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Abstract: A photovoltaic system is highly susceptible to partial shading. Based on the functionality
of a photovoltaic system that relies on solar irradiance to generate electrical power, it is tacitly
assumed that the maximum power of a partially shaded photovoltaic system always decreases as
the shading heaviness increases. However, the literature has reported that this might not be the case.
The maximum power of a partially shaded photovoltaic system under a fixed configuration and
partial shading pattern can be highly insusceptible to shading heaviness when a certain critical point
is met. This paper presents an investigation of the impact of partial shading and the critical point
that reduce the susceptibility of shading heaviness. Photovoltaic string formed by series-connected
photovoltaic modules is used in this research. The investigation of the P-V characteristic curve under
different numbers of shaded modules and shading heaviness suggests that the photovoltaic string
becomes insusceptible to shading heaviness when the shaded modules irradiance reaches a certain
critical point. The critical point can vary based on the number of the shaded modules. The formulated
equation in this research contributes to determining the critical point for different photovoltaic string
sizes and numbers of shaded modules in the photovoltaic string.
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1. Introduction

Conventional electrical power generation based on coal-fired power plants introduces carbon
emissions which cause air pollution to be released into the Earth’s atmosphere. To tackle this problem,
renewable energy is employed as an alternative mode of electrical power generation. Among the
renewable energy options, photovoltaic solar power is getting more and more popular nowadays due
to its abundantly available and inexhaustible nature [1–5]. The non-involvement of mechanical or
moving parts in a photovoltaic power system also makes it more preferable than other renewable
energy options [6]. In 2016, around 75 GW of solar photovoltaic capacity was installed worldwide,
which is almost a 50% growth from about 50 GW in 2015 [7,8]. The significant growth in photovoltaic
power systems promotes the popularity of photovoltaic power system research among renewable
energy researchers.

Photovoltaic modules or solar panels are the most fundamental components in a photovoltaic
power system which is used to convert solar energy to electrical power [9–13]. When a photovoltaic

Energies 2018, 11, 1860; doi:10.3390/en11071860 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2364-6088
https://orcid.org/0000-0003-0386-3138
http://www.mdpi.com/1996-1073/11/7/1860?type=check_update&version=1
http://dx.doi.org/10.3390/en11071860
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1860 2 of 22

module is connected to a piece of measurement equipment, P-V characteristics will be obtained as
illustrated in Figure 1 [14]. The P-V characteristics demonstrate the electrical power delivered by the
photovoltaic module at different voltages.

In the presence of the P-V characteristics, the maximum power of the photovoltaic module
can be tracked. For instance, the marked point in Figure 1 shows the highest point of the P-V
characteristics, which represents the maximum power delivered by the photovoltaic module [15].
The maximum power of the photovoltaic module is always harvested from the photovoltaic module
for electricity generation purposes [16]. Therefore, it is important to determine the P-V characteristics
of a photovoltaic module so that the maximum power can be tracked and harvested from the
photovoltaic module.
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Figure 1. P-V characteristics of a photovoltaic module.

In a photovoltaic system, multiple photovoltaic modules are connected in series to form a
photovoltaic string to achieve a required voltage and power output. To achieve an even higher power,
these photovoltaic strings can be connected in parallel to form a photovoltaic array [17,18], as illustrated in
Figure 2. In general, more than 1000 photovoltaic modules are employed in a megawatt-scale photovoltaic
system to provide megawatts of electrical power production. These photovoltaic modules cannot only
be connected in series as this will introduce an extremely high output voltage which makes it unfit for
grid-connected inverters and energy storage purposes. Therefore, parallel connection is employed, as
well as series connection, to connect these photovoltaic modules. Usually, multiple photovoltaic strings
are formed by connecting multiple photovoltaic modules in series. These photovoltaic strings are then
connected in parallel to form the photovoltaic array in the megawatts scale photovoltaic plant. Similar to
the photovoltaic module, the P-V characteristics of a photovoltaic string/array need to be determined in
order to track and harvest the maximum power from the photovoltaic string/array.
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During a uniform irradiance condition, the P-V characteristics of a photovoltaic string exhibit
one peak that resembles the P-V characteristics in Figure 1. The peak acts as the global peak which
represents the maximum power of the photovoltaic string [19,20]. When partial shading takes place,
multiple peaks appear on the P-V characteristics due to the use of a bypass diode [21–23]. Figure 3
shows the P-V characteristics of a photovoltaic string during a partial shading condition. The highest
peak is the global peak which represents the maximum power of the photovoltaic string, while the
others are the local peaks [24,25].
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Apparently, a photovoltaic system is highly susceptible to partial shading [26–39]. During partial
shading, the maximum power of a photovoltaic system can drop drastically, which significantly
reduces the energy yield of the photovoltaic system. However, the susceptibility of partial shading to a
photovoltaic system is not constant. The susceptibility of partial shading to a photovoltaic system can
be varied due to the partial shading pattern and the connection employed to connect the photovoltaic
modules in the photovoltaic system [26–29,32–38].

The experimental results in [26] suggested that under an identical partial shading pattern,
the maximum power of a photovoltaic system should drop at a constant rate as the shading heaviness
increases, as illustrated in Figure 4a. It means that under an identical partial shading pattern, a partially
shaded photovoltaic system is always susceptible to the shading heaviness. This makes sense as the
photovoltaic system relies on the solar irradiance to generate electrical power, and the maximum
power of a partially shaded photovoltaic system should be lower and lower as the shading heaviness
is getting heavier and heavier.

However, another phenomenon has been observed by S. Silvestre et al. [39]. S. Silvestre et al.
discovered that a partially shaded photovoltaic system is not necessarily susceptible to the
shading heaviness. They discovered that the maximum power of a partially shaded photovoltaic
system decreases as the shading heaviness increases, as presented by the researchers in [26–38].
However, when the shading heaviness reaches a certain critical point, the maximum power remains
unchanged even if the shading heaviness is getting heavier and heavier from that critical point,
as illustrated in Figure 4b. It means that the partially shaded photovoltaic system can become
insusceptible to shading heaviness when the shading heaviness reaches a certain critical point.
This finding is inspiring because a partially shaded photovoltaic system is commonly believed to
always be susceptible to the shading heaviness.
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It is obvious that lots of research has been conducted on the impact of partial shading on the
photovoltaic system throughout the years [26–38]. However, none of it has precisely presented the
finding proposed in [39], which stated that the maximum power of a partially shaded photovoltaic
system can become insusceptible to shading heaviness when the shading heaviness reaches a certain
critical point. Therefore, it is a good area to further explore.

The finding proposed by [39] regarding the critical point is definitely inspiring.
However, the experiment setup used in their research is a photovoltaic system that consists of nine
photovoltaic modules only. They did not consider cases where a photovoltaic system consists of
a greater number of photovoltaic modules. Besides that, the partial shading pattern and shading
heaviness applied in their experiment are limited, which is insufficient to really conclude their finding.
According to their result, the critical point can vary based on the number of shaded modules in the
photovoltaic system. Therefore, an equation to determine the critical point for different numbers of
shaded modules is highly expected. However, they did not formulate an equation to determine the
critical point. Furthermore, they did not verify whether the critical point is also applicable to different
sized photovoltaic systems.

The aim of this research is to investigate the susceptibility of the shading heaviness to a partially
shaded photovoltaic system and the critical point that decreases the susceptibility of shading heaviness
using a photovoltaic system with a multiple number of photovoltaic modules and various partial
shading conditions. Besides that, an equation to calculate the critical point is formulated in this
research as well. Furthermore, the critical point equation is also verified with different sized
photovoltaic systems.

2. Methodology

A photovoltaic string consists of 20 photovoltaic modules and is used to conduct the experiment
in this research. The photovoltaic modules have an open circuit voltage of 21.6 V, short circuit current
of 7.34 A, ideality factor of 1.5, and series resistance of 0 ohm. Temperature, T = 25 ◦C is used for
all the case studies in the experiment. Each photovoltaic module in the photovoltaic string has one
bypass diode.

There are four experiment setups developed using the photovoltaic string, including 4 modules
shaded, 8 modules shaded, 12 modules shaded, and 16 modules shaded setups, as illustrated in
Figure 5.



Energies 2018, 11, 1860 5 of 22Energies 2018, 11, x 5 of 22 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Experiment setups: (a) Four modules shaded setup; (b) eight modules shaded setup; (c) 12 
modules shaded setup; (d) 16 modules shaded setup. 

Table 1 shows all the conditions that applied to every experimental setup in Figure 5. In the 
experiment, the P-V characteristics of every experimental setup under all the applied conditions are 
determined. 

Table 1. Conditions applied to the experimental setups. 

Conditions Unshaded Modules Irradiance (w/m2) Shaded Modules Irradiance (w/m2) 
Condition 1 1000 900 
Condition 2 1000 800 
Condition 3 1000 700 
Condition 4 1000 600 
Condition 5 1000 500 
Condition 6 1000 400 
Condition 7 1000 300 
Condition 8 1000 200 
Condition 9 1000 100 

Condition 10 1000 0 

A photovoltaic array that consists of parallel connected photovoltaic strings and is not used in 
this research. This is because a photovoltaic system with a higher degree of parallelism is less 
susceptible to partial shading [32]. Similar statements are also suggested in [33–40], which address 
the fact that a higher degree of parallelism in a photovoltaic system can reduce the susceptibility of 
partial shading. Therefore, a photovoltaic array that consists of parallelism is not used in this 
research. Photovoltaic string that is in a series connected configuration is used in this research. 

The random partial shading patterns with multiple shading heaviness are not used in this 
research. These partial shading patterns occur due to an uneven cloud distribution. It is more likely 
to be experienced by a megawatts scale photovoltaic plant. The area of the coverage of the 
photovoltaic string is not as big as a megawatts scale photovoltaic system. Therefore, the random 
partial shading patterns with multiple shading heaviness are not considered in this research.  

Figure 5. Experiment setups: (a) Four modules shaded setup; (b) eight modules shaded setup; (c) 12
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Table 1 shows all the conditions that applied to every experimental setup in Figure 5. In the experiment,
the P-V characteristics of every experimental setup under all the applied conditions are determined.

Table 1. Conditions applied to the experimental setups.

Conditions Unshaded Modules Irradiance (w/m2) Shaded Modules Irradiance (w/m2)

Condition 1 1000 900
Condition 2 1000 800
Condition 3 1000 700
Condition 4 1000 600
Condition 5 1000 500
Condition 6 1000 400
Condition 7 1000 300
Condition 8 1000 200
Condition 9 1000 100
Condition 10 1000 0

A photovoltaic array that consists of parallel connected photovoltaic strings and is not used in this
research. This is because a photovoltaic system with a higher degree of parallelism is less susceptible
to partial shading [32]. Similar statements are also suggested in [33–40], which address the fact that a
higher degree of parallelism in a photovoltaic system can reduce the susceptibility of partial shading.
Therefore, a photovoltaic array that consists of parallelism is not used in this research. Photovoltaic
string that is in a series connected configuration is used in this research.

The random partial shading patterns with multiple shading heaviness are not used in this
research. These partial shading patterns occur due to an uneven cloud distribution. It is more likely to
be experienced by a megawatts scale photovoltaic plant. The area of the coverage of the photovoltaic
string is not as big as a megawatts scale photovoltaic system. Therefore, the random partial shading
patterns with multiple shading heaviness are not considered in this research.

There is not a standard rule for choosing the photovoltaic system size to conduct the partial
shading experiment. The size can be chosen based on the designer and researcher preferences.
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For instance, Hiren Patel and Vivek Agarwal [26] chose photovoltaic arrays that consist of 300,
900, and 1000 photovoltaic modules; R. Ahmad et al. [29] chose photovoltaic arrays that consist
of 20 and 25 photovoltaic modules; S. Silvestre et al. [39] chose a photovoltaic array consisting of
nine photovoltaic modules, and so on. Regardless of the chosen size of the photovoltaic system,
the experimental outcome should be applicable in certain ways to a megawatts scale photovoltaic
plant as tacitly assumed among the researchers [26–39].

A photovoltaic string model is developed to carry out the experiment. A solar cell block from the
SimElectronics block set is used to develop the photovoltaic string model. This method of modelling
has been used by J. C. Teo et al. to develop a photovoltaic string model [11]. They have conducted
practical measurements to validate the photovoltaic string model in their research. Hence, it makes
sense to use this method to develop the photovoltaic string model for the experiment.

The solar cell block is set to a five-parameter configurationm which is defined in Equations (1)
and (2), where I is the output current, IPH is the photo-generated current, IO is the diode saturation
current, V is the output voltage, RS is the series resistance, NS is the number of cells, VT is the junction
thermal voltage, A is the ideality factor, k is the Boltzman constant (1.3806503 × 10−23 J/K), T is the
cell temperature, and q is the electron charge (1.6021765 × 10−19 C).

I = IPH − IO exp
(

V + IRS
NSVT

− 1
)

(1)

VT =
AkT

q
(2)

The short circuit current, open circuit voltage, series resistance, and ideality factor of the solar cell
block are set according to the experiment requirements. To implement the bypass diode, the diode
block from the Simscape block set is connected in antiparallel with the solar cell block, as shown
in Figure 6.
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Figure 6. Solar cell block with bypass diode.

The architecture in Figure 6 represents a photovoltaic module with a bypass diode. The architecture
is duplicated to 20 sets, and these 20 sets of architecture are then connected in series to form a
photovoltaic string model which consists of 20 photovoltaic modules that are required for the experiment.
The photovoltaic string model is made into a single block known as PV string, as shown in Figure 7.
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Figure 7 shows the entire photovoltaic string model that was developed to carry out the
experiment. The PV string block is the model for the photovoltaic string. It has 20 inputs which
control the irradiance of every particular photovoltaic module in the photovoltaic string. The Control
Unit block sets the unshaded modules irradiance, shaded modules irradiance, and number of the
shaded modules in the PV string based on the parameter in the Unshaded Irr, Shaded Irr, and Shade
Module block, respectively.

During the simulations, the Controlled Current Source block sweeps the output current of the
photovoltaic string. The Voltage Sensor block measures the output voltage of the photovoltaic string.
The Product block multiplies the output voltage and output current of the photovoltaic string to obtain
the output power of the photovoltaic string. The To Workspace block sends the output power and
output voltage of the photovoltaic string to the MATLAB (R2014a, MathWorks, Natick, MA, USA)
workspace to plot the P-V characteristics curve.

Basically, the developed photovoltaic string model shown in Figure 7 is developed by cascading
and extending the photovoltaic string model proposed by J. C. Teo et al. [11]. It is common practice to
develop a larger scale photovoltaic system model by cascading and extending the validated small-scale
photovoltaic system model [26]. The larger scale model that is developed by cascading and extending
the validated small-scale model should give appropriate results for analysis purposes, as suggested
by [26,39]. The method in [26] has also been applied by another researcher [29] to conduct a partial
shading experiment.

The experiment can be conducted using the photovoltaic string model shown in Figure 7.
To conduct the experiment for the 4 modules shaded setup, the Unshade Irr block is set to 1000
while the Shaded Module block is set to 4. These settings configure the photovoltaic string to a four
modules shaded setup with the unshaded modules irradiance fixed at 1000 w/m2. The Shade Irr block
is set to 900 to apply the condition 1 in Table 1 to the 4 modules shaded setup. Simulation performed
under these setting generates the P-V characteristics of the 4 modules shaded setup under condition 1.
To obtain the P-V characteristics of the 4 modules shaded setup under all the conditions in Table 1,
10 simulations are performed with the Shade Irr block set to 0, 100, 200, 300, 400, 500, 600, 700, 800,
and 900, respectively.

Similar procedures are applied to conduct the experiment for the 8 modules shaded, 12 modules
shaded, and 16 modules shaded setup. For instance, for the 8 modules shaded setup, the Unshade Irr
block is set to 1000 while the Shade Module block is set to 8. These settings configure the photovoltaic
string to the 8 modules shaded setup with the unshaded module irradiance fixed at 1000 w/m2.
To obtain the P-V characteristics of the 8 modules shaded setup under all the conditions in Table 1,
10 simulations are performed with the Shade Irr block set to 0, 100, 200, 300, 400, 500, 600, 700, 800,
and 900, respectively.
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To conduct the experiment for the 12 modules shaded setup, the Unshade Irr block is set to 1000
while the Shade Modules block is set to 12. The simulations are performed with the Shade Irr block set
to 0, 100, 200, 300, 400, 500, 600, 700, 800, and 900, respectively, to obtain the P-V characteristics of the
12 modules shaded setup under the conditions in Table 1.

To conduct the experiment for the 16 modules shaded setup, the Unshade Irr block is set to 1000
while the Shade Modules block is set to 16. The simulations are performed with the Shade Irr block set
to 0, 100, 200, 300, 400, 500, 600, 700, 800, and 900, respectively, to obtain the P-V characteristics of the
16 modules shaded setup under the conditions in Table 1. Tables 2–5 show the parameters set in the
model in Figure 7 to conduct the experiment for the 4 modules shaded, 8 modules shaded, 12 modules
shaded, and 16 modules shaded setups.

Table 2. Parameters set in the model shown in Figure 7 to conduct the experiment for the 4 modules
shaded setup.

Condition Applied to the
Experiment Setup

Parameter Set in Shade
Module Block

Parameter Set in Unshade
Irr Block

Parameter Set in
Shade Irr Block

Condition 1 4 1000 900
Condition 2 4 1000 800
Condition 3 4 1000 700
Condition 4 4 1000 600
Condition 5 4 1000 500
Condition 6 4 1000 400
Condition 7 4 1000 300
Condition 8 4 1000 200
Condition 9 4 1000 100

Condition 10 4 1000 0

Table 3. Parameters set in the model shown in Figure 7 to conduct the experiment for the 8 modules
shaded setup.

Condition Applied to the
Experiment Setup

Parameter Set in Shade
Module Block

Parameter Set in Unshade
Irr Block

Parameter Set in
Shade Irr Block

Condition 1 8 1000 900
Condition 2 8 1000 800
Condition 3 8 1000 700
Condition 4 8 1000 600
Condition 5 8 1000 500
Condition 6 8 1000 400
Condition 7 8 1000 300
Condition 8 8 1000 200
Condition 9 8 1000 100

Condition 10 8 1000 0

Table 4. Parameters set in the model shown in Figure 7 to conduct the experiment for the 12 modules
shaded setup.

Condition Applied to the
Experiment Setup

Parameter Set in Shade
Module Block

Parameter Set in Unshade
Irr Block

Parameter Set in
Shade Irr Block

Condition 1 12 1000 900
Condition 2 12 1000 800
Condition 3 12 1000 700
Condition 4 12 1000 600
Condition 5 12 1000 500
Condition 6 12 1000 400
Condition 7 12 1000 300
Condition 8 12 1000 200
Condition 9 12 1000 100

Condition 10 12 1000 0
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Table 5. Parameters set in the model shown in Figure 7 to conduct the experiment for the 16 modules
shaded setup.

Condition Applied to the
Experiment Setup

Parameter Set in Shade
Module Block

Parameter Set in Unshade
Irr Block

Parameter Set in
Shade Irr Block

Condition 1 16 1000 900
Condition 2 16 1000 800
Condition 3 16 1000 700
Condition 4 16 1000 600
Condition 5 16 1000 500
Condition 6 16 1000 400
Condition 7 16 1000 300
Condition 8 16 1000 200
Condition 9 16 1000 100

Condition 10 16 1000 0

The experiment considers lots of partial shading conditions, including lightly shaded, heavily shaded,
a small number of modules shaded, a big number of modules shaded, and lots of shading heaviness
conditions. These partial shading conditions pretty much cover all the possible partial shading conditions
that might be experienced by a photovoltaic string at the site. Hence, the data collected in the experiment
should be sufficient to conclude the critical points of a photovoltaic string, as well as to formulate the
equation to determine the critical points of a photovoltaic string. However, more simulation work is
required to conduct the experiment as it involves a huge number of partial shading conditions.

3. Results

Figure 8 shows the P-V characteristics of the four modules shaded setup. Figure 8a represents the P-V
characteristics when the shaded modules irradiance is between 500 and 900 w/m2. Figure 8b illustrates
the P-V characteristics when the shaded modules irradiance is between 0 and 400 w/m2. Considering the
4 modules shaded setup in Figure 8a, the higher voltage peak of the P-V characteristics is higher than the
lower voltage peak when the shaded module irradiance is between 800 and 900 w/m2.
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500 and 900 w/m2; (b) shaded modules irradiance is between 0 and 400 w/m2.

Figure 9 shows the P-V characteristics of the 8 modules shaded setup. Figure 9a represents the
P-V characteristics when the shaded modules irradiance is between 500 and 900 w/m2. Figure 9b
illustrates the P-V characteristics when the shaded modules irradiance is between 0 and 400 w/m2.
Similar situations are observed in the 8 modules shaded setup shown in Figure 9, where the higher
voltage peak acts as the global peak when the shaded modules irradiance is above a certain level.
The higher voltage peak reduces as the shaded modules irradiance decreases.
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Figure 10 shows the P-V characteristics of the 12 modules shaded setup. Figure 11 shows the
P-V characteristics of the 16 modules shaded setup. The similar situation that is observed in the
4 and 8 modules shaded setups is also observed in the 12 and 16 module shaded setups shown
in Figures 10 and 11. The higher voltage peak acts as the global peak when the shaded modules
irradiance is above a certain level.
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Tables 6–9 are tabulated based on the data on the P-V characteristics of Figures 8–11 which show
the maximum power and maximum power delivery voltage of all the experimental setups under the
applied conditions.

Table 6. Maximum powers of the 4 modules shaded setup.

Unshaded Modules
Irradiance (w/m2)

Shaded Modules
Irradiance (w/m2) Maximum Power (W) Maximum Power

Delivery Voltage (V)

1000 900 2346.7 364.39
1000 800 2158.3 374.70
1000 700 1924 283.3
1000 600 1920.4 282.82
1000 500 1914.4 281.94
1000 400 1908.4 281.47
1000 300 1902.4 280.59
1000 200 1896.4 279.29
1000 100 1890.4 278.41
1000 0 1884.5 277.94

Table 7. Maximum powers of the 8 modules shaded setup.

Unshaded Modules
Irradiance (w/m2)

Shaded Modules
Irradiance (w/m2) Maximum Power (W) Maximum Power

Delivery Voltage (V)

1000 900 2295.1 362.57
1000 800 2083.6 367.48
1000 700 1845.2 370.51
1000 600 1593 373.07
1000 500 1384 204.73
1000 400 1372.1 203.58
1000 300 1360.3 201.82
1000 200 1348.4 200.06
1000 100 1336.5 198.59
1000 0 1324.7 197.13

Table 8. Maximum powers of the 12 modules shaded setup.

Unshaded Modules
Irradiance (w/m2)

Shaded Modules
Irradiance (w/m2) Maximum Power (W) Maximum Power

Delivery Voltage (V)

1000 900 2252.8 359.87
1000 800 2022.6 361.83
1000 700 1777.2 362.69
1000 600 1524.3 362.06
1000 500 1267.4 361.09
1000 400 1008.8 360.27
1000 300 820.40 124.11
1000 200 802.96 121.84
1000 100 785.56 119.39
1000 0 768.20 117.10
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Table 9. Maximum powers of the 16 modules shaded setup.

Unshaded Modules
Irradiance (w/m2)

Shaded Modules
Irradiance (w/m2) Maximum Power (W) Maximum Power

Delivery Voltage (V)

1000 900 2216 358
1000 800 1969.8 357.49
1000 700 1717.8 355.66
1000 600 1463.8 353.58
1000 500 1209.6 350.62
1000 400 956.54 346.57
1000 300 705.80 340.97
1000 200 459.07 332.66
1000 100 254.56 45.21
1000 0 234.97 42.80

By using the maximum powers and shaded modules irradiance in Table 6, a graph such as that
illustrated in Figure 12 can be plotted. It shows the relationship between the maximum powers and
the shaded modules irradiance of the 4 modules shaded setup.
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Similar procedures are applied to Tables 7–9 to obtain the relationship between the maximum
powers and the shaded modules irradiance for the 8, 12, and 16 modules shaded setups. Figure 13
shows the relationship between the shaded modules irradiance and the maximum powers for all the
experimental setups.
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4. Discussions

Considering the 4 modules shaded setup in Figure 8a, the higher voltage peak of the P-V
characteristics is higher than the lower voltage peak when the shaded module irradiance is between 800
and 900 w/m2. Therefore, the higher voltage peak acts as the global peak that represents the maximum
power of the photovoltaic string. The higher voltage peak reduces as the shaded modules irradiance
decreases, as illustrated in Figure 8. When the shaded modules irradiance drops below 800 w/m2,
the higher voltage peak eventually becomes lower than the lower voltage peak. Therefore, the lower
voltage peak becomes the global peak that represents the maximum power of the photovoltaic string.

Similar situations are observed in the 8 modules shaded setup shown in Figure 9, where the
higher voltage peak acts as the global peak when the shaded modules irradiance is above a certain
level. The higher voltage peak reduces as the shaded modules irradiance decreases. When the shaded
modules irradiance drops below 600 w/m2, the higher voltage peak eventually becomes lower than
the lower voltage peak. Therefore, the lower voltage peak started to acts as the global peak which
represents the maximum power of the photovoltaic string.

It is observed that the similar situations that are seen in the 4 and 8 modules shaded setups are
also observed in 12 and 16 module shaded setups shown in Figures 10 and 11. The higher voltage peak
acts as the global peak when the shaded modules irradiance is above a certain level. When the shaded
modules irradiance drops below a certain level, the lower voltage peak started to acts as the global
peak which represents the maximum power of the photovoltaic string.

Regardless of the number of shaded modules in the photovoltaic string, the higher voltage peak
of the P-V characteristics reduces significantly as the shaded modules irradiance decreases. On the
other hand, the lower voltage peak rarely changes as the shaded modules irradiance decreases. This is
because the higher voltage peak of the P-V characteristics is formed by the shaded and unshaded
photovoltaic modules in the photovoltaic string. Hence, the higher voltage peak is susceptible to the
shading that is applied to the shaded photovoltaic modules. On the other hand, the lower voltage
peak is formed by the unshaded modules in the photovoltaic string. Hence, the lower voltage peak is
insusceptible to the shading applied to the shaded photovoltaic modules.

To apprehend this theory, consider the photovoltaic string in Figure 14. The photovoltaic string
consists of four photovoltaic modules where two photovoltaic modules are unshaded and the other
two photovoltaic modules are shaded, as illustrated in Figure 14. The unshaded photovoltaic modules
generate 7.3 A and the shaded photovoltaic modules generate 3.65 A.

Energies 2018, 11, x 13 of 22 

 

4. Discussions 

Considering the 4 modules shaded setup in Figure 8a, the higher voltage peak of the P-V 
characteristics is higher than the lower voltage peak when the shaded module irradiance is between 
800 and 900 w/m2. Therefore, the higher voltage peak acts as the global peak that represents the 
maximum power of the photovoltaic string. The higher voltage peak reduces as the shaded modules 
irradiance decreases, as illustrated in Figure 8. When the shaded modules irradiance drops below 800 
w/m2, the higher voltage peak eventually becomes lower than the lower voltage peak. Therefore, the 
lower voltage peak becomes the global peak that represents the maximum power of the photovoltaic 
string. 

Similar situations are observed in the 8 modules shaded setup shown in Figure 9, where the 
higher voltage peak acts as the global peak when the shaded modules irradiance is above a certain 
level. The higher voltage peak reduces as the shaded modules irradiance decreases. When the shaded 
modules irradiance drops below 600 w/m2, the higher voltage peak eventually becomes lower than 
the lower voltage peak. Therefore, the lower voltage peak started to acts as the global peak which 
represents the maximum power of the photovoltaic string.  

It is observed that the similar situations that are seen in the 4 and 8 modules shaded setups are 
also observed in 12 and 16 module shaded setups shown in Figures 10 and 11. The higher voltage 
peak acts as the global peak when the shaded modules irradiance is above a certain level. When the 
shaded modules irradiance drops below a certain level, the lower voltage peak started to acts as the 
global peak which represents the maximum power of the photovoltaic string.  

Regardless of the number of shaded modules in the photovoltaic string, the higher voltage peak 
of the P-V characteristics reduces significantly as the shaded modules irradiance decreases. On the 
other hand, the lower voltage peak rarely changes as the shaded modules irradiance decreases. This 
is because the higher voltage peak of the P-V characteristics is formed by the shaded and unshaded 
photovoltaic modules in the photovoltaic string. Hence, the higher voltage peak is susceptible to the 
shading that is applied to the shaded photovoltaic modules. On the other hand, the lower voltage 
peak is formed by the unshaded modules in the photovoltaic string. Hence, the lower voltage peak 
is insusceptible to the shading applied to the shaded photovoltaic modules.  

To apprehend this theory, consider the photovoltaic string in Figure 14. The photovoltaic string 
consists of four photovoltaic modules where two photovoltaic modules are unshaded and the other 
two photovoltaic modules are shaded, as illustrated in Figure 14. The unshaded photovoltaic 
modules generate 7.3 A and the shaded photovoltaic modules generate 3.65 A. 

 
Figure 14. Photovoltaic string consisting of four photovoltaic modules. 

When the load is drawing more than 3.65 A, the shaded photovoltaic modules are bypassed by 
the bypass diodes. Hence, the current generated by the unshaded photovoltaic modules is directed 
to the load without flowing through the shaded photovoltaic modules, as illustrated in Figure 15. 
Therefore, the I-V characteristics of the photovoltaic string above 3.65 A are formed by the unshaded 

Figure 14. Photovoltaic string consisting of four photovoltaic modules.

When the load is drawing more than 3.65 A, the shaded photovoltaic modules are bypassed by
the bypass diodes. Hence, the current generated by the unshaded photovoltaic modules is directed
to the load without flowing through the shaded photovoltaic modules, as illustrated in Figure 15.
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Therefore, the I-V characteristics of the photovoltaic string above 3.65 A are formed by the unshaded
photovoltaic modules only, as illustrated in Figure 16. Hence, variation in the shading heaviness on
the shaded photovoltaic modules does not change the I-V characteristic at currents above 3.65 A.
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When the load is drawing less than 3.65 A, the shaded photovoltaic modules are not bypassed
by the bypass diodes. Hence, the current generated by the unshaded photovoltaic modules flow
through the shaded photovoltaic modules, as illustrated in Figure 17. Therefore, the I-V characteristics
of the photovoltaic string below 3.65 A are formed by the unshaded photovoltaic modules and
shaded photovoltaic modules, as illustrated in Figure 18. Hence, the I-V characteristic below 3.65 A is
susceptible to the shading heaviness on the shaded photovoltaic modules.
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When the I-V characteristics in Figure 18 are converted to P-V characteristics, the P-V characteristics
as illustrated in Figure 19 will be obtained. It shows that the higher voltage peak of the P-V characteristics
is actually formed by the I-V characteristics below 3.65 A, as indicated by the blue arrows in Figure 19.
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unshaded photovoltaic modules only, as concluded in Figure 20.
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Figure 20. Higher and lower voltage peak of the P-V characteristics.

The maximum power does not necessarily deliver at a higher voltage. For instance, for the 4
modules shaded setup in Figure 8a, the maximum power is delivered at a higher voltage when the
shaded modules irradiance is between 800 and 900 w/m2, as illustrated in Figure 21. On the other
hand, the maximum power is delivered at a lower voltage when the shaded modules irradiance is
below or equal to 700 w/m2, as illustrated in Figure 21. Similar situations are also observed in the 8
modules shaded, 12 modules shaded, and 16 modules shaded setups, as illustrated in Figures 9–11.
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Figure 21. Delivery voltages for maximum power (4 modules shaded setup).

Considering the 8 modules shaded setup in Figure 9, the maximum power is delivered at a lower
voltage when the shaded modules irradiance is below or equal to the critical point of 500 w/m2.
Considering the 16 modules shaded setup in Figure 11, the maximum power is delivered at a lower
voltage when the shaded modules irradiance is below or equal to the critical point of 100 w/m2.
Table 10 shows the critical point for the maximum power to deliver at a lower voltage. Equation (3)
defines the equation to determine the critical point which is derived from Table 10.

CriticalPoint ≤ −1000 × NumberO f ShadedModules
NumberO f TotalModules

+ 900 (3)
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Table 10. Critical points for the maximum power to deliver at a lower voltage.

Experiment Setup Shaded Modules Irradiance (w/m2)

4 Modules Shaded Less or equal to 700
8 Modules Shaded Less or equal to 500

12 Modules Shaded Less or equal to 300
16 Modules Shaded Less or equal to 100

To validate Equation (3), consider the photovoltaic string in Figure 22. The photovoltaic string
consists of two photovoltaic modules where one photovoltaic module is unshaded and fixed at 1000
w/m2. Another photovoltaic module is shaded and is exposed to the irradiance of 100 to 900 w/m2.
Figures 23 and 24 show the simulation results of the photovoltaic string in Figure 22. The simulation
results show that the maximum power is delivered at a lower voltage when the shaded module
irradiance is below or equal to the critical point of 400 w/m2. The critical point obtained from the
simulation results resembles the critical point determined using Equation (3). Therefore, Equation (3)
derived from the experiment is validated for different sizes of photovoltaic string.

Energies 2018, 11, x 17 of 22 

 

Table 10. Critical points for the maximum power to deliver at a lower voltage. 

Experiment Setup Shaded Modules Irradiance (w/m2) 
4 Modules Shaded Less or equal to 700 
8 Modules Shaded Less or equal to 500 
12 Modules Shaded Less or equal to 300 
16 Modules Shaded Less or equal to 100 

To validate Equation (3), consider the photovoltaic string in Figure 22. The photovoltaic string 
consists of two photovoltaic modules where one photovoltaic module is unshaded and fixed at 1000 
w/m2. Another photovoltaic module is shaded and is exposed to the irradiance of 100 to 900 w/m2. 
Figures 23 and 24 show the simulation results of the photovoltaic string in Figure 22. The simulation 
results show that the maximum power is delivered at a lower voltage when the shaded module 
irradiance is below or equal to the critical point of 400 w/m2. The critical point obtained from the 
simulation results resembles the critical point determined using Equation (3). Therefore, Equation (3) 
derived from the experiment is validated for different sizes of photovoltaic string. 

 
Figure 22. Photovoltaic string consisting of two photovoltaic modules. 

 

Figure 23. Simulated P-V characteristics of photovoltaic string in Figure 22—shaded module 
irradiance is between 500 and 900 w/m2. 

Figure 22. Photovoltaic string consisting of two photovoltaic modules.

Energies 2018, 11, x 17 of 22 

 

Table 10. Critical points for the maximum power to deliver at a lower voltage. 

Experiment Setup Shaded Modules Irradiance (w/m2) 
4 Modules Shaded Less or equal to 700 
8 Modules Shaded Less or equal to 500 
12 Modules Shaded Less or equal to 300 
16 Modules Shaded Less or equal to 100 

To validate Equation (3), consider the photovoltaic string in Figure 22. The photovoltaic string 
consists of two photovoltaic modules where one photovoltaic module is unshaded and fixed at 1000 
w/m2. Another photovoltaic module is shaded and is exposed to the irradiance of 100 to 900 w/m2. 
Figures 23 and 24 show the simulation results of the photovoltaic string in Figure 22. The simulation 
results show that the maximum power is delivered at a lower voltage when the shaded module 
irradiance is below or equal to the critical point of 400 w/m2. The critical point obtained from the 
simulation results resembles the critical point determined using Equation (3). Therefore, Equation (3) 
derived from the experiment is validated for different sizes of photovoltaic string. 

 
Figure 22. Photovoltaic string consisting of two photovoltaic modules. 

 

Figure 23. Simulated P-V characteristics of photovoltaic string in Figure 22—shaded module 
irradiance is between 500 and 900 w/m2. Figure 23. Simulated P-V characteristics of photovoltaic string in Figure 22—shaded module irradiance

is between 500 and 900 w/m2.



Energies 2018, 11, 1860 18 of 22

Energies 2018, 11, x 18 of 22 

 

 

Figure 24. Simulated P-V characteristics of photovoltaic string in Figure 22—shaded module 
irradiance is between 0 and 400 w/m2. 

Hence, Equation (3) is applicable to photovoltaic string with a small number of photovoltaic 
modules (two photovoltaic modules) and photovoltaic string with a big number of photovoltaic 
modules (20 photovoltaic modules). It shows that the critical point of large photovoltaic string and 
small photovoltaic string is not different in nature as they can both be determined using the same 
equation (Equation (3)). Therefore, Equation (3) should be applicable to any size of photovoltaic 
string. It should be applicable to the existing photovoltaic plants that consist of a huge number of 
photovoltaic modules because a megawatts scale photovoltaic plant consists of parallel connected 
photovoltaic strings. Equation (3) should also be suitable to determine the critical point of every 
photovoltaic string in the megawatts scale photovoltaic plant.  

Consider the 4 modules shaded setup in Figure 13, where the maximum power drops 
significantly from 2346.7 watts to 1924 watts as the shaded modules irradiance drops from 1000 to 
700 w/m2. This is an 18.65% drop in the maximum power, which is an approximately 6.22% drop for 
every 100 w/m2 drop in the shaded module irradiance. However, the maximum power rarely drops 
when the shaded modules irradiance is below or equal to 700 w/m2. When the shaded modules 
irradiance drops from 700 to 0 w/m2, the maximum power drops from 1924 watts to 1890.4 watts, 
which is only a 1.7% drop in the maximum power. It is an approximately 0.24% drop for every 100 
w/m2 drop in the shaded module irradiance. These results show that the maximum power is 
susceptible to the shading on the shaded modules when the shaded modules irradiance is above the 
critical point determined by Equation (3). The maximum power becomes insusceptible to the shading 
on the shaded modules when the shaded modules irradiance is below or equal to the critical point 
determined by Equation (3).  

Similar situations are observed in the 8 modules shaded, 12 modules shaded, and 16 modules 
shaded setups. For instance, for the 16 modules shaded setup in Figure 13, the maximum power 
drops significantly from 2216 watts to 254.56 watts as the shaded modules irradiance drops from 1000 
to 100 w/m2. This is equivalent to an approximately 11.1% drop in the maximum power for every 100 
w/m2 drop in the shaded module irradiance. However, the maximum power rarely drops when the 
shaded modules irradiance is less or equal to 100 w/m2, which is the critical point determined by 
Equation (3). When the shaded modules irradiance drops from 100 to 0 w/m2, the maximum power 
drops from 254.56 watts to 234.97 watts, which is only a 7.7% drop in the maximum power for every 
100 w/m2 drop in the shaded module irradiance. Therefore, the shading on the shaded modules does 
not necessarily cause a high impact to the maximum power of the photovoltaic string. It depends on 
the number of shaded modules as well as the shading heaviness on the shaded modules. The 
maximum power is very susceptible to the shading on the shaded modules when the shaded modules 
irradiance is above the critical point determined by Equation (3). When the shaded modules 
irradiance is below or equal to the critical point, the maximum power of the photovoltaic string 

Figure 24. Simulated P-V characteristics of photovoltaic string in Figure 22—shaded module irradiance
is between 0 and 400 w/m2.

Hence, Equation (3) is applicable to photovoltaic string with a small number of photovoltaic
modules (two photovoltaic modules) and photovoltaic string with a big number of photovoltaic
modules (20 photovoltaic modules). It shows that the critical point of large photovoltaic string and
small photovoltaic string is not different in nature as they can both be determined using the same
equation (Equation (3)). Therefore, Equation (3) should be applicable to any size of photovoltaic string.
It should be applicable to the existing photovoltaic plants that consist of a huge number of photovoltaic
modules because a megawatts scale photovoltaic plant consists of parallel connected photovoltaic
strings. Equation (3) should also be suitable to determine the critical point of every photovoltaic string
in the megawatts scale photovoltaic plant.

Consider the 4 modules shaded setup in Figure 13, where the maximum power drops significantly
from 2346.7 watts to 1924 watts as the shaded modules irradiance drops from 1000 to 700 w/m2. This is
an 18.65% drop in the maximum power, which is an approximately 6.22% drop for every 100 w/m2

drop in the shaded module irradiance. However, the maximum power rarely drops when the shaded
modules irradiance is below or equal to 700 w/m2. When the shaded modules irradiance drops from
700 to 0 w/m2, the maximum power drops from 1924 watts to 1890.4 watts, which is only a 1.7% drop
in the maximum power. It is an approximately 0.24% drop for every 100 w/m2 drop in the shaded
module irradiance. These results show that the maximum power is susceptible to the shading on
the shaded modules when the shaded modules irradiance is above the critical point determined by
Equation (3). The maximum power becomes insusceptible to the shading on the shaded modules when
the shaded modules irradiance is below or equal to the critical point determined by Equation (3).

Similar situations are observed in the 8 modules shaded, 12 modules shaded, and 16 modules
shaded setups. For instance, for the 16 modules shaded setup in Figure 13, the maximum power
drops significantly from 2216 watts to 254.56 watts as the shaded modules irradiance drops from 1000
to 100 w/m2. This is equivalent to an approximately 11.1% drop in the maximum power for every
100 w/m2 drop in the shaded module irradiance. However, the maximum power rarely drops when
the shaded modules irradiance is less or equal to 100 w/m2, which is the critical point determined
by Equation (3). When the shaded modules irradiance drops from 100 to 0 w/m2, the maximum
power drops from 254.56 watts to 234.97 watts, which is only a 7.7% drop in the maximum power
for every 100 w/m2 drop in the shaded module irradiance. Therefore, the shading on the shaded
modules does not necessarily cause a high impact to the maximum power of the photovoltaic string.
It depends on the number of shaded modules as well as the shading heaviness on the shaded modules.
The maximum power is very susceptible to the shading on the shaded modules when the shaded
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modules irradiance is above the critical point determined by Equation (3). When the shaded modules
irradiance is below or equal to the critical point, the maximum power of the photovoltaic string become
insusceptible to the shading on the shaded modules. These findings address the condition when the
photovoltaic string is susceptible to shading.

The experimental results are incomparable to those of other researchers presented in [26–39].
This is because the photovoltaic configuration, photovoltaic string size, and partial shading conditions
applied in their experiments are different from this research. A similar issue is also restricting other
researchers to compare their results with different research. However, the results in this research
pretty much resemble the experimental results proposed by S. Silvestre et al. [39], which suggest that
the maximum power of a photovoltaic system becomes insusceptible to the shading on the shaded
modules when the shaded modules irradiance reaches a certain critical point.

The critical point calculation can contribute to the dynamical photovoltaic system reconfiguration
mechanism. The dynamical photovoltaic system reconfiguration mechanism is used to reconfigure
the photovoltaic modules connection in the photovoltaic system on a real time basis to tackle partial
shading [40,41]. If the critical point is known, some unnecessary reconfiguration work can be reduced
as the photovoltaic system become insusceptible to shading heaviness when the critical point is met.
Elimination of unnecessary reconfiguration could reduce the stress of the charge controller of the
energy storage. The proposed critical point calculation can contribute to the development of IEEE
and IEC photovoltaic system standards, therefore leading to policy implementation wherever the
standards are adopted. This research also provide opportunities to achieve the clean energy sustainable
development goals (SDGs). Photovoltaic system research presented in this research can contribute to
the improvement of renewable energy technology which can aid achievement of the Affordable and
Clean Energy and Climate Action goal of the SDGs.

5. Conclusions

Photovoltaic systems are highly susceptible to partial shading. The maximum power of a
photovoltaic system can reduce drastically when partial shading takes place. The susceptibility
of partial shading can vary based on the partial shading patterns, shading heaviness, and the
configuration employed in connecting all the photovoltaic modules in the photovoltaic system. Under a
fixed configuration and partial shading pattern, the maximum power of a partially shaded photovoltaic
system is tacitly assumed to decrease at a constant rate as the shading heaviness increases. This tacit
assumption is proposed based on the functionality of a photovoltaic system that relies on solar
irradiance to generate electrical power. However, some researchers discovered that the maximum
power under a fixed configuration and partial shading pattern can be highly insusceptible to shading
heaviness when a certain critical point is met. Furthermore, the critical point can vary based on
the number of shaded modules in a photovoltaic system. The novelty of this research includes the
formulation of the equation to determine the critical point that is applicable to different photovoltaic
system sizes and numbers of shaded modules in a photovoltaic system. Besides that, the equation has
been verified with different sized photovoltaic systems as well. When 20% of photovoltaic modules in
the photovoltaic system are shaded under an identical partial shading pattern, the maximum power
drops by approximately 6.22% for every 100 w/m2 drop in the shaded module irradiance as the shaded
modules irradiance lies between 1000 and 700 w/m2. However, when the shaded modules irradiance
lies between 700 and 0 w/m2, the maximum power drops only by 0.24% for every 100 w/m2 drop
in the shaded module irradiance. This means that the photovoltaic system becomes insusceptible to
shading heaviness as the shaded modules irradiance reaches a critical point of 700 w/m2. Some cases
applied to 40%, 60%, and 80% of photovoltaic modules are shaded. The critical points of 40%, 60%,
and 80% photovoltaic modules shaded are 500, 300, and 100 w/m2, respectively. The critical point
varies as the number of shaded modules changes. However, it is determinable using the equation
formulated in this research. The proposed critical point calculation can contribute to the dynamical
photovoltaic system reconfiguration mechanism. If the critical point is known, some unnecessary
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reconfiguration switching can be reduced as the photovoltaic system become insusceptible to shading
heaviness when the critical point is met.
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