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Abstract: Sustainable development is part and parcel of development policy for Thailand, in order
to promote growth along with economic growth, social advancement, and environmental security.
Thailand has, therefore, established a national target to reduce CO2 emissions below 20.8%, or not
exceeding 115 Mt CO2 Equivalent (Eq.) by 2029 within industries so as to achieve the country’s
sustainable development target. Hence, it is necessary to have a certain measure to promote effective
policies; in this case, a forecast of future CO2 emissions in both the short and long run is used to
optimize the forecasted result and to formulate correct and effective policies. The main purpose
of this study is to develop a forecasting model, the so-called VARIMAX-ECM model, to forecast
CO2 emissions in Thailand, by deploying an analysis of the co-integration and error correction
model. The VARIMAX-ECM model is adapted from the vector autoregressive model, incorporating
influential variables in both short- and long-term relationships so as to produce the best model for
better prediction performance. With this model, we attempt to fill the gaps of other existing models.
In the model, only causal and influential factors are selected to establish the model. In addition,
the factors must only be stationary at the first difference, while unnecessary variables will be discarded.
This VARIMAX-ECM model fills the existing gap by deploying an analysis of a co-integration
and error correction model in order to determine the efficiency of the model, and that creates an
efficiency and effectiveness in prediction. This study finds that both short- and long-term causal
factors affecting CO2 emissions include per capita GDP, urbanization rate, industrial structure,
and net exports. These variables can be employed to formulate the VARIMAX-ECM model through a
performance test based on the mean absolute percentage error (MAPE) value. This illustrates that the
VARIMAX-ECM model is one of the best models suitable for the future forecasting of CO2 emissions.
With the VARIMAX-ECM model employed to forecast CO2 emissions for the period of 2018 to 2029,
the results show that CO2 emissions continue to increase steadily by 14.68%, or 289.58 Mt CO2

Eq. by 2029, which is not in line with Thailand’s reduction policy. The MAPE is valued at 1.1%
compared to the other old models. This finding indicates that the future sustainable development
policy must devote attention to the real causal factors and ignore unnecessary factors that have no
relationships to, or influences on, the policy. Thus, we can determine the right direction for better
and effective development.

Keywords: causal factors; CO2 emissions forecasting; VARIMAX-ECM model; sustainable
development; economic growth; population growth
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1. Introduction

Thailand is currently in the midst of accelerating economic growth in order to develop the
country. Along the way, it has found that the current GDP (gross domestic product) has increased as a
result of the promotion and expansion of various areas, such as the support of export activities,
a continual increase of private consumption, a rise in government spending, an acceleration of
foreign investment, and the promotion of industrialization and urbanization. Throughout these
enforcements, the environment is being affected as the amount of CO2 emissions from the country’s
energy consumption rose by 1.3% in 2016. CO2 emissions have been seen to increase in almost all
economic sectors, including industrial, transportation, and other economic sectors. Concerning CO2

emissions per unit of electricity production (kWh) and per GDP in the sectors, they continue to increase
beyond the global average. Among the different economic sectors, CO2 emissions in the industrial
sectors are at the highest rate, equivalent to 27%, while their growth rate is at 4.3%. During the year of
2017, compared to 2016, the petroleum sector contributed the highest CO2 emissions [1].

Thailand produces total CO2 emissions of 69.9 Mt CO2 Eq. under the industrial sectors, with a
growth rate (2017/2016) of 4.3% due to economic growth. Moreover, CO2 is emitted by the energy
sector at 88.7% with a 10.3% growth rate (2017/2016). This reflects that this sector produces the highest
amount of greenhouse gas. Generally, it releases up to 90% of carbon dioxide and 75% of other
greenhouse gases out of the total greenhouse gases [1,2].

Sustainable development is the national roadmap that Thailand aims to follow. It aims to boost
the economy, along with social improvement, while the environment is simultaneously enhanced.
The above roadmap has to be given full attention and carefully implemented. This is because economic
and social growth are likely to negatively affect the environment. Nevertheless, the vital action of
creating efficiency in planning and sustainability in implementation is to analyze the relationship of
various variables which can influence, and have an impact on, policy-making. Thus, the analysis
outcome can provide future predictions so as to facilitate in both short- and long-term policy-making
and action planning.

Energy consumption evolves around producing more and more CO2 that is emitted into the air,
causing natural damage and climate change. Thus, forecasting future energy consumption is becoming
an important task, as it represents another way to determine what actions need to be taken in order to
minimize CO2 emissions and achieve the national reduction goal. By reviewing various studies across
the region, it is evident that CO2 emissions are associated with various forces, and energy consumption
is an integral part of the emission level. Therefore, a forecasting strategy would be instrumental for the
energy consumption industry.

Many studies have attempted to generate different approaches and applications to support energy
consumption, production, and optimization. For example, the studies of Ren et al. [3], Xu et al. [4],
Jeong and Kim [5], González et al. [6,7], Xu et al. [8], Wang et al. [9], Tian et al. [10], and Lin and
Long [11] focused on the attributes or characteristics of energy consumption by using an analysis
of logarithmic mean Divisia index (LMDI) factor decomposition. Among them, Wang et al. [9] also
proposed a new method of LMDI, and this method was structured based on five perspectives of
effect: labor, economic structure, investment, energy mix, and energy intensity. This study was
conducted in China’s energy consumption sector, and its result showed that the energy intensity
does help to decrease energy consumption. As the energy intensity plays an important role in energy
consumption, Baležentis et al. [12] started exploring the energy intensity trends in the Lithuanian
economy under different economic sectors from 1995 to 2009, and their study reported that energy
efficiency increased when the economy exhibited a downward trend. Therefore, certain measures
should be issued as policies in order to enhance the energy intensity in Lithuania, as suggested by
the study. González et al. [6] explored the underlying factors causing changes in aggregate energy
consumption by using LMDI, and their study showed that the enhancement in energy efficiency
was not sufficient to lower the economic pressure of European activity with regard to aggregate
energy consumption. In recent years, many countries have put forth efforts to increase production,
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which requires a higher energy consumption, so as to boost their economic growth. However, a study
by Mulugeta et al. [13] showed that energy consumption is an important driving force towards growth
in the economy, which they investigated by forming an economic growth hypothesis. For a particular
country, such as Saudi Arabia, Alkhathlan and Javid [14] investigated the relationship between
economic growth, energy consumption, and CO2 emissions, and they found that the rise of CO2

emissions was influenced by the increment of income per capita. On the other hand, Khan et al. [15]
analyzed the relationship of studied variables for the period of 1975 to 2011, and they witnessed that
energy consumption had a significant impact on the CO2 emissions in Pakistan in particular.

Other studies, such as that of Arouri et al. [16], studied the relationship between the real GDP,
CO2 emissions, and energy consumption in 12 selected Middle East and North African countries
(MENA) using a bootstrap panel method. They found clear evidence that CO2 emissions are
significantly affected by energy consumption. Additionally, Acaravci and Ozturk [17] initiated a
study of the causality between various factors, including energy use, economic growth, and CO2

emissions, with a sample size of 19 European countries. By using a technique of autoregressive
distributed lag (ARDL) and the error-correction Granger causality test, they were able to find only the
long-run relationship between those factors in certain countries, such as Iceland, Switzerland, Denmark,
Portugal, Germany, Greece, and Italy. In addition, Menyah and Wolde-Rufael [18] conducted a similar
study on the causality between energy consumption, pollutant emissions, and economic growth in
South Africa with the same approach of ARDL. As of the result, a long-run relationship between
the variables was revealed. Ohlan [19] performed an analysis of the impact of energy consumption,
population density, trade openness, and economic growth on the emissions of CO2 in India for
the period of 1970–2013. For this analysis, the researcher employed the ARDL approach, and its
result showed that those three studied factors had a great positive influence on CO2 emissions in
both the short and long term. With the same method of analysis, the ARDL method, Sulaiman
and Abdul-Rahim [20] conducted an investigation of a three-way linkage relationship between
economic growth, CO2 emissions, and energy consumption in Malaysia during the period of 1975–2015.
The examination’s result revealed that the rise of both factors; energy consumption and economic
growth, do contribute to the rise of CO2 emissions.

In order to determine other evidence of association with CO2 emissions, Akpan and Akpan [21]
found in their study conducted in Nigeria that economic growth improves when carbon emissions are
rising, and this rise of CO2 emissions is positively associated with electricity consumption. In the same
area of study with the application of the Toda and Yamamoto causality test, Sulaiman [22] claimed that
CO2 emissions do support economic growth, while energy consumption contributes to the increase
of CO2 emissions. However, Manu and Sulaiman [23] adapted the simple ordinary least squares
(OLS) approach to examine the relationship between economic growth, energy consumption, and CO2

emissions in Malaysia. This study covered the period of 1965–2015, and found that CO2 emissions are
reduced when the income is raised. In the meantime, it increases when the trade openness increases.

In addition to those factor relation studies, it is necessary to mention the grey system and
autoregressive integrated moving average by Lotfalipour, Falahi, and Bastam [24]. They optimized the
above model to predict CO2 emissions in Iran. Their findings showed that the models could produce
a more accurate result than any other method, and estimated up to 925.68 million tons of carbon
dioxide emissions by 2020, equivalent to 66% growth compared to 2010. Liang [25] discussed China’s
multi-region energy consumption and CO2 emissions under an input-output model. Additionally,
his findings were portrayed through a scenario analysis for 2010 and 2020. For a shorter-term
forecasting coverage, Li [26] evaluated the CO2 emissions reduction under different scenarios for the
years of 2016 and 2020 in Beijing. He applied a back propagation (BP) neural network optimized by
the improved particle swarm optimization algorithm. However, his investigation showed that the
model was not effective enough to provide high precision. Meanwhile, Zhao, Huang, and Yan [27]
forecasted CO2 emissions in China from 2017 to 2020 with the deployment of some selected models:
the single LSSVM model, the LSSVM model enhanced by the particle swarm optimization algorithm
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(PSO-LSSVM), and the back propagation (BP) neural network model. The above prediction verified
that structural factors will have a significant impact on CO2 emissions by 2020. Potentially, this allows
China to keep its promise to reduce greenhouse gas emissions by 2030. Consequently, Dai, Niu,
and Han [28] proposed to adapt the MSFLA-LSSVM model in CO2 emissions prediction in China from
2018 to 2025. They concluded that China’s CO2 emissions would exhibit a slow growth trend for the
next few years. With this in mind, China’s CO2 emissions could be effectively controlled in the future,
which could start to reduce the greenhouse effect. In another approach, Lin et al. [29] incorporated
the grey forecasting model to estimate CO2 emissions from 2010 to 2012 in Taiwan. According to the
forecasting results, they found that the CO2 emissions of Taiwan would decline for the next three years.

The Government of Thailand aims to establish a future reduction goal for CO2 emissions, whereby
Thailand should reduce emissions below 20.8% or not exceed 115 Mt CO2 Eq. by 2029. However,
over the years, CO2 emissions produced from energy consumption have been continuously increasing.
Industrial sectors, in particular, have the highest increase of up to 27%, while the growth rate is
increasing continuously every year. Also, it is observed that the petroleum sector is the major
contributor and is emitting the most CO2. This is seen to contradict Thai government policy and
planning, and the CO2 emissions reductions are not improving [2]. Hence, the author sees this as
an issue that needs to be tackled, and this study has, therefore, been carried out. The study focuses
on the policy framework, which reflects the fact that Thailand still lacks a forecasting model which
can produce good results and make effective predictions in both the short- and long-term. As for the
existing forecasting models used in Thailand’s policy formulation, they are models without proper
processing and with ineffective research. In addition, most of the models are too common, such as
multiples regression, the ARMA model, and many more. As a result, the previous predictions have
become spurious and erroneous. In the same model forecasts, the causal factors that actually affect the
CO2 emissions have not been analyzed or taken into account.

Based on a review of previous studies, many studies share similarities in metrology, research
methodologies, and various analytical outcomes. In this study, unlike any other studies, a new research
focus is introduced, which constitutes an investigation of the relationship of causal factors of various
variables. The analytical outcome is later driven into further forecasting for both short- and long-term
use. In fact, this research is designed to support sustainable development policy-making, create
analysis guidelines, as well as to open new areas for those interested in exploring and expanding
sustainable development in the future; be it Thailand or any other country. This research provides
guidance in the process of establishing the country’s sustainable development policy as it allows
the determination of effective management and working processes. The research’s guideline flow is
as follows.

(1) Analyze the causal variables that can influence the change of CO2 emissions with the Augment
Dickey Fuller theory [30] only at the same level. This analysis is within the framework of
sustainable development, using data from 1990 to 2017. Moreover, only crucial and influential
variables are used in the forecasting model.

(2) Place the stationary causal variables at the same level in the analysis of long-term relationship
based on the Johansen Juselius concept [31].

(3) Create a forecasting model by adapting the advance statistics of the so-called vector autoregressive
model, with full consideration of the relationship of all causal variables, both in terms of the
error correction model and co-integration, consisting of significant causal variables towards
the change of CO2 emissions. Additionally, a forecasting pattern for both the short- and long-
term must be taken into account so as to produce the best and most effective model with the
least errors. The average relative errors between the simulation and actual data are measured
through an output comparison of relevant models, namely the ARMA model, ARIMA model,
and GM-ARIMA model.

(4) Forecast CO2 emissions from the VARIMAX-ECM model for the period of 2018 to 2029, totaling
12 years, with certain selected causal factors. Discard unnecessary variables.
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The flowchart of the VARIMAX-ECM model is shown in Figure 1.Energies 2018, 11, x FOR PEER REVIEW  5 of 17 
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Figure 1. The flowchart of the VARIMAX-ECM model.

The main structures of this article flow as follows: the second section introduces the forecasting
model of VARIMAX-ECM. The third section carries out the empirical analysis to prove the practicality
and validity of the proposed model for CO2 emissions forecasting, and to predict the CO2 emissions in
Thailand’s industrial sector from 2018 to 2029. The fourth section summarizes the discussion.

2. The Forecasting Model

2.1. Unit Root Test

We analyze the data for the stationary process by testing the unit root according to the Augment
Dickey Fuller concept [30].

Stationary Process

The stationary, or stationary stochastic, process [32,33] is the series of time data with the mean or
expected value, variance, constant overtime, and covariance. The expected value and constant variance
in the context of εt lacks the property of being white noise, meaning that it has the autocorrelation
property where the correlations are high or the order of the autoregressive process is higher. Hence,
a test like the Augmented Dickey Fuller test (ADF) is required. The lagged variables are added into the
equation in the higher level to eliminate the autocorrelation, heteroskedasticity, and multicollinearity,
as shown below:

∆Yt = δ1Yt +
p

∑
i=2
βi∆Yt−i+1 + εt (1)
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∆Yt = α1 + δYt−1 +
p

∑
i=2
βi∆Yt−i+1 + εt (2)

∆Yt = α1 + α2T + δYt−1 +
p

∑
i=2
βi∆Yt−i+1 + εt (3)

From the equations above, the value of p seems to be the lagged values of first difference to
the variable, which is verified by testing the unit root with the Augmented Dickey Fuller method.
With the above equation, three problems are considered and taken into account. In particular, the
autocorrelation in εt is set to have the property of white noise, and the error term has the mean of 0
and is constant under the following hypotheses:

Hypotheses 1 (H0). δ = 0, non-stationary;

Hypotheses 2 (H1). δ < 0, stationary.

If tau-statistics of the efficiency δ are in the form of the absolute term, there must be more critical
values appearing in the ADF table. This denies the major hypothesis, meaning that the time series of the
variables are stationary. Thus, it can be said that ∆Yt integrated numbered is represented by ∆Yt ~I(d).

2.2. VARIMAX-ECM Model

The VARIMAX-ECM model is a new model adapted from the vector autoregressive model,
incorporating influential variables in both short-term and long-term relationships so as to produce the
best prediction model with the maximum performance and least error.

2.2.1. VARIMAX-ECM and Co-Integrating Vector

In this section, we consider the segment of the deterministic component in a time series of the
VAR model [34]. In order to simplify the concept for a better understanding, we consider the VAR
model as follows:

Xt = A1Xt−1 + µ0 + µ1t + ut (4)

where µ0 is the vector of the parameter representing a constant value in the VAR(p) model, µ1 is the
vector of the parameter indicating a defined trend in the VAR(p) model, and vectors µ0 and µ1 are
shown below:

µ0 =


µ01
µ02

...
µ0n


nx1

; µ1 =


µ11
µ12

...
µ1n


nx1

When vectors µ0 and µ1 are not zero, Equation (4) reflects that at least one time series in the
VAR (1) model must be a deterministic component, in which it can either be a constant or a defined
trend, or both forms. The above VAR(p) model can be converted into the VARIMAX-ECM model as
shown below:

∆Xt = αβ′Xt−1 + µ0 + µ1t + ut (5)

From the above equation, it can be observed that vectors µ0 and µ1 exist in both the VAR and
VARIMAX–ECM models, and that both ∆Xt and β′Xt−1 have to be stationary in the deterministic area.

However, to observe a deviation out of the long-term co-integration of j (j = 1, 2, . . . , r) denoted
as vector β′Xt−1, the mean of the above deviation must be zero. In order to obtain such a result,
the deterministic component must be eliminated from the deviation out of long-term balance (β′Xt−1)

by separating vectors µ0 and µ1 in the VARIMAX-ECM model, as illustrated in Equation (6), and by
combining them into β′Xt−1 as explained below.
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Vector µ0 and vector µ1 can be separated into the sum of the two vectors by using the
following equation:

α(β ′α)−1β′ + β⊥ (α
′
⊥β⊥

)−1
α′⊥ = I (6)

where β⊥ and α⊥ are the orthogonal matrices with β and α, respectively. Here, it is seen that β′β⊥ = 0
and α′α⊥ = 0.

When we multiply vector µ0 with Equation (6), the result is obtained from:

α(β ′α)−1β′µ0 + β⊥ (α
′
⊥β⊥

)−1
α′⊥µ0 = µ0 (7)

If given:
β0 = (β ′α)−1β′µ0 (8)

γ0 = β⊥ (α
′
⊥β⊥

)−1
α′⊥µ0 (9)

We substitute Equations (8) and (9) into Equation (7), we obtain:

µ0 = αβ0 + γ0 (10)

At the same time, if we use vector µ1 to multiply with Equation (6), obtaining:

µ1 = αβ1 + γ1 (11)

where β1 = (β ′α)−1β′µ1 and γ1= β⊥ (α
′
⊥β⊥

)−1
α1µ1.

If we substitute Equations (10) and (11) into Equation (5), we obtain:

∆Xt = αβ′Xt−1 + αβ0 + αβ1t + γ0 + γ1t + µt (12)

Equation (12) can be restructured as follows:

∆Xt= α(β ′Xt−1+ β0+ β1 t) + γ0 + γ1t + µt (13)

where ∆Xt is the n× 1 vector, Xt is the n× 1 vector, α is the n× r matrix, and β is the n× r matrix. β0
is the r× 1 matrix, β1 is the r× 1 matrix, γ0 is the n× 1 matrix, γ1 is the n× 1 matrix, and µt is the
n× 1 matrix. n is the number of time series in vector Xt.

Equation (13) shows that if vector Xt determines (µ 0 + µ1t), there is a possibility that
the VARIMAX-ECM model determines (γ 0 + γ1t) and the long-term co-integration determines
(β 0 + β1t). In addition, Equation (13) can be rewritten as:

∆Xt = α
[
β′ β0 β1

]
r×(n+2)

 Xt−1

1
t


(n+2)×1

+ γ0+ γ1t + µt (14)

Let β̃
′
=
[
β′ β0 β1

]
, X̃t−1 =

[
Xt−1 1 t

]′
, and we can then structure another equation as:

∆Xt = αβ̃
′
X̃t−1 + γ0 + γ1t + ut (15)

The above equation contains the following characteristics:

E(∆X t) = γ0 + γ1t; E
(
β̃
′
X̃t−1

)
= 0 (16)
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Moreover, Equation (15) explains the connection between the deterministic area of the
VARIMAX-ECM model and the long-term co-integrating vector, which can be classified into
five situations.

Situation 1: If γ0 = γ1 = β0 or (µ0 = µ1 = 0) for both the VARIMAX-ECM model and the
long-term co-integrating vector (deviation out of long-term balance), they are not deterministic or
can be expressed as E(∆X t) = 0 and E(β ′X̃t−1

)
= 0. Therefore, the VARIMAX-ECM model in this

position is:
∆Xt = αβ′Xt−1 + ut (17)

The case of µ0 = µ1 = 0 indicates a time series in vector Xt and is not deterministic (it is not
constant nor a defined trend) in the equation.

Situation 2: If γ0 = 0, γ1 = β1 = 0 (or µ1 = 0) but β0 6= 0, then the vector of the long-term
co-integration reflects a constant value (β0 6= 0) or can be written as E(β ′Xt−1) = β0. Meanwhile,
the VARIMAX-ECM model is not deterministic at all, or can be written as E(∆X t) = 0. In order to
remove the constant value out of the long-term co-integration, the VARIMAX-ECM model must be in
the form of:

(∆Xt) = αβ̃
′
X̃t−1 + ut (18)

where β̃
′
=
[
β′ β0

]
and X̃t−1 =

[
Xt−1 1

]′
. Thus, we can retrieve E(β̃

′
X̃t−1) = 0.

The case of µ1 = 0 and γ0 = 0, but β0 6= 0, indicates at least one time series in vector Xt and is
constant (but it is not a defined trend) in the equation.

Situation 3: If γ1 = β1 = 0 (or µ1 = 0) but γ0 6= 0 and β0 6= 0, the vector of the long-term
co-integration is not a defined trend but is constant (β0 6= 0), or can be written as E(β ′Xt−1) = β0.
If the VARIMAX-ECM model is found to be constant, γ0 6= 0, or can be written as E(∆X t) = γ0,
and the above fixed value in the long-term co-integrating vector can be removed by using the long-term
co-integration β̃

′
X̃t−1 in the VARIMAX-ECM model, as illustrated below:

∆Xt = αβ̃
′
X̃t−1 + γ0 + ut (19)

where β̃
′
=
[
β′ β0

]
and X̃t−1 =

[
Xt−1 1

]′
.

The case of µ1 = 0, but γ0 6= 0 and β0 6= 0 indicates that at least one time series is a defined trend.
Situation 4: If γ1 = 0, but γ0 6= 0, β0 6= 0 (or µ0 6= 0), and β0 6= 0, the long-term

co-integration β′Xt−1 cannot eliminate the constant value and defined trend, and it can be rewritten
as E(β ′Xt−1) = β0 + β1t. This can be described in such a way that the long-term co-integration is a
stationary trend, while the VARIMAX-ECM model is found to have a fixed value of γ0 6= 0 or can be
written as E(∆X t) = γ0. The fixed value and defined trend that exist in the long-term co-integrating
vector could be removed by using a β̃

′
X̃t−1 long-term co-integration in the VARIMAX-ECM model

as follows:
∆Xt = αβ̃

′
X̃t−1+ γ0 + ut (20)

where β̃
′
=
[
β′ β0 β1

]
and X̃t−1 =

 Xt−1

1
t

 , which can also be written as
[

Xt−1 1 t
]′

.

The case of µ1 6= 0 and γ1 = 0 but β1 6= 0 demonstrates that at least one time series in vector Xt

has to be constant and a defined linear trend, but it is not a quadratic trend.
Situation 5: If γ1 6= 0, γ0 6= 0, β0 6= 0, and β0 6= 0, this shows that the long-term co-integration

has to be a stationary trend (β 0 + β1t), while the VARIMAX-ECM model has to be constant and
defined trend (γ 0 + γ1t) which can be written as below:

∆Xt = αβ̃
′
X̃t−1 + γ0+ γ1t + ut (21)
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where β̃
′
=
[
β′ β0 β1

]
and X̃t−1 =

[
Xt−1 1 t

]′
. The case of µ0 6= 0 and µ1 6= 0 occurs

when at least one time series in vector Xt has to be defined by a quadratic trend (µ 0 + µ1t + µ2t2).
2.2.2. An Estimation of the Co-Integrating Vector with the Use of Various Equations [33]

Consider the VARIMAX-ECM model as follows [35]:

∆Xt= αβ̃
′
X̃t−1+Γ1∆Xt−1+Γ2∆Xt−2 + . . .+Γp−1∆Xt−(p−1)+ϕDt+ut (22)

where β̃
′
=
[
β′ β0 β1

]
is the r× (n + 2) matrix, β is the n× r matrix, β0 and β1 are the r× 1

vector, X̃t−1 =
[

Xt−1 1 t
]′

is the (n + 2)× 1 vector, α is the n× r matrix, and rank (α) = rank(
β̃
)

= r. Additionally, Dt is the matrix indicating a deterministic component.

The estimation of the parameter of the long-term co-integrating vector β̃ can be achieved with
the application of maximum likelihood by assuming vector ut ≈ Normal (0, ∑) 0 is zero, and ∑ is
the variant matrix of ut. Johansen (1995) proved that the estimation of vector β̃n×r with this method
would result in an eigenvector in accordance with the eigenvalue from the minimum to maximum
value. This is achieved using the equation below:∣∣∣λS11 − S10S−1

00 S01

∣∣∣ = 0 (23)

Sij =
1
T RitR′jt, i = 0, 1, and j = 0, 1; where T is the number of data used in the VARIMAX-ECM

model. R0t is the n× T matrix of the residual retrieved from a regression equation with a variable of
∆Xt, and the independent variable is ∆Xt−1, ∆Xt−2, . . . , ∆Xt−p+1, Dt. R1t is the (n + 2)× T matrix of
the residual retrieved from a regression equation with a variable of X̃t−1, and the independent variable
is ∆Xt−1, ∆Xt−2, . . . , ∆Xt−p+1, Dt.

If λ̂i(i = 1, 2, . . . , n)11 is the eigenvalue computed from Equation (24) where 1 > λ̂1 > λ̂2

> . . . > λ̂n ≥ 0 , let the eigenvector consistant with the eigenvalue λ̂1, λ̂2, . . . , λ̂n be written as
V̂ =

[
V̂1 V̂2 . . . V̂n

]
(n+2)×(n+2)

. Therefore, we can obtain the estimator of the co-integrating

vector as follows:
V̂ =

[
V̂1 V̂2 . . . V̂r

]
(n+2)×r

(24)

Commonly, there are two popular patterns of forming primary and secondary assumptions
pertaining to the number of the long-term co-integration.

Pattern 1: H0 is the maximal number of vectors indicating the long-term co-integration equivalent
to r. H1 is the number of vectors indicating the long-term co-integration greater than r.

In the above, r = 0, 1, 2, . . . , n− 1, and the statistical value to testify the above assumption
is trace statistic λtrace, which can be computed using the equation below:

λtrace(r) = −T
n

∑
i=r+1

(1− λ̂i) (25)

Pattern 2: H0 is the maximal number of vectors indicating the long-term co-integration equivalent
to r. H1 is the number of vectors indicating the long-term co-integration equivalent to r + 1.

In the above, r = 0, 1, 2, . . . , n− 1, and the statistical value to testify the above assumption
is maximum eigenvalue λtrace, which can be computed using the equation below:

λmax(r, r + 1) = −T
(
1 − λ̂r+1

)
(26)
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Âi =


I +

_
Π +

_
Γ

_
Γ i −

_
Γ i−1

−
_
Γ p−1

, i = 1
, 2 ≤ i ≤ −1

, i = p
(27)

After that, we use the VARIMAX-ECM forecasting model of the time series in vector Xt by using
the same concept, which is the forecasting of the minimum mean square error. Hence, the forecast of
1, 2, . . . , h pre-timing of the time series in the vector Xt can be illustrated as:

X̂T+1 = Â1XT +Â2XT−1 +ÂpXT−p+1 (28)

X̂T+2 = Â1XT+1 +Â2XT−1 +ÂpXT−p+2 (29)

X̂T+h = Â1XT+h−1 +Â2XT+h−2 + . . . + ÂpXT−p+h (30)

where X̂T+j = Â1XT+j if j < 0.

2.2.3. Measurement of the Forecasting Performance

In order to evaluate the forecasting effect of each model, we employ the mean absolute percentage
error (MAPE) to compare the forecasting accuracy of each model. The calculated equations are shown
as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (31)

3. Empirical Analysis

3.1. Screening of Influencing Factors for Model Input

In this paper, we tested the causal factors in the context of Thailand’s sustainable development
policy. Here, we deploy the time series data of the period of 1990–2017. The tested factors consist of
seven variables, namely CO2 emission ( ln(CO 2)), population growth (ln(Population)), per capita GDP
(ln(GDP)), urbanization rate (ln(UR)), industrial structure (ln(IS)), total coal consumption (ln(CC)),
and total exports and imports (ln(X− E)). The test was conducted based on the Augment Dickey
Fuller theory at Level I (0) and Fist Difference I (1), as illustrated in Table 1.

Table 1. Unit root test at Level I (0) and First Difference I (1).

ADF Test at Level I (0) ADF Test at First Difference I (1)
MacKinnon Critical Value

1% 5% 10%

ln(CO 2) −3.41 ∆ ln(CO 2) −4.90 −4.12 −3.27 −3.05
ln(Population) −2.05 ∆ ln(Population) −3.02 −4.12 −3.27 −3.05
ln(GDP) −3.81 ∆ ln(GDP) −5.69 −4.12 −3.27 −3.05
ln(UR) −3.25 ∆ ln(UR) −4.71 −4.12 −3.27 −3.05
ln(IS) −3.72 ∆ ln(IS) −4.65 −4.12 −3.27 −3.05
ln(CC) −2.45 ∆ ln(CC) −3.01 −4.12 −3.27 −3.05
ln(X− E) −3.64 ∆ ln(X− E) −4.64 −4.12 −3.27 −3.05

Note: ln(CO 2) is the natural logarithm of CO2 emissions; ln(Population) is the natural logarithm of population
growth; ln(GDP) is the natural logarithm of per capita GDP; ln(UR) is the natural logarithm of urbanization rate;
ln(IS) is the natural logarithm of industrial structure; ln(CC) is the natural logarithm of total coal consumption;
ln(X− E) is the natural logarithm of total exports and imports, and ∆ is the first difference.

Table 1 shows that all variables under the unit root test are non-stationary at Level I (0), and this
explains the non-significance at 5% and 1%. Therefore, the First Difference I (1) is required to carry
on. The finding here indicates that when the variables are tested through the unit root test at Level I
(1) with a significance level of 5% and 1%, or stationary identification, the variables appear to be CO2

emissions, per capita GDP, urbanization rate, industrial structure, and total exports and imports. Thus,
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these variables are carried forward for a co-integration analysis. The other two variables, population
growth and total coal consumption, are non-stationary at Level I (1). Therefore, the researcher tests the
two variables in pairs with other variables. The outcome shows that the variables do not represent any
correlation to the changes in CO2 emissions at significance levels of 5% and 1%. Accordingly, the two
variables are dropped out of the model. Meanwhile, those stationary variables at the First Difference
are brought forth to investigate the long-term relationship (co-integration) as demonstrated in Table 2.

3.2. Analysis of Co-Integration

Table 2 shows that all variables have a long-term relationship (co-integration), because the results
of the trace test are 210.25 and 70.55, which are higher than the critical values at significance levels of 1%
and 5%. The maximum eigenvalue test results are 130.55 and 75.46, which are higher than the critical
values at the same significance levels. Consequently, those variables are used to form a forecasting
model by adapting the ARIMAX-ECM model and applying short- and long-term relationships into the
model. For a better understanding, the model is presented in the form of a regression line, so as to
show the influence of variables as seen in Table 3.

Table 2. Co-integration test by Johansen Juselius.

Variables
Hypothesized

No of CE(S)
Trace

Statistic Test

MacKinnon
Critical Value Max-Eigen

Statistic Test

MacKinnon
Critical Value

Status
1% 5% 1% 5%

∆ ln(CO 2),
∆ ln(GDP),
∆ ln(UR),
∆ ln(IS),

∆ ln(X− E)

None ** 210.25 19.75 15.41 130.55 15.68 14.07 I (1)

At Most 1 ** 70.55 5.75 3.16 75.46 5.75 3.16 I (1)

** denotes significance α = 0.01.

3.3. Formation of Analysis Modeling with the VARIMAX-ECM Model

Table 3 illustrates the parameters of the VARIMAX-ECM Model at a statistically significant level
of 1% and 5%. The findings show that per capita GDP (ln(GDP)) causes a change in CO2 emissions
( ln(CO 2)), which covers both short- and long-terms at a statistically significant level of 1%. At the
same significant level and effect coverage, the urbanization rate (ln(UR)), total coal consumption
(ln(CC)) and total exports and imports (ln(X− E)) are also found to cause changes in CO2 emissions
( ln(CO 2)). Hence, this study suggests that the above causal factors have an influence over changes in
CO2 emissions with the parameter size shown in the table.

Table 3. The result of the VARIMAX-ECM model.

Dependent
Variables

Direction of Causality

Short Term Long Term

∑ ∆ln(CO 2) ∑ ∆ln(GDP) ∑ ∆ln(UR) ∑ ∆ln(IS) ∑ ∆ln(X− E) ECMt−1

∆ ln(CO 2) 6.43 ** 4.76 ** 3.42 ** 5.13 ** −2.15 **
∆ ln(GDP) 4.31 * 3.05 ** 5.77 ** 6.65 ** −2.05 **
∆ ln(UR) 3.76 * 3.44 * 6.59 ** 4.61 ** −1.97 **
∆ ln(IS) 4.71 ** 2.78 * 3.49 ** 7.11 ** −1.51 **

∆ ln(X− E) 2.45 * 2.98 ** 6.78 ** 4.62 ** −2.77 **

In the above, ** denotes significance α = 0.01, * denotes significance α = 0.05, R-squared is 0.92, adjusted R-squared
is 0.91, the Durbin-Watson statistic is 2.02, the F-statistic is 275.05 (probability is 0.00), the ARCH test is 30.45
(probability is 0.1), the LM test is 1.55 (probability is 0.10), and the response test (χ2 > critical) represents
the significance.

However, this study also reveals that the changes in per capita GDP (ln(GDP)), urbanization
rate (ln(UR)), total coal consumption, and total exports and imports (ln(X− E)) are caused by the
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factors shown in Table 4 at a statistically significant level of 1% and 5%, respectively, for both short-
and long-terms with the parameter size stated in the table.

In addition to this, the author has compared some selected forecasting models in terms of their
effectiveness with MAPE as indicated in Table 4. The comparison takes the VARIMAX-ECM model
compared with other models, including the ARMA model, ARIMA model, and GM-ARIMA model,
as follows.

Table 4. The performance monitoring of the forecasting model.

Forecasting Model MAPE (%)

ARMA Model 7.44
ARIMA Model 5.75

GM-ARIMA Model 2.25
VARIMAX-ECM Model 1.01

Table 4 shows that the VARIMAX-ECM model has the lowest MAPE value at 1.01%. Accordingly,
the GM-ARIMA model, ARIMA model, and ARMA model have MAPE values of 2.25%, 5.75%,
and 7.44%, respectively. Based on the findings of the study, it has shown that the VARIMAX-ECM
model used by the author is the most effective one. This can be observed from the value of the mean
absolute percentage error (MAPE) was found to be lowest compared to the old model. Moreover,
the study has also found that the VARIMAX-ECM model is suitable for long-term forecasting unlike
other previously conducted studies, which were mostly old models proved only to be feasible for
short-term forecasting. In addition to this, the VARIMAX-ECM model is a forecasting model which
captures, with detail and prudency in the analysis process, by selecting the only stationary causal
variables at the same level, as well as securing the same level of co-integration in order to create the
best model. If any of the variables does not meet the set conditions, it would not be taken into account.
Therefore, the VARIMAX-ECM model becomes the right forecasting model suitable for long-term
policy-making and management planning in order to achieve a sustainable development in the future.
Therefore, the VARIMAX-ECM model is used to forecast CO2 emissions in the following step.

3.4. CO2 Emissions Forecasting Based on the VARIMAX-ECM Model

Figure 2 shows that CO2 emissions from 2018 to 2029 in Thailand are continuously increasing
with changes up to 14.68% or 289.58 Mt CO2 Eq. The result shown is beyond the target and deviates
from the reduction policy; CO2 emissions are expected to reduce by 20.8%, or be less than 115 Mt CO2

Eq. in the industrial sectors so as to attain sustainable development.
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4. Conclusions and Discussion

This study disclosed new knowledge and guidelines for future research. The forecasting model
must emphasize the causal factors that can influence CO2 emissions in both the short- and long-term.
In addition, the to-be-used variables must be stationary at the same level. It is important to drop or
ignore unnecessary variables, which have no direct influence on the dependent variables, so as to
produce the best performing model with the most effective prediction outcomes. At the same time,
this will facilitate the formulation of effective sustainable development policies. The newly-introduced
model in this study attempts to fill the gaps or weaknesses of most existing forecasting models.
Additionally, it provides more accurate output with fewer errors, which is instrumental for both the
academic world and the country in enhancing policy-making for future sustainable development.

From this study’s findings, both the short- and long-term causal factors affecting CO2 emissions are
per capita GDP, urbanization rate, industrial structure, and total exports and imports. These variables
can be employed to formulate the VARIMAX-ECM model through a performance testing based on
MAPE values. Here, the test’s results indicate this model’s higher quality and efficiency compared to
other existing models, such as the ARMA, ARIMA, and GM-ARIMA models. This illustrates that the
VARIMAX-ECM model is one of the best models suitable for the future forecasting of CO2 emissions.
Deploying the data of 2018 to 2029, we found that CO2 emissions continue to increase by 14.68%,
which is not in line with Thailand’s reduction policy, in which Thailand aims to reduce CO2 emissions
to be lower than 20.8% by 2029.

This study produced new findings and, thus, differentiates itself from other existing studies,
including those studies in the above literature review. Specifically, this study generated a forecasting
model with the ability to provide a long-term forecast over more than 10 years (2018–2029) and perform
effectively. In addition, this study is one of the first reports to introduce the VARIMAX-ECM model.
This model is basically adapted from the existing concept and theory. Based on previous studies,
the VARIMAX-ECM model is the best model appropriate for long-term forecasting. Unlike many
existing and relevant studies, this study makes long-term forecasting possible. This can be observed
from the review of relevant studies with the capability of only short-term prediction. For instance,
Dai, Niu, and Han [28] put forth the GM (grey model) and least squares support vector machine
(LSSVM), along with the optimization of the modified shuffled frog-leaping algorithm (MSFLA)
(MSFLA-LSSVM), to forecast CO2 emissions in China. Their study was conducted only for the period
of 2018 to 2025, which is less than 10 years of evaluation. Lin et al. [29] used the grey model to
estimate CO2 emissions in Taiwan for only three years, from 2010 to 2012. Additionally, Zhao, Huang,
and Yan [27] proposed a CO2 forecasting model called SSA-LSSVM, which was structured based on
the Salp Swarm Algorithm (SSA) and least squares support vector machine (LSSVM) model to forecast
CO2 emissions in China from 2017 to 2020, covering only four years. For five years of prediction
coverage, Li [26] used a BP neural network with the improved particle swarm optimization algorithm
to examine CO2 emissions reduction in Beijing under different scenarios for 2016 and 2020. Meanwhile,
Liang [25] obtained a longer forecast from 2010 until 2020 with the application of the input-output
model on China’s multi-region energy consumption and CO2 emissions. With the same coverage of
prediction, Lotfalipour, Falahi, and Bastam [24] employed the grey and ARIMA models in their study
to forecast CO2 emissions in Iran for the period of 2010 to 2020.

With those studies taken into consideration, it can be observed that the efficiency of the
VARIMAX-ECM model is superior, that it is suitable for long-term, yet accurate, forecasting,
and that it produces fewer errors (absence of heteroskedasticity, multicollinearity, and autocorrelation).
These findings are in parallel with those of Manu and Sulaiman [23]. Additionally, this study differs
from other studies in term of the causal factors, as it focuses and selects only the true influencing
factors for CO2 emissions.

Hence, unnecessary factors, such as population growth and total coal consumption, are eliminated
from the study in order to reduce potential errors. The reason behind this elimination is because
the variables are non-stationary factors at the level and first difference, and incompetent for the
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co-integration. If the said variables are included in this research the model will be false and it may
incur errors denoted by issue alignment to heteroskedasticity, multicollinearity, and autocorrelation at
the same time. If the above issues become problematic, it will affect, and have a negative influence
over, the forecasting process. However, from the previous policy-making of Thailand (in 1970–2017),
the mentioned factors were used in the model and, as a result of that inclusion, there was an absolute
failure because the application failed in the forecasting and future planning. Thus, the government
should emphasize the issue and prioritize on those causal factors with a direct influence on CO2

emission to be used in the forecasting model. This is to create the best forecasting model capable
for both short- and long-term predictions, though the factors share the same characteristics under
the sustainable development policies of many other countries and Thailand, as claimed by Dai, Niu,
and Han [28], and Chindo and Abdul-Rahim [20]. This study opens another arena to explore, which
can be further developed for future study. At the same time, the findings of this study can be deployed
in formulating long-term development strategies so as to boost both the economy and environment in
the most efficient and effective way possible.

However, the limitation of this research is that the author is not able to apply the energy price in
the model. This is due to the government’s continuous control of energy prices and the use of energy
funds. Therefore, it has become impossible to perceive the true changes in energy prices, which may
affect energy consumption. In addition to this, past policies have not deployed the energy price factor
as a causal factor in its policy formulation. Nonetheless, if the government allows the energy price to
change according to the current global trend and market movements, it would enable us to know the
impact of changes in energy prices on CO2 emissions forecasting.

As for future research, it is suggested to consider more causal influential variables that are
relevant to the national policies of particular countries, so as to align sustainable development
policies with the national management and direction of the country. This research indicates that
both variables, population growth and total coal consumption, should not be included by Thailand
in its VARIMAX-ECM model, as evidenced by the relevant studies. Through the study of the policy
framework of Thailand, the author instead recommends that other variables need to be taken into
account so as to have an appropriate and most effective forecasting model. Some of these variables
are like domestic and foreign private investment, energy consumption structure, energy intensity,
carbon emissions intensity, and many more. In fact, encouraging the use of low carbon technologies,
like energy utilization efficiency, abatement equipment, and renewal energy, would greatly help in CO2

emissions reduction with an energy consumption amount maintained and, therefore, simultaneously
obtaining sustainable economic growth.
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