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Abstract: Multiscale consensus has been studied recently as a new concept in the field of multi-agent
systems, which is able to accommodate many complicated coordination control tasks where values
are measured in different scales due to, e.g., the constraints of physical environment. In this paper,
we investigate the problem of resilient multiscale coordination control against a set of adversarial
or non-cooperative nodes in directed networks. We design a multiscale filtering algorithm based
upon local information which can withstand both faulty and Byzantine nodes. Building on the
concept of network robustness, we establish necessary and sufficient conditions guaranteeing
multiscale consensus with general time varying scales in the presence of globally bounded as
well as locally bounded threats. In particular, for a network containing at most R faulty nodes,
multiscale consensus is achieved if and only if the network is (R+ 1,R+ 1)-robust. The counterpart
when having at most R Byzantine nodes instead is that the induced subnetwork of cooperative
nodes is R+ 1-robust. Conditions guaranteeing resilient consensus for time-dependent networks
are developed. Moreover, multiscale formation generation problems are introduced and solved as
the generalizations. Finally, some numerical examples including applications in modular microgrids
and power systems are worked out to demonstrate the availability of our theoretical results.
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1. Introduction

Coordination control over cooperative multi-agent net-works consisting of multiple individual
subsystems has played a significant role in today’s complex physical and engineered systems.
A fundamental task of coordination control is reaching consensus collectively on global quantities of
interest, such as the centroid of the network structure or the mean temperature of the environment,
using only local information obtained by each agent in the network due to the limited communication
capability [1]. Calculation and estimation through nearest neighbor interaction have been realized by
a variety of consensus algorithms in the framework of distributed systems [2–4], where all individual
agents can be measured by a unified scale enabling diverse applications such as traffic control,
sensor networks, distributed optimization, and data aggregation.

In many physical-world applications, the states of agents tend to achieve agreement upon a certain
consensus value but with different, possibly time-dependent, scales. For instance, in simultaneous
coordination control of satellites running on orbits and their simulating robots on ground,
prominent difference between the scales of vehicles’ position and speed in space and on ground
entails multi-scaled coordination control [5,6]. Other examples include water distribution systems,
closed queuing networks, and compartmental mass-action systems [7]. As an extension to standard
consensus, Roy [8] recently introduced a novel concept of scaled consensus, in which agents’ states
achieve asymptotically prescribed ratios in terms of multiple scales. It is noteworthy that the multiscale,
or scaled, consensus offers a general basis for a wide range of consensus algorithms, which can
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be specialized to obtain standard consensus, cluster or group consensus [9], in which different
subnetworks are allowed to achieve different consistent values, bipartite consensus [10] and sign
consensus [11] by adopting appropriate scales.

Multiscale consensus has been explored for fixed strongly connected topology in [8] as well as
switching topologies in [12], where the autonomous agents are described by continuous-time single
integrators. Some scaled consensus protocols are proposed to solve the finite-time coordination control
for continuous-time multi-vehicle systems in [13] and for discrete-time ones in [14]. In the recent
work [15], multiscale consensus has been further characterized by sufficient and necessary conditions
accommodating signal processing delays and signal transmission delays. All the aforementioned work
assumes that all agents in the communication networks are cooperative. However, the performance
of such systems deteriorates when one or more agents are compromised, potentially preventing the
team of cooperative agents from achieving their goal. To the best of our knowledge, the problem of
multiscale consensus in the presence of adversaries has not been addressed due to its complexity.

Large-scale cyber-physical systems are susceptible to adversarial or non-cooperative nodes
due to malicious attacks (for instance, an attacker taking control of the communication module
of certain agents trying to manipulate the entire network) or platform-level failures (for instance,
a faulty robot sharing an incorrect location due to a defective Global Positioning System sensor).
As such, resilience of consensus, and, more generally, information transmission, in the presence of
adversarial nodes, has attracted significant attention in areas such as communication networks and
mobile robotics over the past decades [16,17]. Recent remarkable efforts include a novel definition of
network resilience by Zhang et al. and LeBlanc et al. [18,19], termed r-robustness, which facilitates
purely local update rules for resilient consensus against malicious nodes. The advantage of the
proposed approach is that the identities and actual number of non-cooperative nodes remain unknown
to the cooperative nodes in the network. The results have later been generalized to the case of
second-order multi-agent systems [20] and tolerance to communication delays is tackled in [21].
Furthermore, resilient flocking in time-dependent networks formed by mobile robot teams has been
investigated in [22] and resilient opinion consensus in mobile social networks has been explored in [23].
It is worth mentioning that resilience to adversaries is conceptually distinct from resilience to
disturbance or noise [24], and the methods used are very different.

Motivated by the aforementioned works, we in this paper consider the resilient multiscale
coordination control for multi-agent systems in the presence of adversarial (faulty or malicious)
nodes. The scope of the adversarial nodes is assumed to be either bounded by a constant in the
whole network, which will be referred to as the globally bounded model, or by a constant in the
neighborhood of each cooperative node, which will be referred to as the locally bounded model.
The contribution of this paper is three-fold. First, compared with the previous resilient consensus
results in e.g., [18–20], a generalization of the standard consensus protocol to multiscale consensus is
proposed. We present sufficient and necessary conditions for multiscale consensus in time-invariant
and time-varying networks that are modeled by directed graphs. Second, in the purview of multiscale
consensus problems, arbitrary time-varying scales are addressed here, which largely extend the usual
constant scales considered in e.g., [8,13–15] as well as the sign-preserving time-dependent scales
studied in [12]. Finally, we introduce the multiscale resilient formation generation and formation
tracking problems for both globally and locally bounded models in addition to resilient distributed
estimation (i.e., multiscale consensus) as further generalizations, which are applicable in cooperative
exploration and coordination tasks; e.g., [25,26].

The remainder of the paper is organized as follows. Section 2 introduces the resilient multiscale
consensus problems. The main results are given in Section 3. Simulation tests are performed to
illustrate their effectiveness in Section 4 and conclusions are presented in Section 5.
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2. Resilient Multiscale Consensus Algorithms

2.1. Graph Theory

Let R and N be the sets of reals and non-negative integers, respectively. A time-dependent
directed network (i.e., graph) over n vertices is denoted by G(t) = (V , E(t)), where V = {v1, · · · , vn}
represents the vertex set characterizing the agents in the network, and E(t) ⊆ V × V represents the
directed edge set at t ∈ N. We consider a set partition of the vertex set as V = C ∪ A, in which C
contains the set of cooperative nodes and A contains the set of adversarial nodes unknown a priori
to the cooperative nodes. The information flow going from node vi to node vj is described by
the edge (vi, vj). The neighborhood of node vi at time t is signified by Ni(t) = {vj : (vj, vi) ∈
E(t)}. When considering that time-invariant networks are taken into consideration, we suppress the
dependence on t correspondingly. We sometimes do so in time-varying networks when no ambiguity
will be caused within the context.

The following concepts of reachable sets and network robustness are introduced in [18],
which have a close relationship with conventional graph-theoretic connectivity and play an essential
role in resilient coordination [19,27].

Definition 1 (reachable set). Suppose r, s ∈ N. S ⊆ V is said to be an r-reachable set if there is a vertex
vi ∈ S such that |Ni\S| ≥ r. Moreover, S is said to be an (r, s)-reachable set if |{vi ∈ S : |Ni\S| ≥ r}| ≥ s.
Clearly, r-reachability is equal to (r, 1)-reachability.

Definition 2 (network robustness). Let r, s ∈ N. A digraph G is called r-robust if, for every pair of
disjoint and nonempty subsets of V , at least one of them is r-reachable. Furthermore, G is (r, s)-robust if
for every pair of disjoint nonempty subsets S1, S2 ⊆ V , at least one of the following three statements holds:
(i) |{vi ∈ S1 : |Ni\S1| ≥ r}| = |S1|, (ii) |{vi ∈ S2 : |Ni\S2| ≥ r}| = |S2|, and (iii) |{vi ∈ S1 : |Ni\S1| ≥
r}|+ |{vi ∈ S2 : |Ni\S2| ≥ r}| ≥ s.

2.2. Model Description

For a multi-agent system having the directed communication graph G(t) = (V , E(t)) with
V = C ∪ A, each cooperative node vi ∈ C applies the following consensus update rule and
communicates its value to its neighbors at every time-step t ∈ N:

xi(t + 1) = fi

(
{xi

j(t) : vj ∈ Ni(t) ∪ {vi}}
)

, (1)

where xi
j(t) ∈ R is the value sent from node vj to node vi at time t, and xi

j(t) = xj(t) for vj ∈ C. Clearly,

xi
i(t) = xi(t). Here, fi delineates the update function for cooperative node vi, which is to be designed

so that the cooperative nodes could still reach the system’s goal withstanding the compromise of
adversarial nodes, whose identity and number remain unknown. Adversarial nodes, on the other
hand, can apply arbitrary and different update rules that are not known to the cooperative nodes.
We will consider the following two sorts of adversarial nodes.

Definition 3 ( adversarial node). A node vi ∈ A is faulty if it forwards value xi(t) to all of its neighbors
at each time step, but implements some dif ferent update rule f ′i at some time step. A node vi ∈ A is called
Byzantine if it applies some dif ferent update rule f ′i or it fails to forward the same value to all the neighbors at
some time step.

A faulty node is non-cooperative due to, for example, a faulty sensor or actuator, or intentional
manipulation when the network is realized through broadcast communication. Byzantine nodes are
often regarded as the worst-case attackers [19,21], who usually have a complete knowledge of the
whole system and send information to its neighbors in a point-to-point way. Note that both faulty and
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Byzantine nodes can update their states arbitrarily at each time step, and that all faulty nodes are also
Byzantine by definition, but not vice versa.

According to the location and number of the adversarial nodes, here we study the following two
sorts of models: (i) R-globally bounded model, in which the number of nodes in A is bounded by
a constant R ∈ N; and (ii) R-locally bounded model, in which |Ni ∩A| ≤ R for every vi ∈ C. In the
R-locally bounded model, every cooperative node possesses no more than R adversarial neighbors.
In both models, adversarial nodes threaten the group objective through stopping other agents from
reaching valid states or driving their states into a dangerous range. Thus, strategies for resilient
coordination are highly desirable.

2.3. Multiscale Filtering Strategy

Let t ∈ N. Given a scalar scale αi(t) 6= 0 for agent vi ∈ V , we propose to deal with the multiscale
consensus defined as follows.

Definition 4 (multiscale consensus). The multi-agent system (1) is said to achieve multiscale consensus
with respect to (α1(t), · · · , αn(t)) if limt→∞(αi(t)xi(t)− αj(t)xj(t)) = 0 for any vi, vj ∈ C and any initial
conditions {xi(0)}vi∈V .

It is obvious that multiscale consensus problems generalize standard consensus as well as cluster
consensus problems [2,3]. It is also worth noting that Definition 4 admits general time-dependent scales,
which are required restrictively to be invariant constants in [8,13–15] and sign-preserving in [12].

To accommodate the adversarial nodes in the network, we propose the following local filtering
protocol, which extends the Weighted-Mean-Subsequence-Reduced (W-MSR) algorithm [18,19] for
standard consensus. Specifically, the multiscale coordination consists of three steps, implemented
at every time step t. Fix R ∈ N. First, every cooperative node vi ∈ C acquires the values {xi

j(t)} of

its neighbors, and generates a decreasing list for {αj(t)xi
j(t)}. Second, the largest R values which

are strictly larger than αi(t)xi(t) in this sorted list are deleted (if there are fewer than R larger values
than αi(t)xi(t), all of those values should be deleted). We apply a similar deletion process to the
smaller values. The set of nodes that are deleted by node vi at time step t is denoted by Ri(t).
Third, each vi ∈ C updates its value using the following rule:

xi(t + 1) = sgn(αi(t)) ∑
vj∈(Ni(t)∪{vi})\Ri(t)

wij(t)αj(t)xi
j(t), (2)

where sgn(·) is the signum function, and wij(t) are the weights satisfying (i) wij(t) = 0 if vj 6∈
Ni(t) ∪ {vi}, (ii) there is some constant α ∈ (0, 1) independent of t, such that wij(t)|αi(t)| ≥ α > 0 for
any vj ∈ (Ni(t) ∪ {vi})\Ri(t), and (iii) ∑vj∈(Ni(t)∪{vi})\Ri(t) wij(t)|αi(t)| = 1.

Notice that the above weights wij(t) may be arbitrarily selected provided these three conditions
are true. The algorithmic complexity is low and only local information is utilized. Hence, the algorithm
can be regarded as purely distributed. No prior knowledge of the identities of adversarial nodes or the
network topology is assumed for cooperative nodes. The above algorithm will be referred to as the
multiscale filtering strategy with parameter R.

3. Consensus Analysis

Here, we present the consensus analysis for the multi-agent system in the presence of both
faulty and Byzantine nodes. In every case, we study resilience results for both globally bounded
threats and locally bounded threats. To begin with, set M(t) := maxvi∈C{αi(t)xi(t)} and m(t) :=
minvi∈C{αi(t)xi(t)}. The update rule in (2) implies that
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αi(t + 1)xi(t + 1) = |αi(t)| ∑
j∈(Ni(t)∪{vi})\Ri(t)

wij(t)αj(t)xi
j(t), (3)

which is a convex combination of {αj(t)xi
j(t)}j∈(Ni(t)∪{vi})\Ri(t). It is straightforward to see that, for

all i ∈ C and t ∈ N, αi(t + 1)xi(t + 1) ∈ [m(t), M(t)] holds in both R-globally and R-locally bounded
models in the presence of faulty/Byzantine nodes when the multiscale filtering strategy with parameter
R is applied. This means the interval [m(0), M(0)] is always an invariant set in the sense that the scaled
values of cooperative nodes remain in this range for all t.

3.1. Multiscale Coordination in the Presence of Faulty Nodes

In the following, we establish some necessary and sufficient conditions for multiscale coordination
in the globally/locally bounded model with faulty nodes. We consider time-invariant networks first,
and then extend the results to time-dependent networks. The proofs are based on the techniques in [19].

Theorem 1 (consensus in globally bounded model with faulty nodes). Consider a time-invariant
network characterized by a digraph G = (V , E), where every cooperative node updates its value according to the
multiscale filtering strategy with parameter R. Therefore, in the R-globally bound model having faulty nodes,
multiscale consensus is reached if and only if G is (R+ 1,R+ 1)-robust.

Proof. (Necessity) Assume that G is not an (R + 1,R + 1)-robust graph. Thus, there are disjoint
nonempty sets S1, S2 ⊆ V such that none of the statements (i)–(iii) in Definition 2 hold.
Fix a < b. Let xi(0) = a

αi(0)
for any node vi ∈ S1, and xi(0) = b

αi(0)
for any node vi ∈ S2. For

vi ∈ V\{S1 ∪ S2}, set xi(0) = c
αi(0)

for some fixed c ∈ (a, b). Since |{vi ∈ S1 : |Ni\S1| ≥
R+ 1}|+ |{vi ∈ S2 : |Ni\S2| ≥ R+ 1}| ≤ R, suppose that all nodes in {vi ∈ S1 : |Ni\S1| ≥ R+ 1} and
{vi ∈ S2 : |Ni\S2| ≥ R+ 1} are faulty nodes and that they keep their values unchanged. Since there
is at least one cooperative node in both S1 and S2 (because |{vi ∈ S1 : |Ni\S1| ≥ R+ 1}| < |S1| and
|{vi ∈ S2 : |Ni\S2| ≥ R+ 1}| < |S2|), the scaled values αi(t)xi(t) of such cooperative nodes cannot
reach consensus by using the multiscale filtering strategy with parameter R. Therefore, multiscale
consensus can not be achieved.

(Sufficiency) From the comments in the beginning of this section, we may assume that ρM :=
limt→∞ M(t) ≥ ρm := limt→∞ m(t). If ρM = ρm, multiscale consensus is then reached. In what follows,
we assume that ρM > ρm and will show that it does not hold by using contradiction.

Choose ε0 > 0 satisfying ρM − ε0 > ρm + ε0. For t ∈ N and εk > 0, we define two sets
AM(t, εk) := {vi ∈ V : αi(t)xi(t) > ρM − εk} and Am(t, εk) := {vi ∈ V : αi(t)xi(t) < ρm + εk}. By the

definition of ε0, AM(t, ε0) and Am(t, ε0) are disjoint. Fix ε < α|C|ε0
1−α|C|

and ε0 > ε > 0. Let tε be the time
step satisfying M(t) < ρM + ε and m(t) > ρm − ε for all t ≥ tε.

Recall that AM(tε, ε0) and Am(tε, ε0) are nonempty disjoint sets. Noting that G is
(R+ 1,R+ 1)-robust with at most R faulty nodes, there must be a cooperative node in their union
which contains more than or a number equal to R + 1 neighbors outside of its set. We suppose,
without loss of generality, that vi ∈ AM(tε, ε0)∩ C has more than or equal to R+ 1 neighbors outside of
AM(tε, ε0). Since these neighbors’ values are at most equal to ρM − ε0 and at least one of these values
will be used by vi, we obtain

αi(tε + 1)xi(tε + 1) ≤ (1− α)M(tε) + α(ρM − ε0)

≤ ρM − αε0 + (1− α)ε, (4)

where we have used the inequality M(tε) ≤ ρM + ε, and the fact that each cooperative node’s value is
a convex combination of its own value and the values of its neighbors with coefficients larger than
or equal to α and that the largest value vi will use at time tε no more than M(tε) according to the
multiscale filtering strategy with parameter R. The expression (4) also applies to the updated value of
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any cooperative node outside AM(tε, ε0) since such a node will adopt its own value (which is also less
than or equal to ρM − ε0) in the update process. Likewise, if vi ∈ Am(tε, ε0) ∩ C, which has more than
or a number equal to R+ 1 neighbors outside of Am(tε, ε0), we derive a similar inequality

αi(tε + 1)xi(tε + 1) ≥ ρm + αε0 − (1− α)ε, (5)

which also applies to the cooperative nodes outside Am(tε, ε0).
Now, define ε1 = αε0 − (1− α)ε and let 0 < ε < ε1 < ε0. Notice that the sets AM(tε + 1, ε1)

and Am(tε + 1, ε1) are disjoint. The discussion in the above paragraph implies that |AM(tε + 1, ε1) ∩
C| < |AM(tε, ε0) ∩ C| or |Am(tε + 1, ε1) ∩ C| < |Am(tε, ε0) ∩ C| holds. We can recursively define
εk = αεk−1 − (1− α)ε for each k ≥ 1 and note that εk < εk−1. The above comments can be applied to
every time step tε + k provided there still exist cooperative nodes in AM(tε + k, εk) and Am(tε + k, εk).
Since there are |C| cooperative nodes in the entire graph, there is some T ≤ |C| such that either
AM(tε + T, εT) ∩ C or Am(tε + T, εT) ∩ C is empty. However, εT = αεT−1 − (1− α)ε = αTε0 − (1−
αT)ε ≥ α|C|ε0 − (1− α|C|)ε > 0 as per the choice of ε. This means that every cooperative node at
time tε + T has a value of no more than ρM − εT < ρM or has a value of at least ρm + εT > ρm. This
contradicts the definition of ρM or ρm. The result then follows.

For time-dependent networks, we show the following corollary.

Corollary 1. Consider a time-varying network characterized by a digraph G(t) = (V , E(t)), where every
cooperative node updates its value according to the multiscale filtering strategy with parameter R. Denote by
{tk} the time steps in which G(t) is (R+ 1,R+ 1)-robust. Therefore, in the R-globally bound model with faulty
nodes, multiscale consensus is reached if |{tk}| = ∞ and there is a constant c such that |tk+1 − tk| ≤ c for all k.

Proof. We proceed similarly as in Theorem 1. We now set ε < α|C|cε0
1−α|C|c

and ε0 > ε > 0. Define tε

to be the time step satisfying M(t) < ρM + ε and m(t) > ρm − ε for all t ≥ tε. By assumption,
there is τ1 ∈ {tε, tε + 1, · · · , tε + c− 1} such that G(τ1) is (R+ 1,R+ 1)-robust. Let ε1 = αε0 − (1− α)ε

and 0 < ε < ε1 < ε0. Reasoning as in the proof of Theorem 1, we see that |AM(τ1 + 1, ε1) ∩ C| <
|AM(τ1, ε0) ∩ C| or |Am(τ1 + 1, ε1) ∩ C| < |Am(τ1, ε0) ∩ C| holds.

We can recursively define εk = αεk−1 − (1− α)ε for 1 ≤ k ≤ |C|c. Similarly as in Theorem 1,
we can prove that every cooperative node vi satisfying αi(τ1 + 1)xi(τ1 + 1) ≤ ρM − ε1 will satisfy
αi(τ1 + k)xi(τ1 + k) ≤ ρM − εk for each 1 ≤ k ≤ |C|c. In the same manner, every cooperative
node vi satisfying αi(τ1 + 1)xi(τ1 + 1) ≥ ρm + ε1 will satisfy αi(τ1 + k)xi(τ1 + k) ≥ ρm + εk for each
1 ≤ k ≤ |C|c. Therefore, we have |AM(τ1 + k, εk) ∩ C| ≤ |AM(τ1 + k − 1, εk−1) ∩ C| or |Am(τ1 +

k, εk) ∩ C| ≤ |Am(τ1 + k − 1, εk−1) ∩ C| for every 1 ≤ k ≤ |C|c irrespective of the graph structure.
By assumption, there exists an infinite sequence of τ1, τ2, · · · where G(τk) is (R+ 1,R+ 1)-robust,
both AM(τk, ετk−τ1) ∩ C and Am(τk, ετk−τ1) ∩ C are non-empty, and either |AM(τk + 1, ετk+1−τ1) ∩ C| <
|AM(τk, ετk−τ1) ∩ C| or |Am(τk + 1, ετk+1−τ1) ∩ C| < |Am(τk, ετk−τ1) ∩ C|, or both, holds for k ≥ 1.
As there exist |C| cooperative nodes in the entire graph and |τ|C| − τ1| ≤ |C|c, there is some T ≤ |C|c
such that either AM(τ1 + T, εT) ∩ C or Am(τ1 + T, εT) ∩ C is empty. Recalling the definition of ε, we
obtain εT > 0. This gives rise to a contradiction similarly as in the proof of Theorem 1.

Next, we extend the above results to solve resilient formation generation problems for multi-agent
systems in the presence of adversarial nodes. In standard formation generation problems, the aim is to
design distributed protocols to guarantee that each pair of neighboring agents reach a desired relative
position with respect to each other [3,4,28]. A certain pattern is thus formed by the agents as a whole.
In the context of resilient multiscale coordination, we introduce the multiscale formation generation
as follows.
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Definition 5 (multiscale formation generation). Let g = (g1, · · · , gn) ∈ Rn. The agents in G are said to
achieve the multiscale formation g with respect to (α1(t), · · · , αn(t)) if limt→∞(αi(t)xi(t)− αj(t)xj(t)) =
gi − gj for all vi, vj ∈ C and all initial conditions {xi(0)}vi∈V .

It is easy to see that the agents reach the multiscale formation g if there exists a vector h ∈ Rn such
that for vi ∈ C, αi(t)xi(t) tends to gi + h as time goes to infinity. To this end, we design the following
formation generation rule for each vi ∈ C:

xi(t + 1) =
1

αi(t)
gi + sgn(αi(t)) · ∑

vj∈(Ni(t)∪{vi})\Ri(t)
wij(t)

(
αj(t)xi

j(t)− gj

)
, (6)

where the weights wij(t) satisfy the same conditions in Section 2.3. In the formation control
problem, we will modify the three-step multiscale filtering strategy with parameter R introduced in
Section 2.3 in three places: first, the sorted list is created for {αj(t)xi

j(t)− gj} instead of {αj(t)xi
j(t)}.

Second, the largest R values that are strictly greater than αi(t)xi(t)− gi instead of αi(t)xi(t) in the list
are deleted. The same modification applies to the smaller values. Third, the update rule (2) is replaced
by (6). We shall refer to this modified algorithm as the multiscale filtering-formation strategy with
parameter R.

Corollary 2 (formation generation in globally bounded model with faulty nodes). Consider
a time-invariant graph characterized by a digraph G = (V , E), where every cooperative node updates its
value according to the multiscale filtering-formation strategy with parameter R. Therefore, in the R-globally
bounded model having faulty nodes, multiscale formation g is reached if and only if G is (R+ 1,R+ 1)-robust.

For a time-dependent network G(t) = (V , E(t)), let {tk} be the time steps where G(t) is
(R+1, R+1)-robust. Therefore, in the R-globally bounded model having faulty nodes, multiscale formation g is
reached if |{tk}| = ∞ and there is a constant c satisfying |tk+1 − tk| ≤ c for every k.

Proof. Let x̄i
j(t) = xi

j(t)− gj/αj(t) and x̄j(t) = xj(t)− gj/αj(t) for vi, vj ∈ V . Then, the update rule (6)

becomes x̄i(t + 1) = sgn(αi(t))∑j∈(Ni(t)∪{vi})\Ri(t) wij(t)αj(t)x̄i
j(t) for vi ∈ C.

For time-invariant network topology, it follows from Theorem 1 that G is (R+ 1,R+ 1)-robust
if and only if multiscale consensus is achieved for {x̄i(t)}vi∈C , which in turn is equivalent to having
a vector h ∈ Rn such that limt→∞ αi(t)xi(t) = gi + h. The result then follows. In the case of
time-varying topology, a similar argument applies by virtue of Corollary 1.

For locally bounded models, where adversarial nodes are much more popular but the number
of them are still bounded in every cooperative node’s neighborhood, we propose to characterize the
network structure that is ideal for coping with fault nodes as follows.

Theorem 2 (consensus in locally bounded model with faulty nodes). Consider a time-invariant
network characterized by a digraph G = (V , E), in which every cooperative node updates its value following
the multiscale filtering strategy with parameter R. Therefore, in the R-locally bound model having faulty nodes,
multiscale consensus is achieved if G is 2R+ 1-robust. Moreover, G is R+ 1-robust if multiscale consensus in
the R-locally bound model with faulty nodes is achieved.

Proof. (Necessity) Assume that G is not R+ 1-robust. Therefore, there exist disjoint nonempty sets
S1, S2 ⊆ V such that every node in these two sets will have at most R neighbors outside the set.
Suppose that there exist cooperative nodes in both S1 and S2. Fix a < b. Let xi(0) = a

αi(0)
for any node

vi ∈ S1, and xi(0) = b
αi(0)

for any node vi ∈ S2. For vi ∈ V\{S1 ∪ S2}, set xi(0) = c
αi(0)

for some fixed
c ∈ (a, b). Clearly, the scaled values αi(t)xi(t) of nodes in S1 and S2 will not achieve consensus under
the multiscale filtering strategy with parameter R because they will not adopt any values from outside
their own sets. Thus, multiscale consensus can not be reached.
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(Sufficiency) We proceed similarly as in Theorem 1. Suppose that ρM := limt→∞ M(t) and ρm :=
limt→∞ m(t). In what follows, we will prove ρM = ρm by contradiction. For this purpose, assume that
ρM > ρm. Choose ε0 > 0 so that ρM − ε0 > ρm + ε0. For t ∈ N and εk > 0, we consider two sets given
by AM(t, εk) := {vi ∈ V : αi(t)xi(t) > ρM − εk} and Am(t, εk) := {vi ∈ V : αi(t)xi(t) < ρm + εk}.
By the definition of ε0, AM(t, ε0) and Am(t, ε0) are disjoint. Set ε < α|C|ε0

1−α|C|
and ε0 > ε > 0. Define tε to

be the time step satisfying M(t) < ρM + ε and m(t) > ρm − ε for any t ≥ tε.
Recall that the two sets AM(tε, ε0) ∩ C and Am(tε, ε0) ∩ C are nonempty and disjoint. Since G is

2R+ 1-robust, one of these two sets must be 2R+ 1-reachable if not both. We suppose, without loss of
generality, that AM(tε, ε0) ∩ C is 2R+ 1-reachable, and hence there exists a node vi ∈ AM(tε, ε0) ∩ C
which has no less than 2R+ 1 neighboring nodes outside its set. Because there exist no more than
R faulty nodes in Ni, vi will adopt no less than one of its cooperative neighbors’ values outside
AM(tε, ε0)∩ C under the multiscale filtering strategy with parameter R. Consequently, proceeding as in
the proof of Theorem 1, we derive αi(tε + 1)xi(tε + 1) ≤ ρM − αε0 + (1− α)ε. This also holds true for
the renewed value of every cooperative node outside AM(tε, ε0) ∩ C as such a node will adopt its own
value in the renewal procedure. Analogously, if vi ∈ Am(tε, ε0) ∩ C has more than or equal to 2R+ 1

neighbors outside its set, we have a similar bound αi(tε + 1)xi(tε + 1) ≥ ρm + αε0 − (1− α)ε, which
also applies to the cooperative nodes outside Am(tε, ε0) ∩ C. Now by defining ε1 = αε0 − (1− α)ε

which satisfies 0 < ε < ε1 < ε0, we can use the same proof in Theorem 1, by setting recursively εk, for
k ≥ 1 to produce the contradiction. We then proved the sufficiency part.

Note that there is a gap between the sufficient condition and the necessary condition in Theorem 2.
In fact, the example mentioned in ([19], Figure 4) can also be used to show that the sufficient condition
here is sharp. In the case of time-dependent networks, we show the following result, which more or
less can be shown in the same way as Corollary 1.

Corollary 3. Given a time-dependent network characterized by a digraph G(t) = (V , E(t)), where every
cooperative node updates its value following the multiscale filtering strategy with parameter R. Let {tk} be
the time steps where G(t) is 2R+ 1-robust. Therefore, in the R-locally bounded model having faulty nodes,
multiscale consensus is reached if |{tk}| = ∞ and there is a constant c satisfying |tk+1 − tk| ≤ c for every k.

In parallel with Corollary 2, we have the following result for resilient multiscale formation
generation under the locally bounded model.

Corollary 4 (formation generation in locally bounded model with faulty nodes). Consider
a time-invariant network characterized by a digraph G = (V , E), where every cooperative node updates
its value following the multiscale filtering-formation strategy with parameter R. Therefore, in the R-locally
bounded model containing faulty nodes, multiscale formation g is achieved if G is 2R+ 1-robust. Moreover, G is
R+ 1-robust if multiscale formation g in the R-locally bounded model with faulty nodes is achieved.

For time-dependent network G(t) = (V , E(t)), let {tk} be the time steps where G(t) is (R+1, R+1)-robust.
Therefore, in the R-locally bounded model having faulty nodes, multiscale formation g is reached if |{tk}| = ∞
and there is a constant c satisfying |tk+1 − tk| ≤ c for any k.

3.2. Multiscale Coordination in the Presence of Byzantine Nodes

In this subsection, we establish necessary and sufficient conditions for multiscale coordination
in the globally and locally bounded model in the presence of Byzantine nodes. Recall that Byzantine
nodes are able to forward different information to different neighbors at any time step, and thus
they are harder to deal with. Define GC(t) = (C, EC(t)) to be the subnetwork of G(t) = (V , E(t))
induced by C, where EC(t) is made up of all directed edges among the cooperative nodes at time step t.
Time-invariant network structure will be investigated first.
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Theorem 3 (consensus in globally bounded model with Byzantine nodes). Consider a time-invariant
network characterized by a digraph G = (V , E), in which every cooperative node updates its value following the
multiscale filtering strategy with parameter R. Therefore, in the R-globally bounded model having Byzantine
nodes, multiscale consensus is reached if and only if GC is R+ 1-robust.

Proof. (Necessity) Suppose that GC is not R+ 1-robust. Therefore, there exist two nonempty and
disjoint sets S1, S2 ⊆ C which are not R+ 1 reachable. Thereby, every node in these two sets has
no more than R cooperative neighbors outside the set. Fix a < b. Let xi(0) = a

αi(0)
for any node

vi ∈ S1, and xi(0) = b
αi(0)

for any node vi ∈ S2. For vi ∈ V\{S1 ∪ S2}, set xi(0) = c
αi(0)

for some fixed
c ∈ (a, b). Suppose that all Byzantine nodes always send the value a

αi(t)
to every node vi in S1, and the

value b
αi(t)

to every node vi in S2 at every time step t. Therefore, utilizing the multiscale filtering
strategy having parameter R, nodes in S1 and S2 will not adopt values from outside their own sets.
Thus, multiscale consensus can not be reached.

(Sufficiency) Similarly, we suppose that ρM := limt→∞ M(t) and ρm := limt→∞ m(t). Assume that
ρM > ρm. Choose ε0 > 0 satisfying ρM − ε0 > ρm + ε0. For t ∈ N and εk > 0, we define two sets
BM(t, εk) := {vi ∈ C : αi(t)xi(t) > ρM − εk} and Bm(t, εk) := {vi ∈ C : αi(t)xi(t) < ρm + εk}. As per

the definition of ε0, BM(t, ε0) and Bm(t, ε0) are disjoint. Fix ε < α|C|ε0
1−α|C|

which satisfies ε0 > ε > 0.
Define tε as the time step satisfying M(t) < ρM + ε and m(t) > ρm − ε for every time step t ≥ tε.

Recall that BM(tε, ε0) and Bm(tε, ε0) are nonempty and disjoint. As GC is R+ 1-robust with at
most R Byzantine nodes, there exists a node in BM(tε, ε0) or Bm(tε, ε0) that has more than or equal
to R+ 1 cooperative neighboring nodes outside of its set. Without loss of generality, we assume
that vi ∈ BM(tε, ε0) has more than or equal to R + 1 cooperative neighboring nodes outside of
BM(tε, ε0). With the same argument as in Theorem 1, we derive the inequality αi(tε + 1)xi(tε + 1) ≤
ρM − αε0 + (1− α)ε. This expression also holds true for the renewed value of every cooperative node
outside BM(tε, ε0). Likewise, if vi ∈ Bm(tε, ε0) which has more than or equal to R+ 1 cooperative
neighbors outside of Bm(tε, ε0), we have similarly αi(tε + 1)xi(tε + 1) ≥ ρm + αε0− (1− α)ε, which also
applies to the cooperative nodes outside Bm(tε, ε0).

Define ε1 = αε0 − (1− α)ε, satisfying 0 < ε < ε1 < ε0. Notice that the sets BM(tε + 1, ε1) and
Bm(tε + 1, ε1) are disjoint. The discussion in the above paragraph implies that |BM(tε + 1, ε1)| <
|BM(tε, ε0)| or |Bm(tε + 1, ε1)| < |Bm(tε, ε0)| holds. We can recursively define εk = αεk−1 − (1− α)ε

for every k ≥ 1 and note that εk < εk−1. The aforementioned discussion is applicable to every time
step tε + k provided BM(tε + k, εk) and Bm(tε + k, εk) are non-empty. Since GC contains |C| cooperative
nodes, there is some T ≤ |C| satisfying either BM(tε + T, εT) or Bm(tε + T, εT) is in fact empty. On the
other hand, εT = αεT−1 − (1− α)ε = αTε0 − (1− αT)ε ≥ α|C|ε0 − (1− α|C|)ε > 0 according to the
choice of ε. This implies that every cooperative node at time tε + T has a value of no more than
ρM − εT < ρM or have values no less than ρm + εT > ρm. This contradicts the definition of ρM or ρm.
We proved the sufficiency part.

In the case of time-dependent networks, the following result can be established.

Corollary 5. Consider a time-dependent network characterized by a digraph G(t) = (V , E(t)), where every
cooperative node updates its value following the multiscale filtering strategy with parameter R. Let {tk} be the
time steps where G(t) is 2R+ 1-robust. Therefore, in the R-globally bounded model having Byzantine nodes,
multiscale consensus is reached if |{tk}| = ∞ and there is a constant c satisfying |tk+1 − tk| ≤ c for any k.

Proof. If G(t) becomes 2R+ 1-robust, GC(t) must be R+ 1 robust. It is due to the fact that there exist
no more than R Byzantine nodes in the whole network. In view of Theorem 3, we may conclude the
proof by resorting to a similar argument as that in Corollary 1.

The following result is given for resilient multiscale formation generation under the globally
bounded model.
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Corollary 6 (formation generation in globally bounded model with Byzantine nodes). Consider
a time-invariant network characterized by a digraph G = (V , E), in which every cooperative node updates
its value following the multiscale filtering-formation strategy with parameter R. Therefore, in the R-globally
bounded model containing Byzantine nodes, multiscale formation g is achieved if and only if GC is R+ 1-robust.

For a time-dependent network G(t) = (V , E(t)), let {tk} signify the time steps where G(t) is 2R +

1-robust. Therefore, in the R-globally bounded model having Byzantine nodes, multiscale formation g is reached
if |{tk}| = ∞ and there exists a constant c satisfying |tk+1 − tk| ≤ c for all k.

Now we move to locally bounded models having Byzantine nodes distributed over
a time-invariant graph structure.

Theorem 4 (consensus in locally bounded model with Byzantine nodes). Consider a time-invariant
network characterized by a digraph G = (V , E), where every cooperative node updates its value following the
multiscale filtering strategy with parameter R. Therefore, in the R-locally bounded model containing Byzantine
nodes, multiscale consensus is reached if and only if GC is R+ 1-robust.

Proof. (Necessity) The same proof in Theorem 3 gives the necessity.
(Sufficiency) Proceeding similarly as in Theorem 3, we suppose that ρM := limt→∞ M(t) and

ρm := limt→∞ m(t). Assume that ρM > ρm. Choose ε0 > 0 satisfying ρM − ε0 > ρm + ε0. For t ∈ N
and εk > 0, we signify two sets BM(t, εk) := {vi ∈ C : αi(t)xi(t) > ρM − εk} and Bm(t, εk) := {vi ∈
C : αi(t)xi(t) < ρm + εk}. By the definition of ε0, BM(t, ε0) and Bm(t, ε0) turn out to be disjoint.

Fix ε < α|C|ε0
1−α|C|

satisfying ε0 > ε > 0. Let tε be the time step satisfying M(t) < ρM + ε and m(t) > ρm− ε

for any time step t ≥ tε.
Recall that the sets BM(tε, ε0) and Bm(tε, ε0) are both nonempty and disjoint. As GC is R+ 1-robust,

there must be a node in BM(tε, ε0) or Bm(tε, ε0) that has more than or an equal number of R + 1

cooperative neighboring nodes outside of its set. We suppose, without loss of generality, that vi ∈
BM(tε, ε0) has more than or equal to R+ 1 cooperative neighbors outside of BM(tε, ε0). Since there
are no more than R Byzantine nodes in Ni, vi will adopt at least one of its cooperative neighbors’
values outside BM(tε, ε0) under the multiscale filtering strategy with parameter R. Based upon
the same argument as in Theorem 1, we derive the estimation αi(tε + 1)xi(tε + 1) ≤ ρM − αε0 +

(1− α)ε. This also holds true for the renewed value of every cooperative node outside BM(tε, ε0).
Analogously, if vi ∈ Bm(tε, ε0) which has more than or an equal number of R+ 1 cooperative neighbors
outside of Bm(tε, ε0), we have αi(tε + 1)xi(tε + 1) ≥ ρm + αε0 − (1− α)ε, which also applies to the
cooperative nodes outside Bm(tε, ε0).

Define ε1 = αε0 − (1 − α)ε, satisfying 0 < ε < ε1 < ε0. The same reasoning in the proof
of Theorem 3 (by recursively defining εk = αεk−1 − (1 − α)ε for k ≥ 1) gives rise to the desired
contradiction. We then proved the sufficiency part.

For time-dependent networks, the following result can be established. The proof is similar to that
of Corollary 5.

Corollary 7. Consider a time-dependent network characterized by a digraph G(t) = (V , E(t)), in which every
cooperative node updates its value following the multiscale filtering strategy with parameter R. Let {tk} be the
time steps where G(t) is 2R+ 1-robust. Therefore, in the R-locally bounded model containing Byzantine nodes,
multiscale consensus is reached if |{tk}| = ∞ and there is a constant c satisfying |tk+1 − tk| ≤ c for any k.

As an immediate consequence of Theorem 4 and Corollary 7, resilient multiscale formation
generation in the locally bounded model containing Byzantine nodes is characterized in the following.

Corollary 8 (formation generation in locally bounded model with Byzantine nodes). Consider
a time-invariant network characterized by a digraph G = (V , E), in which every cooperative node updates its
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value following the multiscale filtering-formation strategy with parameter R. Therefore, in the R-locally bounded
model with Byzantine nodes, multiscale formation g is reached if and only if GC is R+ 1-robust.

For a time-dependent network G(t) = (V , E(t)), let {tk} be the time steps where G(t) is 2R+ 1-robust.
Therefore, in the R-locally bounded model having Byzantine nodes, multiscale formation g is reached if
|{tk}| = ∞ and there exists a constant c satisfying |tk+1 − tk| ≤ c for each k.

4. Numerical Simulations

In this section, we present a range of numerical examples (including two energy systems related
ones) to illustrate our results.

Example 1 (Consensus against a single faulty node). We investigate a (2, 2)-robust network G = (V , E)
with the node set V = {v1, · · · , v6} (see Figure 1), in which node v2 is compromised and becomes an adversarial
node. The initial values of the six agents are taken as x1(0) = −2, x2(0) = 2, x3(0) = 3, x4(0) = −1,
x5(0) = 0, x6(0) = 1.5, and the scales are chosen as α1(t) = α2(t) = α3(t) = 2+ sin(t/5), α4(t) = α5(t) =
α6(t) = −1.

Figure 1. A directed graph G with n = 6 nodes, which is (2, 2)-robust.

Since the network is (2, 2)-robust, Theorem 1 (or Theorem 2) implies that multiscale consensus
can be reached in the 1-globally bounded model with faulty nodes when we implement the multiscale
filtering strategy with parameter 1. We assume that each cooperative node vi ∈ C takes the weight
wij(t) = (|αi(t)|(|Ni|+ 1− |Ri(t)|))−1 for vj ∈ (Ni ∪ {vi})\Ri(t). In Figure 2a, we show the
trajectories of the agents, where the node v2 is faulty and keeps its value unchanged. In Figure 2b,
we consider a different situation, where v2 is more malicious (aiming to drive the states of the system
to perhaps unsafe regions) and updates its value following x2(t + 1) = (x1(t) + x3(t) + x4(t) +
x6(t))/4+t/10. We see that, in both cases, the cooperative nodes are able to reach multiscale consensus
with respect to (α1(t), · · · , α6(t)) as supported by Theorem 1.

Note that the induced network GC is not 2-robust (by considering, e.g., the disjoint atom sets {v1}
and {v3}). Recall that a faulty node is also Byzantine. We clarify that the multiscale consensus behaviors
observed here do not contradict Theorem 3 because Theorem 3 indicates that there exists one specific
node that can be compromised to prevent multiscale consensus if GC is not 2-robust. Furthermore,
it is also worthwhile to note that, although multiscale consensus is achieved in both Figure 2a,b,
the adversarial node v2 indeed affects the final trajectories of the cooperative nodes. This is allowed in
our multiscale coordination framework because the value xi(t) for each cooperative node vi still lies in
the interval [m(0)/αi(t), M(0)/αi(t)] that is kept by cooperative nodes at all time step t.
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Figure 2. Time evolution of the agents’ values: (a) v2 maintains its value and (b) v2 updates its value
according to x2(t + 1) = (x1(t) + x3(t) + x4(t) + x6(t))/4 + t/10.

Example 2 (Consensus against a single Byzantine node). In this example, we consider the network
topology used in Example 1 except that all communications are assumed to be bidirectional. Moreover, we suppose
that v3 is compromised (Byzantine) instead. Therefore, the cooperative node set is C = {v1, v2, v4, v5, v6} and
the induced network GC becomes 2-robust. The same scales, initial values, and weights for the system are taken
as in Example 1. To specify the Byzantine behavior of v3, we set x3(t) ≡ 3, x2

3(t) ≡ 2, and x4
3(t) = 2x4(t).

Figure 3 shows the trajectories of the agents reaching multiscale consensus in good agreement
with the theoretical results in Theorems 3 and 4 using the multiscale filtering strategy with parameter
R = 1. Comparing Figure 3 with Figure 2, it is interesting to see that the states of the cooperative agents
converge faster in Example 2: multiscale consensus is achieved well before t = 10 in Figure 3 but
achieved only around t = 20 in Figure 2a,b. The more rapid consensus presumably results from (i) the
higher density in the communication network; and (ii) the less connected compromised node v3 in
Example 2 as compared to v2 in Example 1. In fact, the size of the neighborhoodN2 = {v1, v3, v4, v5, v6}
nearly triples that of N3 = {v2, v4}, which appears to be positively correlated to the convergence
time regardless of the particular behavior (viz. faulty or Byzantine) of the respective adversarial
node. This unravels that v2 should be better protected, for example, in an infrastructure network,
due to its central location in the network structure. A detailed investigation of the influence of node
location, with certain quantative characterization such as node centralities [29], is likely to reveal more
insightful results.
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Figure 3. Time evolution of the agents’ values, where v3 forwards different values to its neighbors, viz.
x2

3(t) = 2 and x4
3(t) = 2x4(t).
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Example 3 (Consensus against multiple faulty nodes). Here, we reinforce the network in Figure 1 by
adding edges {v1, v4}, {v1, v3}, {v3, v5} and assume that all communications are bidirectional. The resulting
network is sketched in Figure 4. It is direct to check that this network is (3, 3)-robust.

Figure 4. A graph G with n = 6 nodes, which is (3, 3)-robust.

We assume that two highly connected nodes v2 and v4 are compromised, posing a severe threat to
the system performance. Namely, A = {v2, v4} and C = {v1, v3, v5, v6}. The same scales, initial values,
and weights for the system are taken as in Example 1. The state update rules for v2 and v4 are described
by x2(t + 1) = 2 + t/20 and x4(t + 1) = −1− t/20, respectively. We perform the multiscale filtering
strategy with parameter R = 2 as per Theorem 1. As expected, we observe from Figure 5 that the
desired multiscale consensus is finally reached in spite of the interference of these two well-connected
faulty agents.
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Figure 5. Time evolution of the agents’ values, where v2 and v4 are faulty nodes following x2(t + 1) =
2 + t/20 and x4(t + 1) = −1− t/20.

Example 4 (Distributed battery power consensus on a modular microgrid). In this example, we adopt
our multiscale consensus theory to realize the power and capacity consensus of battery storage based upon
a project located on DongAo Island in China [26]. The traditional power system on islands takes the form of diesel
generators which often cause some air pollution and noises. To overcome these drawbacks and improve networking,
some stand-alone modular microgrids based on decentralized batteries have been proposed, which essentially
entail distributed power and capacity consensus control protocols. The structure of the battery storage system
on DongAo Island can be abstracted as an undirected network on four modules, with each agent representing
a module; see Figure 6. This network has a (2, 2)-robust architecture.
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Figure 6. Above: structure of modular microgrid on DongAo Island; Below: communication network
G, which is (2, 2)-robust.

The initial values (battery power) of the four agents are taken as x1(0) = 1, x2(0) = 2, x3(0) = 3,
x4(0) = 4, and the scales are chosen to be α1(t) = α2(t) = 1, α3(t) = α4(t) = 2. Let g = (1, 1, 1, 1).
We assume that module 2 failed due to some technical error at time t = 20, namely, x2(t) = 0 for t ≥ 20.
We plot the power versus time in Figure 7 by using the multiscale formation generation scheme (6)
and the multiscale filtering-formation strategy with parameter 1. The results in Figure 7 agree with
Corollary 2. The remaining three functional modules (v1, v3, and v4) managed to achieve the desired
multiscale formation and hence the consensus reaching process is robust against adversarial events.
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Figure 7. Battery power in modules versus time, where v2 breaks down at time t = 20.

Example 5 (Distributed frequency regulation in an electrical power network). In a smart power grid,
frequency regulation service provided by appropriate control of generation is essential for enhancing reliability
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and ef ficiency of its performance. Each component in the network is coordinated in a distributed manner to
provide active power for the provision of ancillary frequency regulations [30]. Here, we consider the decentralized
frequency control problem in the presence of a faulty component based on our resilient multiscale consensus
theory. The power system consisting of four generators and the corresponding communication network describing
the exchange of information between generator agents are shown in Figure 8.

Figure 8. Above: structure of a power system; Below: the topology of a communication network.

We study frequency stability in the presence of a faulty agent represented by v3; see Figure 8.
Since C = {v1, v2, v4}, the subnetwork GC is 2-robust. The initial values (frequency) of the four agents
are taken as x1(0) = x2(0) = x3(0) = x4(0) = 1, and the scales are chosen to be αi(t) = i for
i = 1, · · · , 4. Let g = (1, 1, 1, 1). We assume that x3(t) = 1 + sin(t/5). Figure 9 illustrates the evolution
of frequency state with respect to time by using the multiscale formation generation scheme (6) and
the multiscale filtering-formation strategy with parameter 1. As one would expect from Corollary
6, the states of these cooperative agents {v1, v2, v4} reach multiscale consensus withstanding the
interference of faulty v3.
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Figure 9. Frequency state versus time, where v3 is faulty following x3(t) = 1 + sin(t/5).
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5. Conclusions

In this paper, we have investigated resilient multiscale coordination algorithms that are able
to withstand the compromise of a subset of nodes in directed networks. We established necessary
and sufficient conditions guaranteeing multiscale consensus with general time varying scales in the
presence of faulty and Byzantine nodes. Both locally bounded and globally bounded adversaries are
dealt with. It is shown that, for a fixed network with at most R faulty nodes, multiscale consensus is
achieved if and only if the network is (R+ 1,R+ 1)-robust. On the other hand, for a network with
at most R Byzantine nodes, multiscale consensus is achieved if and only if the induced subnetwork
of cooperative nodes is R+ 1-robust. The theories are then tailored to accommodate time-dependent
networks. Multiscale formation generation and formation tracking problems are also solved as
the generalizations. We have illustrated the ability to achieve resilient multiscale consensus via
extensive numerical examples including the battery storage system on DongAo Island and frequency
regulation on power grid. In our future work, we will address distributed update rules that can further
accommodate communication delays and external (possibly random) perturbations. Furthermore,
extensions of the methods to deal with continuous-time multi-agent systems also seem appealing.
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