15b,
the phase-C switch operates twice during a clock-pulse period due to the regulating phases of the
switches. Therefore, the switching frequency is 10,073.5 Hz. Besides, the switching frequencies of
the phase-A and the phase-C switches can be calculated as an approximate 10 kHz. Furthermore,
the average switching frequencies of three-phase can be evaluated as an approximated 10 kHz even
during 0 s–0.06 s. To summarize, the switching frequency can remain constant at 10 kHz by ST-FHCC.
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5.4. The Trajectories of Current Errors by S-FHCC and ST-FHCC

Figure 17a,b compares the switching trajectories of the current error space-vector of S-FHCC and
ST-FHCC, respectively. One can see that ST-FHCC has no disorder of current error when switched
at the zero-crossing point. In contrast, S-FHCC presents a significant disorder of current error when
switched at the zero-crossing point.
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Lastly, from Figure 18a,b, one can find that ST-FHCC can achieve a more stable and smoother
current error compared to that of S-FHCC.Energies 2018, 11, x FOR PEER REVIEW  17 of 20 
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6. Discussions

• Note that the proposed approach of variable hysteresis bandwidth is different from the
conventional one, which is derived from a simplified single-phase model of a power system
with APF [32–34]. In the ST-FHCC, the hysteresis bandwidth in the next switching period is
derived from the hysteresis bandwidth in the current period according to Equation (5), which is
obtained in a way that the midpoint of switch signals in the state of 0 is accurately synchronized
to the clock pulse with a constant frequency, which can simultaneously realize a fixed frequency
and a regulation of switch phases. In other words, two controllable current errors controlled by
two switches will cross the zero point of the clock pulse accurately. As a result, the two operated
switches will always operate twice during two clock pulses. Hence, the switching period will
be equal to that of the clock pulse. Besides, the phases of two controllable current errors will
be opposite while the two corresponding switches will be symmetrical with the switch phases
regulated, as depicted in Figure 5. Since ∆iab + ∆ibc + ∆ica = 0, the uncontrollable current error
will decrease dramatically. In addition, the operated voltage-space-vectors will all be optimal.

• S-FHCC is based on the division of three parallelogram regions in Figure 2, and the control
strategies under mode 0 or mode 1 will be switched only if the current errors exceed the limit of
the outer hysteresis bandwidth, which cannot be avoided, as illustrated in Figure 4. In contrast,
ST-FHCC is based on the flexible division of six sub-regions in Figure 8, and the control strategies
under mode 0 and mode 1 are switched alternatively by considering the location of u*. The reason
is that two controllable current errors are always under control by two switches no matter what
control strategy under mode 0 or mode 1 is adopted in the overlapping areas produced by the
parallelogram regions of mode 0 and those of mode 1. Thus, one can switch the control strategy
under mode 0 (or mode 1) into that under mode 1 (or mode 0) at the zero-crossing of current
errors in the overlapping areas in order to smoothly transit the boundary determined by the three
parallelogram regions under mode 0 (or mode 1), as shown by Figure 7b. As a consequence,
the current errors will not exceed the limit of the outer hysteresis comparator and the outer
hysteresis comparator is no longer required.
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7. Conclusions

In this paper, an ST-FHCC has been developed for APF. An improved approach to regulate the
hysteresis bandwidth has been presented to obtain the fixed frequency and the regulation of switch
phases based on OVSV. To enhance S-FHCC, a flexible division of the voltage-space-vectors diagram
has been proposed and the control strategies under mode 0 and mode 1 are switched alternatively
to obtain a smooth transition, which can avoid the inherent weakness of S-FHCC and improve the
control accuracy of current errors. Case studies have been carried out through PSCAD/EMTDC to
compare the advantages of ST-FHCC over S-FHCC. The main results and conclusions of this paper can
be summarized by the following three points:

(a) The switching frequency remains constant at 10 kHz in ST-FHCC. Moreover, the operation of
voltage-space-vectors is improved via regulating the switch phases, such that the uncontrollable
current error is significantly reduced and the operative voltage-space-vectors are all optimal.

(b) A flexible division of the voltage-space-vectors diagram is proposed which divides the original
diagram into six sub-regions, upon which mode 0 and mode 1 are switched alternately and
smoothly. As a consequence, the inherent weakness of S-FHCC can be thoroughly overcome,
e.g., the control strategies under mode 0 or mode 1 will be switched only if current errors exceed
the limit of the outer hysteresis bandwidth.

(c) Comprehensive simulation results verify that ST-FHCC can achieve a smoother, smaller, as well
as more stable current error in comparison with that of S-FHCC.

A future study will apply ST-FHCC on a real APF to validate its implementation feasibility.
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