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Abstract: To improve space charge properties and the breakdown strength of insulation pressboard,
nano-modifications with nano-montmorillonite fillers are developed using nanocomposite techniques
in this study. Employing trap theory, charge carrier trapping characteristics are analyzed to interpret
the space charge distribution modification from nano-montmorillonite (MMT) filling and explore
the correlated mechanism of direct current (DC) breakdown strength enhancement. The trap energy
level distribution is measured by a thermally stimulated current test and space charge distribution
is tested with pulsed electro-acoustics. A DC power system is used to perform DC the breakdown
experiment. The nano-MMT filler composite pressboard demonstrates increased trap density as filling
concentration increases, which dominates the total trap charge quantity. Shielding layers formed
from the trapped charges localized at the interface of the nano-MMT fillers with pressboard matrix
reduce the injection of charge carriers from the electrodes and thus inhibit the internal space charge
accumulation prophase and then charge carriers move to the interior of the pressboard. Space charge
quantity increases with increasing trap density. However, the trapping of charges into the trap levels
releases significant energy to destroy the primitive molecular chain of pressboard cellulose, resulting
in reduced DC breakdown strength. The trap mechanism accounts for the modified space charge
distribution and the enhanced DC breakdown strength deriving from nano-MMT fillers.

Keywords: trap characteristics; oil-paper insulation; nano-modification; space charge

1. Introduction

The converter transformer is essential equipment for high voltage direct current transmission
systems that transform alternating current (AC) electric energy into direct current (DC) electric
energy and its dependability directly influences the stable operation of an energy system. As a
key material for insulation, oil-paper insulation is widely used in converter transformers. Once this
insulation loses efficacy, the transformer may malfunction irreversibly. Therefore, the insulating
lifetime of oil-paper insulation approximately equals the practical functional lifetime of the transformer.
Insulating structures withstand AC-superimposed DC voltage style and polarity reversal voltage,
which concentrate the electrical field more than in a single electrical system [1–4]. Furthermore, space
charge distribution results in the distortion of the electric field causing the insulating system to lose
efficacy. As a consequence, the malfunction analysis of oil-paper insulation is a complicated process [5].

In order to study the effect of trap characteristics on electric field strength and space charge
distribution, considerable research effort has focused on this subject. Ref. [6] built a model to calculate
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the trap depth of the space charge in a dielectric polymer with molecular dynamics theory and density
functional theory. The aging oil demonstrated increased space charge quantity, trap density, and
electric field distortion [7]. Ref. [8] introduced a theoretical foundation for optimizing the electric field
distribution of the insulation system or inhibiting the space charge accumulation. A trap theory model
showed the decrease in the space charge quantity in a complex medium [9]. The oxide layer broke
down when the trap density neared the critical density [10]. The aging process of oil was proven to
increase the trap levels and trap density [11]. Ref. [12] improved the dielectrical property and space
charge characteristics by adding montmorillonite (MMT) into epoxy resin and polyethylene.

Montmorillonite (MMT) is an inorganic layered silicate with a natural nano-structure with a
large specific surface area and high surface activity [13]. In this paper, a novel modified pressboard
filled with nano-MMT is developed using the nanocomposite technique to improve the dielectric
properties of pressboard. Trap characteristics analyses are performed according to trap theory to
examine the reasons for and explore the enhancement mechanism of the breakdown strength and
space charge property.

2. Materials and Experiment

2.1. Sample Preparation

The nano doping method in laboratory refers to industrial procreative processes. Raw materials
included coniferous kraft pulp, distilled water, and MMT nanoparticles. The process of creating
the nano-modified pressboards was divided into six steps: beating, mingle, molding, compressing,
desiccation, and immersion oil. The main equipment used for this process are a beater, electronic
scales, a pattern forming machine, a curing press, and a vacuum drying oven. The process is described
detailed in Figure 1 [14].
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Figure 1. The flow diagram follow for creating nano-modified insulating pressboard. 

The finished modified pressboards had a diameter of 200 mm, thickness of 0.40–0.50 mm, and a 

moisture content lower than 0.3%. The microstructure and nanofiller-MMT dispersity of the 

pressboard nanocomposites was characterized using scanning electron microscopy (SEM) (HITACHI, 

Tokyo, Japan), and the representative images for neat pressboard and nano-MMT/pressboard 

composites are shown in Figure 2. The four compared images illustrate MMT nanofillers in 1, 2.5, 

and 5 wt % filling rates all uniformly dispersed in and composite with the interleaving fiber 

background without appreciable structural change in the pressboard matrix. 

Figure 1. The flow diagram follow for creating nano-modified insulating pressboard.

The finished modified pressboards had a diameter of 200 mm, thickness of 0.40–0.50 mm, and a
moisture content lower than 0.3%. The microstructure and nanofiller-MMT dispersity of the pressboard
nanocomposites was characterized using scanning electron microscopy (SEM) (HITACHI, Tokyo,
Japan), and the representative images for neat pressboard and nano-MMT/pressboard composites
are shown in Figure 2. The four compared images illustrate MMT nanofillers in 1, 2.5, and 5 wt %
filling rates all uniformly dispersed in and composite with the interleaving fiber background without
appreciable structural change in the pressboard matrix.
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(America), heating and cooling system vacuum apparatus and a high voltage DC power source. The 
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Figure 3. Thermally stimulated current measurement system. 

Figure 2. Representative scanning electron microscopy (SEM) images of (a) neat pressboard and
montmorillonite (MMT)/pressboard nanocomposites filled with (b) 1 wt %, (c) 2.5 wt %, and
(d) 5.0 wt % nano-MMT.

2.2. Measurement System

Conforming to standard ASTM-D149, DC breakdown field strength was measured with cylindrical
electrodes. The DC voltage was increased by jogging voltage with a step-up of 2 kV. The quantitative
value was calculated from the average of the data to avoid the effect of dispersibility and random error
from the equipment and environment.

The measurement system of the thermally stimulated current (TSC) included a Keithley 6517A
(America), heating and cooling system vacuum apparatus and a high voltage DC power source.
The system and measurement condition are shown in Figures 3 and 4, respectively.
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stimulated current (TSC). 
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Figure 5. The space charge distribution measurement system. 
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Figure 6. The temperature and electric field stress of pressboards varying with time on the pulsed 

electro-acoustic (PEA) system. 

Figure 4. The temperature and electric field stress of pressboards varying with time on thermally
stimulated current (TSC).

The pulsed electro-acoustic (PEA) measurement system included a high voltage DC source,
a signal acquisition system, and a signal recovery system. Two processes occurred during measurement:
the reference measurement process and constant voltage measurement process. The electric field
stress was 3 kV/mm in the first process, lasting 15 s. The electric field stress was 10 kV/mm and it
lasted 3600 s. The measurement system and measurement conditions are shown in Figures 5 and 6,
respectively [15].
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3. Results

3.1. Effect of Nano Doping on Thermally Stimulated Current

The TSC spectra of the neat and nanocomposite pressboards were tested and the results are shown
in Figure 7 for samples with different MMT filling rates. The TSC spectra for different filling rates
depict evident discrepancies in peak current values in the increasing order of I1.0% < I5% < I0% < I2.5% <
I7.5% and peak temperature positions of T0% < T2.5% < T7.5% < T5% < T1.0%. The peak value was 102 pA
at 7.5 wt %, 77.6% higher than pure pressboard, which has a value of 57 pA, and 16.52% lower at
1.0 wt % than in the pure sample.
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3.2. Effect of Trap Characteristics on Electric Breakdown Strength

The DC breakdown electric strength of MMT/pressboard nano-composites with different filling
rates are plotted in Figure 8. The electric breakdown fields of the nanocomposite pressboards were
remarkably enhanced for mild MMT nanofiller concentrations (representative 1.0 wt % filling rate);
nevertheless, when the nano-MMT filling rate increased to higher than 2.5 wt %, the breakdown
strength decreased, resulting in an inferior product compared to neat pressboard.
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3.3. Space Charge Characteristics

The space charge characteristics were measured by PEA and the distribution of the samples with
different contents are shown in Figure 9 under an electric field stress of 10 kV/mm. As shown in
Figure 9, the black straight line on the left is the negative electrode and the right light is the positive
electrode. Three different nano-modified pressboard contents are displayed including the pure sample,
1 wt % sample, and the 7.5 wt % sample. The 2.5 wt % and 5 wt % samples displayed the similar
electric strength and TSC curves as the others. Therefore, the three contents listed above were chosen
as objects of our study.
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Figure 9. The charge density distribution of neat pressboard and nano-MMT/pressboard nanocomposites
with different filling rates: (a) neat pressboard, (b) 1.0 wt % MMT, and (c) 7.5 wt % MMT.

4. Discussion

4.1. Calculation of Trap Parameters

The trap energy levels and density were calculated using Equations (1)–(3) and analyzing the TSC
curve in Figure 7.

Et = kT ln(vt), (1)

v =
kT
h

, (2)

Nt =
2It

qSklT f0
, (3)

where Et is tap energy level, k is the Boltzmann constant and k = 1.38 × 10−23 J/K, T is temperature,
t is time of the rising temperature, v is the vibration frequency calculated with Equation (2), h is Plank
constant and h = 6.6 × 10−34 J · s, Nt is the trap density, I is the thermally stimulated current, q is
the charge quantity and q = 1 eV, l is the insulated thickness, and f 0 is the probability that the trap is
occupied by electrons and f 0 = 1/2. Figure 10 is a coordinate axis on which the abscissa is the trap
energy level and the ordinate is trap density [16–19].
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According to the calculation result, the order of magnitude of the trap density is 1021 and the
relationship of the maximum value of the trap density with different nanoparticle components is
Ntm5.0% < Ntm1.0% < Ntm0% < Ntm2.5% < Ntm7.5%. The maximum value was 5.81 × 1021 (1/eV·m3) and
the minimum value was 3.06 × 1021 (1/eV·m3) at 7.5 wt % and 5 wt %, respectively. The trap density
was 3.59 × 1021 (1/eV·m3) in pure pressboard. The relationship of trap energy level with peak value is
Et0% < Et7.5% < Et2.5% < Et5.0% < Et1.0%.

4.2. Effect of Trap Parameters on Electric Breakdown Strength

The averaged results of the multiple breakdown tests completed for individual different fill
rates were calculated and are listed in Table 1. The DC electric breakdown strength of 1.0 wt %
MMT/pressboard nano-composite was 218 kV/mm, 16.6% higher than the 187 kV/mm of neat
pressboard. However, the breakdown strength distinctly decreased to 158 and 155 kV/mm for 2.5 wt %
and 5.0 wt % filling rates, respectively, as the filling rate increased higher than 1.0 wt %, about 17.1%
lower than neat pressboard.

Table 1. The electric breakdown strength of montmorillonite (MMT) pressboard nanocomposites.

Filling rate of MMT (%) 0% 1.0% 2.5% 5% 7.5%

Eb (kV/mm) 187 218 158 155 156

The charge carriers are in a partially bound state energy level in the energy band gap of the matrix
materials. This energy level is capable of capturing charge carriers. The movement of untrammeled
charge is directed under the action of the electric field force. These carriers scatter with trap across the
trap energy level and they change to a bound state with a certain probability causing the trapping of
carriers. Many of these carriers jump into the conduction band creating detrapping carriers. Trapping
and detrapping processes are in dynamic equilibrium when the charges release energy during the
trapping process and absorb energy in the detrapping process. The process increases trap density and
a shallow trap in the 7.5 wt % sample, leading to the higher capacity of catching charges than other
samples. The energy of trapping carriers released as ray and heat are transmitted to other trapping
carriers. Under the effect of the electric field, many the charge carriers acquire sufficient energy and
bonding valence electrons to move to the conduction band of the molecular chain in cellulose, which
destroys the chain structure causing electric breakdown. The trap density of pure pressboard was less
than that of the 7.5 wt % sample, as the pure pressboard caught fewer charges and released lower
energy, resulting in a higher electric breakdown strength. In the 1 wt % sample, the trap had lower
density and deeper energy level so it had a higher electric breakdown strength.

4.3. Effect of Trap Parameters on Space Charge

When the voltage is first applied, a cathode injects a huge amount of electricity and charge packets
with different contents are formed. The charge packet grows on the anode occupying the vast majority
of the pressboard over time. The quantity of electric charge is the lowest and the charge packet is
smallest in pure pressboards. Compared with the 7.5 wt % sample, the charge packet is longer than
with the 1 wt % sample. A large amount of electron holes accumulated at the anodes of the pure and
1 wt % samples, whereas this phenomenon was not obvious in the other samples.

Figure 9 shows the different depths of injecting charges and quantity of electric charge with
different nano-modified pressboards. Two sources of space charge are found in dielectric mediums:
ionization of impurities and injection of electrode. The former forms a heteropolarity space charge
whereas the latter creates a same polarity space charge [20]. The distribution curve graphs reveal
that the accumulation of heteropolarity charges near the electrode was not obvious, because the
concentration of injection was higher than that from ionization. Few charges were injected into
specimens and the curves remained constant.
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With higher trap density in the 7.5 wt % pressboard, more charges were accumulated because
charge curriers are caught by the trap on the surface of the sample, forming a trapping space charge.
According to the research [9], charges on the surface establish the trapping charge layer with an
electrode, creating a shielding effect on charge injection causing the velocity in the 7.5 wt % sample
to be lower than in the 1 wt % sample. According to the TSC measurement and computation of trap
energy level, the 1 wt % sample had a low energy level and trap density, and as a result, traps catch
charges with difficulty and the trap density of the charge layer decreases, causing the strength shield
to decrease. There are more charges in the 1 wt % sample. During the later measurement process,
the charge carriers gradually move to the interior of the sample and the charge packet develops on the
positive electrode, which reduces the strength of the shield. The effect of trap on catching charges was
the main reason for charge accumulation.

5. Conclusions

Based on our experimental study and analysis of electric strength and space charge characteristics
of nano-modified pressboards, we drew the following conclusions:

(1) Nano-particles in dielectric mediums remain the base material and have benign dispersibility.
(2) The appropriate nano-particle content reduces the trap density and increases the trap energy level.
(3) DC electric breakdown strength initially increases and then decreases as the nano-composite

content increases. High nano-composite content increases trap density and trapping charges
release more energy to destroy fibrous structures, so electric breakdown strength is reduced.

(4) Traps are the main reason for space charge accumulation. Trap parameters change with different
doping content, which cause a variety of space charge accumulations as proven by the second
conclusion listed above.
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