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Abstract: To improve the accuracy of the day-ahead load forecasting predictions of a single model, a
novel modular parallel forecasting model with feature selection was proposed. First, load features
were extracted from a historic load with a horizon from the previous 24 h to the previous 168 h
considering the calendar feature. Second, a feature selection combined with a predictor process
was carried out to select the optimal feature for building a reliable predictor with respect to each
hour. The final modular model consisted of 24 predictors with a respective optimal feature subset
for day-ahead load forecasting. New England and Singapore load data were used to evaluate the
effectiveness of the proposed method. The results indicated that the accuracy of the proposed
modular model was higher than that of the traditional method. Furthermore, conducting a feature
selection step when building a predictor improved the accuracy of load forecasting.

Keywords: day-ahead load forecasting; modular predictor; feature selection

1. Introduction

The main idea of short-term load forecasting (STLF) is to predict future loads with horizons of a
few hours to several days. Accurate STLF predictions play a vital role in electrical department load
dispatch, unit commitment, and electricity market trading [1]. With the permeation of renewable
resources in grids and the technological innovation of electric vehicles, load components become
more complex and make STLF difficult; therefore, strict requirements of stability and accuracy are
needed [2–6].

STLF is an old but worthy theme for research. General forecasting methods can be divided
into two branches: the statistical method and the artificial intelligence method. Statistical methods
such as regression analysis, exponential smoothing, Kalman filter, and autoregressive integrated
moving average (ARIMA) are easy to apply but modeling is difficult for complex loads [7–9]. Artificial
intelligence methods show better performance than statistical methods in load forecasting and include
fuzzy logic, the artificial neural network (ANN), the support vector machine (SVM), Gaussian process
regression (GPR), and random forest (RF) [10–17]. The relationship of input and output is confirmed
by a list of rules by fuzzy logic. However, the prior knowledge required to select the parameters
in the membership function and the rules makes the modeling process complex [18]. The artificial
neural network method is applied to the STLF of power systems owing to its self-learning ability and
robustness to data noise. However, shortcomings such as the difficulty in determining initial network
parameters and over-fitting still exist [19]. By adopting a structural risk minimization principle,
the complexity and the learning ability of an SVM can be balanced. With low-dimension conditions
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and few samples, the SVM can maintain its generalization ability. Compared to the artificial neural
network, the SVM has many advantages. The parameters of the SVM should be determined through
a computational optimization by algorithm such as the genetic algorithm or the particle swarm
optimization algorithm [20,21]. GPR is a kernel-function-based algorithm whose transcendental
function is established in the form of probability distribution, and the posterior function can be
acquired by Bayesian logic. The parameter of kernel function in GPR is obtained automatically in the
process of training [22]. RF is a type of integrated machine-learning algorithm based on a decision tree.
The main advantages of RF are immunity to noise and insensitivity to its parameters [23].

In addition to the forecasting method, input feature selection is a vital factor that influences the
accuracy and efficiency of load forecasting. A model using a few features has difficulty analyzing the
effect of external conditions on the load. However, as the complexity of a model increases, the accuracy
and efficiency will be influenced. Feature selection is a process of selecting a subset of variables from
an original high-dimensionality variable set that retains the most efficient variables while reducing
the effects of the irrelevant variables [24]. Feature selection methods can be classified as wrapper,
filter, and embedded [25]. In the wrapper method, the performance of a predictor is chosen as the
criterion for feature selection. An exhaustive search is performed to identify the optimal feature subset
from numerous combinations of features at which the predictor performs best. However, the wrapper
method needs to evaluate 2N subsets which leads to an NP-hard problem with too many features [26].
Therefore, evolutionary algorithms such as the memetic algorithm [27], the genetic algorithm [28],
and the particle swarm optimization algorithm [29] can reduce the complexity of computation. Filter
methods, such as mutual information (MI) and RreliefF, are ranking methods that evaluate features by
analyzing the relationship between the inputs and outputs and a feature score or weight is given to
each feature for ranking. To acquire an optimal feature subset, the accuracy of the predictor is used
as the criterion [30]. Compared to wrapper methods, filter methods do not rely on other learning
algorithms and the computational cost is light [31–33]. Embedded methods, such as the classification
and regression tree (CART) and RF, which combine feature selection with a learning algorithm, analyze
and compute the importance value of features in a training process [25]. Experiments need to be
performed according to a specific forecasting case that considers the advantages and disadvantages
of different kinds of feature selection methods, the size of training sets, and the performance of a
predictor to determine the most-accurate forecasting method.

Although the performance of a predictor can be provided by feature selection, it should be noted
that the load time series presents a day-cycle characteristic, which means the load characteristics at the
same time on different days are similar [34]. In addition, the load at different hours of a day is affected
by consumption behavior and leads to significantly different feature responses. A single predictor
with a feature selection for forecasting all future load periods may not reach the load requirement
of different hours, and the accuracy of the total forecast result will decrease. Therefore, a modular
model that consists of several single predictors used for forecasting the load of different hours is
needed. The relation of the load at different hours to be forecast and a feature could be analyzed by a
modular predictor with a feature selection for a specific hour of load, and thus the accuracy can be
improved [35]. In addition, in electric power dispatching, for different electric power departments,
the demand of the time of submission of the STLF result is different. Therefore, when constructing a
candidate feature set for STLF, the time factor should be considered.

Considering the construction of a feature set, feature selection, and modeling objects, a novel
modular parallel forecasting model with feature selection for day-ahead load forecasting was proposed.
First, to meet the requirement of the dispatch department and electricity market, the load time
series which records every hour according to different forecasting moments was reconstructed to a
different load sub-time series. Second, the candidate feature set included 173 features extracted from
historic load and calendar. Then, five feature selection methods—MI, conditional mutual information
(CMI), RreliefF, CART, and RF—were used to analyze the importance between each feature and
different prediction targets and to rank the features in descending order. Third, combined with various
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predictors, the sequential forward-selection algorithm and a decision criterion based on the mean
absolute percentage error (MAPE) were utilized to obtain optimal feature subsets corresponding
to different prediction targets. Finally, the optimal modular predictor including several optimal
sub-predictors with optimal feature subsets for different forecasting periods was built. The optimal
combination method was determined by comparing the forecast results. The proposed method was
tested through a day-ahead load forecasting experiment using actual load data from New England
and Singapore.

2. Feature Selection

The input feature (variable), as one of the key factors in a predictor build, has a significant
influence on the accuracy of the predictor in day-ahead load forecasting. In this study, the filter method
and embedded method were adopted for feature selection before building the predictor.

2.1. Filter Method of Feature Selection

The filter method is a feature ranking method that computes a feature’s numerical value to
evaluate its importance. Therefore, the estimation of a feature is important to the feature selection
result. MI, CMI, and RreliefF methods were used as filters in this study.

2.1.1. Mutual Information

The Mutual Information (MI) method measures the common information between two random
variables. For two random variables X and Y, the MI between X and Y can be estimated as:

I(X, Y) = ∑
X,Y

P(x, y) log
P(x, y)

P(x)P(y)
(1)

where P(x) and P(y) are the marginal density functions corresponding to X and Y, respectively. P(x,y)
is the joint probability density function. In load forecasting, the feature is defined as X, the target
variable is defined as Y, and I(X,Y) represents their strength of relevance. The larger I(X,Y) is, the more
dependent X is. If I(X,Y) is zero, X and Y are independent. The MI method can measure the relevance
between a feature and a target variable effectively; however, the redundancy is analyzed differently.

2.1.2. Conditional Mutual Information

The Conditional Mutual Information (CMI) method measures the relevance of two variables
when the variable Z is known. In the feature selection of load forecasting, let us suppose the selected
feature set is S and the CMI between feature Xi and target Y is defined as:

I(Y; Xi|S) = I(Y; S|Xi)− I(Y; S) (2)

where I(Y;Xi|S) represents the new information that Xi supplies to S. The larger I(Y;Xi|S) is, the more
information Xi can supply, and the less is the redundancy to S. Compared to the MI method,
the redundancy among features can be reduced by CMI.

2.1.3. RreliefF

RreliefF is the extended version of relief for regression [36]. By evaluating the feature weight, the
feature quality is measured. Relief works by randomly selecting an instance and searching the nearest
neighbor from the same class and from a different class. The weight W[Xi] of feature Xi estimated by
relief is an approximation of the difference of probabilities:

W[Xi] = P(di f f , value o f Xi|nearest inst. f rom di f f . class)
− P(di f f , value o f Xi|nearest inst. f rom same. class)

(3)
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For RreliefF, the probability of two instances belonging to different classes can be evaluated
by their relative distances for classification. However, for STLF, the predicted value is continuous;
therefore, Equation (3) should be reformulated. By using Bayes’ theorem, W[Xi] can be obtained as:

W[Xi] =
Pdi f f C|di f f Xi

Pdi f f Xi

Pdi f f C
−

(1− Pdi f f C|di f f Xi
)Pdi f fXi

1− Pdi f f C
(4)

2.2. Embedded Method for Feature Selection

In the embedded method, feature selection is performed during the training process where
the contribution of the feature combination is efficiently evaluated. The embedded method can be
directly applied to STLF and can collaborate with other feature selection methods according to their
estimated importance.

2.2.1. Classification and Regression Tree

The Classification and Regression Tree (CART) method uses a binary recursive partitioning
algorithm [37]. By splitting the current samples into two sub-samples, a father node generates two
child nodes. The final model of CART is a simple binary tree.

The generation of the CART can be divided into two steps:
Step one: first, the root node is split. A best feature Xbset chosen from the feature set serves as

the criterion for node splitting. To select the best feature, the minimum variance of child nodes is the
objective function. The variance of the child node of Xi is defined as:

var(q) = ∑
Xi∈q

(yi − yq)
2 (5)

where yq is the average of observation values yi at node q. The importance of feature Xi according to
the variance is defined as:

VC(Xi) =
1

∑
Xi∈q

(yi − yq)
2 (6)

Step two: for each child node, repeat Step one until the CART grows completely. The predictive
model can be expressed as t(x, T), where T = (xi, yi), i = 1,2, . . . ,n and x ∈ R is the training set. For
STLF, the forecasting value of load ŷ is obtained when inputting the new x̂.

ŷ = t(x̂, T) (7)

2.2.2. Random Forest

Random Forest (RF) is a machine-learning algorithm that uses a combination of CART with
a bootstrap sample for classification and regression [38]. For a training set T with n samples, the
bootstrap sample means randomly selecting n samples from T replacements. The probability that
each sample selected is 1/n, means one sample may appear several times. After a complete bootstrap
sample, the samples that were not sampled form the out-of-bag (OOB) dataset. Different from CART,
the feature for node splitting in RF is selected from m features which are chosen from the original
feature set. The basis of selecting the best feature for node splitting is Equation (5). The predictive
output of RF is obtained by averaging the results of the trees:

ŷ =
1

Nt

Nt

∑
i=1

t(x̂, Ti) (8)

where Nt is the number of trees.
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In addition, the OOB error and the importance of each feature are computed in the process of
modeling. Each tree has an OOB dataset, and the OOB error is evaluated by predicting the OOB
dataset using the tree model corresponding to the OOB dataset. The OOB error is defined as:

e =
1

Nt

Nt

∑
i=1

(yi − ŷi)
2 (9)

A feature’s importance is estimated by permutating the feature and averaging the difference of
OOB errors before and after the permutation of all trees. For instance, for the ith tree whose OOB data
is OOBi and OOB error is ei, after permutation, the new OOB data will be OOB′i and the OOB error
will be e′i . The feature’s importance in this tree is computed as:

VIi = e′i − ei (10)

3. The Short-Term Load Forecasting (STLF) Predictor

Selecting an appropriate predictor is key to improving the accuracy of STLF. Five state-of-the-art
predictors were applied in this study: support vector regression (SVR), back-propagation neural
network (BPNN), CART, GPR, and RF. The SVR, BPNN, and GPR are introduced briefly in this section.
The detailed mathematical theories of these algorithms are shown in the references [39–41].

3.1. Support Vector Regression

By using the non-sensitive loss function, an Support Vector Regression (SVM), which is used only
for classification, is extended for regression to be applied for load forecasting in power systems and is
called support vector regression (SVR).

Given a training set T, the model for the load that decreases the difference between the predictive
value f (x) and the true load y as much as possible is expected to be:

f (x) = ωTx + b (11)

In SVR, the maximum difference that can be tolerated between f (x) and y is ε. The mathematical
model can be expressed as:

max
α,α∗

[
− 1

2

n
∑

i=1

n
∑

j=1
(αi − α∗i )(αj − α∗j )K(xi, xj)−

n
∑

j=1
(αi + α∗i )ε +

n
∑

i=1
(αi − α∗i )yi

]

s.t.


n
∑

i=1
(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C

(12)

where C is the regularization parameter, K(xi, xj) = ϕ(xi)ϕ(xj) is the kernel function, and αi, α∗i are
Lagrange factors.

The radial basis function selected in this study is expressed as:

K(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
(13)

where σ2 is the kernel width.
The SVR model is obtained by solving Equation (12):

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (14)

where b is the bias value.
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3.2. Back-Propagation Neural Network

The Back-Propagation Neural Network (BPNN) is a type of artificial neural network consisting
of an input layer, a hidden layer, and an outer layer trained by a back-propagation algorithm with
the mean squared error (MSE) as the objective function. The main idea of the BPNN is to deliver the
output-layer error from back to front by which the error of the hidden layer is computed. The learning
process of BPNN is divided into two steps:

Step 1: The output of each neural unit in the input and hidden layers is estimated.
Step 2: By using the output error, the error of each neural unit which is used for updating the

former layer weight is computed.
The objective function of the gradient minimization is based on:

e f =
1
2∑

i
(yi − ŷi)

2 (15)

where yi is the actual value of neural unit i and ŷi is the predictive value. To compute the minimum
value of e f , a modification value is needed to correct the weight. The modification value is defined as:

∆wi j(t) = −η
∂e

∂wij
+ α∆wij(t− 1) = −η

∂e
∂neti

∂neti
∂wij

+ α∆wij(t− 1) = −ηδiOj + α∆wij(t− 1) (16)

neti = ∑
j

wijOj (17)

Oi =
1

1 + e−neti
(18)

where η is the learning rate, neti is the input of neuron i, Oi is the output of neuron i, and α is the
momentum factor.

The modified weight is:
wij(t + 1) = wij(t) + ∆wij (19)

The final output ŷi of neuron i can be estimated by the iteration of weight wij when meeting
precision requirements.

3.3. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a random process in which the random variables obey the
Gaussian distribution and is used to establish the input and output maps. For STLF, the load data
collected is polluted by noise. Assuming that the noise follows a normal distribution ε ∼ N

(
0, σ2

n
)
,

then the joint prior distribution of observation y and the predictive value f ∗ are defined as:[
y
f ∗

]
∼ N

(
0,

[
K(X, X) + σ2

nIn K(X, x∗)
K(x∗, X) k(x∗, x∗)

])
(20)

where n is the number of training samples, K(X, X) is the covariance matrix, and In is the unit matrix.
The posterior distribution of f ∗ is defined as:

f ∗|X, y, x∗ ∼ N
[

f
∗
, cov( f ∗)

]
(21)

where f
∗

is the mean value of f ∗ and cov( f ∗) is the variance of f ∗.
Then, f

∗
and cov( f ∗) can be computed as:{

f
∗
= K(x, X)

[
K(X, X) + σ2

nIn
]−1y

cov( f ∗) = k(x∗, x∗)− K(x∗, X)×
[
K(X, X) + σ2

nIn
]−1K(X, x∗)

(22)
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The covariance function of GPR is the squared exponential function:

k(x, x′) = σ2
f exp

[
−1

2
(x− x′)M−1(x− x′)

]
(23)

where θ =
{

M, σ2
f , σ2

n

}
is a hyper-parameter that can be solved by the maximum likelihood

method [41].

4. Data Analysis

4.1. Load Analysis

Affected by different factors, load sequence appears as a type of complicated non-linear time
series. To construct a reasonable original feature set and achieve better forecasting for a region, the
load characteristics and other factors should be analyzed.

Figure 1 shows the power load of New England in different time lengths. By observing Figure 1a,b,
the load patterns from 2011 to 2013 are similar. Influenced by climate, load patterns differ by season.
In Figure 1c, the load curves of two continuous weeks in four seasons are presented (the first day is
Monday). It is easy to see that the weekday and weekend load demands differ, and the load demand
presented a cycling mode with a period of seven days. The Tuesday load curves of the different
seasons shown in Figure 1d shows that the Tuesday load pattern of different weeks is similar. The load
increased rapidly from 6:00 am to 11:00 am, which corresponds to the beginning of work, and reached
the first peak load. The second peak load occurred from 19:00 pm to 20:00 pm.
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Figure 1. The power load of New England.

As analyzed above, the load characteristics can be summarized as
(1) The same-day load patterns are similar and represent the week-cycle of the load.
(2) The weekday and weekend load patterns were similar respectively and represent the day-cycle

of the load.

4.2. Candidate Feature Set

An appropriate feature set plays a significant role in modeling an uncomplicated but outstanding
predictor. However, a candidate feature set that contains sufficient information must be found to
ensure that effective features can be selected by the feature selection method. The two main feature
types are the endogenous predictor (load feature) and the exogenous predictor (calendar feature).

The time interval before the predictive moment before submission of the dispatch department’s
forecasting result should be considered when extracting features. To ensure the universality of the
original feature set, we used the interval time p = 24. A feature set consisting of 145 internal historic
load features (from lag 24 to lag 168) from a one-week data window was chosen as a part of the
candidate feature set. The maximum, minimum, and mean loads were also included. Except for the
load feature, calendar features such as hour of day, day type, working day, and non-working day were
also considered. The candidate feature set with 173 features was formed as shown in Table 1.
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Table 1. The feature information.

Feature Type Feature Name Feature Number

Endogenous predictor
FL(t−i), i = 24, 25, . . . , 168 145

FL(max,d−k), FL(min,d−k), FL(mean,d−k), k = 2, 3, 4, 5, 6, 7 18

Exogenous predictor
FW

D , W = 1, 2, 3, 4, 5, 6, 7 7

FW 2

FHour 1

Feature explanation:
Endogenous predictor:
FL(max,d−k) is the maximum power load k days before, k = 2, 3, 4, 5, 6, 7.
FL(min,d−k) is the minimum power load k days before, k = 2, 3, 4, 5, 6, 7.
FL(mean,d−k) is the average power load k days before, k = 2, 3, 4, 5, 6, 7.
FL(t−i) is the historic power load i hours before the forecasting hour t, and i = 24, 25, 26, . . . , 168.
Exogenous predictor:
FW

D is the day of week, which is signed by 0 or 1 (W = 1, 2, 3, 4, 5, 6, 7 represents Monday to
Sunday).

FW is work day or non-work day (0 is a work day and 1 is a non-work day).
FHour is the moment of hour (1 to 24).

5. Experimental Setup

5.1. Proposed STLF Process with Feature Selection

Figure 2 provides an overview of the proposed method which covers the construction of the
feature set, the dataset separation, and the feature selection for the load with respect to the different
hours and the modeling for different hours. Figure 2a shows the one-day structure of a sample.
The inputs include 173 features, and the output is the predicted load.

The diagram of the proposed method is displayed in Figure 2b. The training set was separated
into 24 training subsets corresponding to each hour. The features in each training subset were ranked
in descending order according to their feature scores as computed by the feature selection method.
Then, the optimal feature subset was selected using the predictor and the MAPE-based criteria. Finally,
the modular predictor was constructed based on 24 predictors with the obtained optimal subsets.

The process of selecting the optimal feature subset in modeling is shown in Figure 2c. According
to the ranked feature order, the predictor was used to test the feature subset consisting of the top i
features, and the criteria based on the MAPE was used to select the optimal feature subset.
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5.2. Dataset Split

The data used in this study were from New England [42] and Singapore [43]. The New England
data were recorded every hour from 2011 to 2013 for a total of 26,304 data points. The Singapore data
were recorded every half hour from 2014 to 2015 for a total number of 35,040 data points. To apply the
proposed method, the hourly load of Singapore was extracted to form a new load time series. The data
used for training and testing the predictor consisted of the feature set (173 features) and the predictive
object (the load corresponding to different hours) as shown in Figure 2.

Each dataset was split into three parts: a training set (14,616 New England samples, 11,712
Singapore samples), a validation set (2928 New England samples, 2094 Singapore samples), and a test
set (8760 New England samples, 2904 Singapore samples). The training and the validation sets were
used to build the predictor and to select an optimal feature subset. The test set was used to examine
the performance of the feature subset and the predictor. Detailed information about the datasets is
shown in Table 2.

Table 2. Experimental data description.

Data Set
Detail Information of Experimental Data (New England) Detail Information of Experimental

Data (Singapore)

2011 2012 2013 2014 2015

Training set
Jan., Feb., Mar., Apr.,
May, Jun., Jul., Aug.,
Sept., Oct., Nov., Dec.

Jan., Feb., Apr.,
Jun., Jul., Aug.,

Oct., Dec.
-

Jan., Feb., Mar., Apr.,
May, Jun., Jul., Aug.,
Sept., Oct., Nov., Dec.

Jan., Apr., Aug.,
Dec.

Validation set - Mar., May,
Sept., Nov. - - Feb., May, Jul.,

Oct.

Test set - -
Jan., Feb., Mar., Apr.,
May, Jun., Jul., Aug.,
Sept., Oct., Nov., Dec.

- Mar., Jun.,
Sept., Nov.
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5.3. Evaluation Criterion

To evaluate the performance of the proposed method, three criteria, the MAPE, the mean absolute
error (MAE), and the root mean square error (RMSE) were used as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (24)

MAE =
1
n
|yi − ŷi| (25)

RMSE =

√
1
n
(yi − ŷi)

2 (26)

where yi is the actual load, ŷi is the predictive load, and n is the number of predictive loads.

6. Results

The software used were MATLAB 2016b (Version 9.1.0.441655, Mathworks Inc., Natick, MA, USA)
and Rx64 3.3.2 (Version 3.3.2, GUN Project, developed at Bell Laboratories). It is noted that the CART
algorithm in the rpart package in R identifies part of the features whose total importance value is 100.
The parameter of each predictor was set by:

BPNN: the number of neurons in the hidden layer was Nneu = 2×Nfeature + 1, iteration T = 1000 [44].
SVR: the regularization parameter C = 1, the non-sensitive loss function ε = 0.1, the kernel width

δ2 = 2 [15].
RF: m = Nfeature/3 and NTree = 500 [16,23].
CART: no pruning parameter was set because the tree grows completely.
GPR: the parameter of GPR was tuned by learning the training data.

6.1. Load Forecasting for New England

6.1.1. Feature Selection for Different-Hour Loads

Feature Score for Feature Analysis

Feature selection methods rate the importance of a feature by assigning a numerical value to
represent the relation between the feature and the target. For example, the value of a feature computed
by MI is called an MI value, while that computed by RF and CART is called its permutation importance.
The feature score is used for easy description. Parts of normalized feature score curves computed by
different feature selection methods are shown in Figure 3. The feature score curves of typical hours
(hour 5, hour 6, hour 10, and hour 11 when the valley and peak loads appear) were chosen for analysis.
The feature score curves that used the same feature score calculation method were different at various
hours. For example, the MI curves were much different for hour 5, hour 6, hour 10, and hour 11, and
the features with the highest scores were different from each other (marked by a red circle).

The feature score shows the importance between the feature and the target variable. When
selecting a feature subset, the feature with the highest score should be retained and one with the lowest
should be eliminated.

The top 10 features after ranking are shown in Table 3, where it is clear that the top 10 features for
the same hour were similar. For example, for hour 5, the same top 10 features were selected by the
various methods such as FL(t−24), FL(t−25), FL(t−26), and FL(t−27) and similar features such as FL(t−28),
FL(t−29), FL(t−30), and FL(t−31). However, there was an obvious difference in the features of hour 5 and
hour 6 which may have been caused by the different load characteristics shown in Figure 1d.
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Hour 5 
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FL(t−27), FL(t−28), FL(t−29), 

FL(min, d−2), FL(t−30), FL(mean, 

d−2), FL(t−44) 

FL(t−24), FL(t−25),  

FL(t−29), FL(t−28),  

FL(t−160), FL(t−26),  

FL(t−161), FL(t−162),  
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FL(t−24), FL(t−25),  
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WF , 
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WF , 
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FL(t−24), FL(t−25),  

FL(t−26), 
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Table 3. Top 10 features of ranked of feature by different feature selection corresponding to Figure 3.

MI CMI RreliefF RF CART

Hour 5

FL(t−24), FL(t−25),
FL(t−26), FL(t−27),
FL(t−28), FL(t−29),

FL(min, d−2), FL(t−30),
FL(mean, d−2), FL(t−44)

FL(t−24), FL(t−25),
FL(t−29), FL(t−28),
FL(t−160), FL(t−26),
FL(t−161), FL(t−162),

FL(t−27), FL(max, d−2)

FL(t−24), FL(t−25),
FL(t−26), FL(t−27),
FL(t−28), F0

W , F1
W ,

FL(t−28), FL(max, d−2),
FL(t−31)

FL(t−24), FL(t−25),
FL(t−163), FL(t−162),
FL(t−26), FL(t−164),
FL(t−30), FL(t−29),
FL(t−160), FL(t−27)

FL(t−24), FL(t−25),
FL(t−26), FL(t−27),
FL(t−28), FL(t−30),

FL(t−163), FL(t−160),
FL(t−161), FL(t−162)

Hour 6

FL(t−160), FL(t−162),
FL(t−161), FL(t−24),

FL(t−164),
FL(mean, d−7),

FL(t−163), FL(t−159),
FL(t−28), FL(t−29)

FL(t−161), FL(t−162),
FL(t−160), FL(t−163),
FL(t−159), FL(t−29),
FL(t−145), FL(t−158),
FL(t−141), FL(t−65)

F0
W , F1

W , F7
D,

FL(t−24), FL(t−25),
FL(t−26), F1

D,
FL(t−28), FL(t−27),

FL(t−29)

FL(t−24), FL(t−162),
FL(t−161), FL(t−160),
FL(t−30), FL(t−29),

FL(t−25), F0
W ,

FL(t−163),
FL(mean, d−7)

FL(mean, d−7),
FL(t−159),

FL(t−147), FL(t−146),
FL(t−148), FL(max, d−7),

FL(t−24), FL(t−25),
FL(t−30), FL(t−26)

Hour 10

FL(t−158), FL(t−159),
FL(t−157),

FL(mean, d−7),
FL(t−160), FL(t−156),
FL(t−24), FL(t−154),
FL(t−147), FL(t−153)

FL(t−161), FL(t−160),
FL(t−162), F0

W , F1
W ,

FL(t−159), FL(t−158),
FL(t−157), FL(t−154),
FL(t−155), FL(t−159)

F0
W , F1

W , F7
D, F6

D,
FL(t−26), FL(t−25),
FL(t−27), FL(t−24),

FL(t−28), F1
D

F1
WW , F0

W , FL(t−159),
FL(t−25), FL(t−160),
FL(t−24), FL(t−161),
FL(t−26), FL(t−28),

FL(t−27)

FL(t−159), FL(t−158),
FL(t−160), FL(t−157),

FL(mean, d−7),
FL(t−156),

FL(t−25), FL(t−27),
FL(t−28), FL(t−26)

Hour 11

FL(t−159), FL(t−157),
FL(t−158), FL(t−156),

FL(mean, d−7),
FL(t−153), FL(t−155),

FL(t−152),
FL(t−160), FL(t−154)

FL(t−160), FL(t−162),
FL(t−161), FL(t−159),
FL(t−158), F0

W , F1
W ,

FL(t−154), FL(t−156),
FL(t−155)

F0
W , F1

W ,
F7

D, FL(t−26),
FL(t−27), FL(t−25),
FL(t−33), FL(t−24),
FL(t−34), FL(t−28)

F1
W , F0

W , FL(t−26),
FL(t−27), FL(t−25),

FL(t−161), FL(t−157),
FL(t−160), FL(t−24),

FL(t−158)

FL(t−157), FL(t−156),
FL(t−155), FL(t−153),
FL(t−154), FL(t−158),
FL(t−26), FL(t−25),
FL(t−27), FL(t−28)

Therefore, a feature analysis for each hour is required to choose the best features for improving
the accuracy of STLF.

Optimal Feature Subset Selection Process

According to the trend of feature score curves of diverse feature selection methods, the first 36 to
50 features are chosen as the optimal features for modeling [30]. By analyzing the autocorrelation of
the lag variables, 50 features were selected for very-short-term load forecasting [41]. When selecting a
feature subset, most studies did not give a specific threshold for selecting the optimal feature subset.
In this study, the performance of features which ranked in descending order based on feature score
were estimated by the MAPE which was chosen as the threshold for selecting the optimal feature
subset by adding features one-by-one to the feature subset.
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Figure 4 shows the MAPE curves of different feature selection methods and predictor-based
feature selection processes. As shown in each subplot in Figure 4, the MAPE was reduced and reached
a minimum value with an increase in the number of features. For example, the MAPE of MI for hour 5
and the MAPEs of BPNN, CART, GPR, RF, and SVR when using the top feature were 4.587%, 4.743%,
4.618%, 5.196%, and 4.718%, respectively. When 20 features were used, the MAPEs were reduced to
3.901%, 4.555%, 4.008%, 4.160%, and 3.831%, respectively. The MAPEs of different predictors decreased
in different levels, indicating that the 20 features made a positive contribution to a better prediction
model build. A similar conclusion can be summarized by analyzing other curves. The dimension of
each optimal feature subset and its MAPE is marked by different colored circles corresponding to
different predictors.
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and forecasting methods for selecting feature subset.

The following conclusions can be drawn from Table 3 and Figure 4:
(1) The feature permutation estimated by different feature selection methods varies.
(2) The dimension of the optimal feature subset and its MAPE depends on the predictor-based

feature selection method.
(3) The optimal feature subset selected by the same predictor-based feature selection method for

the predictive target of different hours is different.
Table 4 shows the MAPE and the dimension of the optimal feature subset corresponding to using

MI as the feature selection method and RF as the prediction model. The Table shows that 1 to 6 am,
the dimension of optimal feature subset is less than at 7 to 19 pm, as the same as the forecasting error.
This is because people are less active at night and there are fewer factors affecting the load than during
the day.

The MAPE and the dimension of optimal feature subset corresponding to 1:00 were carried out
by different feature selection methods and forecasting methods shown in Table 5. The MAPEs are in
3% to 4% which means the performance of forecasters were similar after feature selection. By analysis
of the feature dimension, we could find there is huge difference between the number of the feature of
the optimal feature subset that selected by different feature selection methods, which caused by the
different evaluation criterions.
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Table 4. Optimal feature subset construction of different hours with mutual information (MI) + random
forest (RF) for New England.

Time MAPE FD Time MAPE FD

1 3.294 34 13 4.663 41
2 3.419 22 14 4.926 33
3 3.632 9 15 5.190 38
4 3.783 30 15 5.351 46
5 4.008 9 17 5.547 31
6 4.828 18 18 5.358 98
7 5.456 61 19 5.117 136
8 5.314 59 20 4.506 23
9 4.526 64 21 4.376 28

10 4.171 45 22 4.779 9
11 4.147 42 23 4.794 41
12 4.414 67 24 4.847 72

Remark: FD means the feature dimension.

Table 5. Optimal feature subset construction of 1:00 with different methods for New England.

Method
CART RF SVR ANN GPR

MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI 3.741 7 3.294 34 3.064 10 3.226 8 3.087 119
CMI 3.729 2 3.447 20 3.043 13 3.062 47 3.052 134

CART 3.729 3 3.422 11 3.068 11 3.270 9 3.245 8
RF 3.741 7 3.533 51 3.140 41 3.069 18 3.099 81

RreliefF 3.741 10 3.310 26 3.043 18 3.269 9 3.019 134

The details of the dimension of the optimal feature subset and its MAPE are shown in Appendix A
Table A1 to Table A2. Based on a longitudinal comparison, the dimension of optimal feature
subsets selected by different feature selection methods with same-hour predictors were different.
For instance, the horizon of the hour-2 MAPE calculated by various methods was from 3.107%
to 4.050%. The combination RreliefF + SVR method had the smallest MAPE and lower feature
subset dimension.

By the horizontal comparison, the dimension of optimal feature subsets selected by the same
feature selection method with the same-hour predictor varied. For example, the horizon of dimension
of the feature subset corresponding to different hours selected by the RreliefF + SVR method ranged
from 13 to 109 and the MAPE range was 3.043% to 4.558%. In addition, the number of features for a
night hour was less than the day hour, indicating that the day load components were more complex
and more difficult to forecast.

In conclusion, the characteristic of the load to predict for different hours varies; therefore, the load
needs a special feature set to build a predictor for special hours. The necessity of using one kind
of structure of modular time-scale prediction and feature selection for the load of different hours
was verified.

6.1.2. Forecasting Result of Method Combinations with Optimal Feature Subsets for New England
Load Data

To test the performance of diverse method combinations with the optimal feature subset, we used
a special week for our experiment.

The effect of temperature on the loads in summer and winter is large, and severe fluctuations
make accurate forecasting difficult. Therefore, two weeks were chosen randomly from the summer
and winter of 2013 for testing. The summer period was from 28 July to 3 August, and the winter
period was from 22 to 28 December. As shown in Figure 5, the predictive load of each combined
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method was fit with the true summer load. The average error of the various methods are shown in
Table 6. The top-three combined methods were CART + SVR, RreliefF + RF, and RreliefF + SVR, and
the MAPEs were 3.634%, 3.710%, and 4.204%, respectively. The predictive load of each combined
method in winter is shown in Figure 6, each of the predicted loads matched the actual load except for
Tuesday and Wednesday which corresponded to Christmas day and the day before. As is shown in
Table 7, the first three combined methods were RreliefF + SVR, CART + GPR, and CART + SVR, and
the MAPEs were 4.207%, 4.754%, and 4.770%, respectively.
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Table 6. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI
MAPE 5.027 4.376 4.223 5.705 4.286
MAE 849.194 732.926 709.848 962.649 720.361

RMSE 1191.968 871.897 988.378 1323.916 921.862

CMI
MAPE 4.672 4.423 4.299 4.457 4.880
MAE 784.550 719.337 699.910 566.609 809.988

RMSE 1016.001 931.743 942.492 715.524 1027.936

CART
MAPE 6.179 4.936 4.449 4.910 3.634
MAE 1034.009 833.712 752.653 823.088 599.284

RMSE 1282.515 1077.501 961.304 1142.275 753.655

RF
MAPE 4.936 4.231 4.381 4.291 4.262
MAE 833.712 711.268 815.776 711.438 705.789

RMSE 1077.501 855.686 915.139 969.156 916.701

RreliefF
MAPE 4.577 3.710 4.239 4.270 4.204
MAE 786.561 629.120 717.094 710.419 700.174

RMSE 1072.662 781.775 1045.609 922.320 910.103
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Table 7. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI
MAPE 5.420 5.783 4.862 5.823 4.977
MAE 809.153 855.560 706.073 868.632 734.877

RMSE 1052.017 1038.861 875.357 1059.056 897.331

CMI
MAPE 5.479 5.515 4.862 5.072 5.262
MAE 814.890 821.482 710.464 733.701 788.030

RMSE 1029.141 983.674 867.158 941.800 956.224

CART
MAPE 6.876 5.154 4.754 5.206 4.770
MAE 1027.157 763.678 704.088 776.566 705.472

RMSE 1307.768 1031.547 892.356 1055.224 911.921

RF
MAPE 5.154 5.421 4.817 5.190 4.540
MAE 763.678 795.999 697.702 757.221 666.295

RMSE 1031.547 955.704 858.767 961.667 849.553

RreliefF
MAPE 4.985 4.830 5.026 4.689 4.207
MAE 741.379 713.534 749.809 702.243 628.159

RMSE 1019.697 893.103 1034.086 931.176 810.417

For the full verification of different method combinations, the entire test set was used for
the contrast experiment. The results of different evaluated criteria for the proposed forecasting
approach applied by 25 method combinations are presented for day-ahead load forecasting in Table 8.
The forecast errors of the different methods varied. For example, the error of MI-based SVR was close
to that of the GPR. The MAPEs for the MI-based SVR and GPR were 4.872% and 4.785%, the RMSEs
were 1196.775 MW and 1141.372 MW, and the MAEs were 773.447 MW and 755.325 MW, respectively.
Based on these observations, the forecast errors of the SVR with any feature selection method was



Energies 2018, 11, 1899 17 of 30

below 5% (marked in bold) except with RF. In addition, the MAPEs of GPR with CMI and RF were
below 5% as well.

Table 8. Error of load forecasting of different methods with proposed forecasting approach for the
whole test set.

Feature Selection Method Forecaster
Evaluated Criterion

MAPE (%) RMSE (MW) MAE (MW)

MI

CART 6.021 1360.445 934.560
RF 5.536 1260.281 864.385

SVR 4.872 1196.775 773.447
BPNN 5.491 1320.809 865.842
GPR 4.785 1141.372 755.325

CMI

CART 6.088 1371.643 945.217
RF 5.364 1235.216 841.376

SVR 4.870 1225.231 776.654
BPNN 5.054 1179.931 793.064
GPR 4.758 1135.260 750.937

CART

CART 6.495 1493.344 1013.322
RF 5.364 1228.542 837.765

SVR 4.794 1158.022 758.601
BPNN 5.414 1270.671 847.104
GPR 5.018 1176.996 790.088

RF

CART 5.883 1322.730 911.334
RF 5.385 1236.724 843.334

SVR 5.534 1260.281 834.385
BPNN 5.287 1248.014 827.752
GPR 4.839 1244.614 761.119

RreliefF

CART 5.804 1898.190 1305.192
RF 5.202 1220.145 816.788

SVR 4.746 1229.229 759.143
BPNN 5.175 1244.537 812.642
GPR 5.543 1410.293 883.576

By comparison of the results, the RreliefF + SVR method showed the best performance with the
least MAPE.

6.2. Load Forecasting for Singapore

To further verify the applicability of the proposed approach, the load data from Singapore was
used to perform the load forecasting experiments.

6.2.1. Feature Selection for Hour Loads

First, using the same method used in Section 6.1.1, the score of the feature corresponding to
the predictive target at different hours was computed by different feature selection methods. Then,
the optimal feature subset was obtained based on the MAPE of different subsets forecast by a predictor.

Table 9 shows the MAPE and the dimension of the optimal feature subset corresponding to using
MI as the feature selection method and RF as the prediction model. The Table shows that 1 to 7 am,
the dimension of optimal feature subset is less than at 8 to 19 pm, as the same as the forecasting error.
Similar to the analysis result of 4, this is because people are less active at night and there are fewer
factors affecting the load than during the day.
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Table 9. Optimal feature subset construction of different hours with MI + RF for Singapore.

Time MAPE FD Time MAPE FD

1 1.349 72 13 2.353 49
2 1.138 64 14 2.376 42
3 1.112 61 15 2.387 48
4 1.137 66 15 2.486 44
5 1.201 79 17 2.534 57
6 1.453 75 18 2.258 62
7 1.836 57 19 2.049 49
8 2.229 55 20 1.793 43
9 2.389 55 21 1.632 64

10 2.359 52 22 1.526 59
11 2.379 59 23 1.485 45
12 2.332 58 24 1.529 55

The MAPE and the dimension of optimal feature subset corresponding to 1:00 were carried out
by different feature selection methods and forecasting methods shown in Table 10. The MAPEs are in
1.0% to 1.6% which means the performance of forecasters were similar after feature selection. While
by analysis the feature dimension, we could find there is huge difference between the number of the
feature of the optimal feature subset and that selected by different feature selection methods, which is
caused by the different evaluation criteria.

Table 10. Optimal feature subset construction of 1:00 with different methods for Singapore.

Method
CART RF SVR ANN GPR

MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI 1.595 59 1.349 72 1.225 74 1.349 47 1.170 75
CMI 1.528 11 1.266 31 1.209 43 1.239 17 1.148 122

CART 1.559 14 1.303 26 1.103 56 1.210 16 1.169 60
RF 1.594 72 1.371 5 1.186 58 1.242 17 1.163 38

RreliefF 1.530 7 1.300 10 1.197 21 1.242 17 1.159 95

As is shown in Appendix A Table A3 to Table A4, considering both the MAPEs and the dimensions,
the optimal feature subsets were used for the load forecasting of the Singapore data. Similar to the
conclusion summarized in Table 4, the different optimal feature subsets employed various feature
selection methods and forecasters.

6.2.2. Forecasting Results of Method Combinations with Optimal Feature Subsets for Singapore
Load Data

To test the performance of diverse combined methods with the optimal feature subset, the data of
special weeks were used for the experiment.

Two weeks were chosen randomly from the summer and winter of 2015 for testing as is shown in
Figures 7 and 8. The summer week included the days from 21 to 27 June and the winter week included
days from 8 to 14 November. The results are shown in Figure 7 and Table 11. It was found that the
GPR, RF, and SVR methods showed a better ability to forecast the summer loads. The MAPEs of the
combinations of MI + GPR, CMI + GPR, RF + GPR, RreliefF + GPR, CMI + SVR, and RreliefF + SVR
were less than 1.5%. The outstanding combined method was RreliefF + GPR whose MAPE was 1.402%,
MAE was 74.400 MW, and RMSE was 93.092 MW. By observing Figure 8 and Table 12, the RreliefF +
GPR method showed the best performance with an MAPE of 3.567%, an MAE of 200.711 MW, and an
RMSE of 224.017 MW. The predictive results of GPR and SVR with different feature selection methods
were better than those of the CART, BPNN, and RF methods.
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Table 11. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI
MAPE 2.321 2.145 1.439 2.719 1.662
MAE 128.596 119.058 79.453 153.693 91.493

RMSE 162.801 137.462 99.346 202.410 110.360

CMI
MAPE 2.117 1.867 1.419 3.165 1.482
MAE 115.395 103.810 78.407 180.786 81.177

RMSE 150.781 134.390 99.425 322.873 102.596

CART
MAPE 2.420 2.136 1.645 1.963 1.911
MAE 132.823 118.571 91.358 108.851 106.369

RMSE 175.615 143.584 139.408 160.930 152.349

RF
MAPE 2.213 2.000 1.435 1.702 1.404
MAE 123.568 112.369 77.803 94.085 77.236

RMSE 148.988 146.759 97.686 117.295 95.627

RreliefF
MAPE 2.720 1.862 1.428 1.917 1.402
MAE 154.605 103.586 79.134 105.902 74.400

RMSE 201.458 128.291 101.035 127.631 93.092

Table 12. Comparison of different combined methods.

Method CART RF GPR BPNN SVR

MI
MAPE 3.895 3.854 3.806 4.273 3.637
MAE 217.339 217.647 215.942 243.454 204.362

RMSE 250.640 240.934 236.196 283.816 232.913

CMI
MAPE 3.573 3.518 3.899 5.023 3.585
MAE 200.803 197.387 221.095 288.472 200.942

RMSE 229.837 217.891 239.055 390.638 229.780

CART
MAPE 3.868 3.587 4.115 3.897 3.599
MAE 215.523 200.915 234.630 219.650 201.124

RMSE 260.178 225.501 272.193 254.684 235.158

RF
MAPE 3.799 3.711 3.851 3.871 3.599
MAE 212.788 209.019 218.327 218.218 201.083

RMSE 245.087 231.296 236.664 241.936 230.831

RreliefF
MAPE 3.981 3.895 4.104 3.935 3.567
MAE 222.013 219.243 233.919 221.717 200.711

RMSE 262.683 242.705 254.076 247.552 224.017

To further verify the superiority of the proposed method based on feature subsets of different
hours, the entire test data from Singapore was used for validation. Detailed information about the test
data is shown in Table 2 in Section 5.2. Table 13 shows the average predictive error of the different
combined methods. It indicates that, based on MI, the CMI, RF, RreliefF, and SVR methods achieved
the minimum errors with MAPEs of 1.471%, 1.440%, 1.387%, and 1.373%, respectively. Of all the
combined methods, the RreliefF + SVR method worked best with an MAPE of 1.373%, an MAE of
75.118 MW, and an RMSE of 147.585 MW.
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Table 13. Error of load forecasting of different methods with proposed forecasting strategy for the
whole test set.

Feature Selection Method Forecaster
Evaluated Criterion

MAPE (%) RMSE (MW) MAE (MW)

MI

CART 2.019 172.293 112.003
RF 1.668 157.946 92.817

SVR 1.474 154.191 80.67
BPNN 2.551 218.916 145.116
GPR 1.492 147.726 82.693

CMI

CART 2.174 189.964 121.050
RF 1.623 156.450 90.309

SVR 1.440 151.230 78.764
ANN 3.072 332.424 177.185
GPR 1.538 148.127 85.497

CART

CART 2.219 201.990 123.030
RF 1.733 164.604 96.589

SVR 1.748 188.225 96.562
BPNN 1.954 192.515 109.282
GPR 1.774 183.266 99.119

RF

CART 2.012 172.188 111.418
RF 1.641 160.659 91.235

SVR 1.387 148.926 75.885
BPNN 1.663 158.088 92.355
GPR 1.461 145.833 81.011

RreliefF

CART 2.075 177.441 116.199
RF 1.608 155.962 89.551

SVR 1.373 147.585 75.118
BPNN 1.669 157.988 92.890
GPR 1.446 144.170 80.283

By analyzing the load forecasting results for Singapore, the combination of RreliefF and SVR was
the most accurate method.

6.3. Comparison and Discussion

6.3.1. Comparison of Forecasting Methods without Feature Selection for New England and Singapore

In this section, a comparison of the proposed method and the traditional method (which only
builds a single predictor for forecasting without feature selection) based on the data of New England
and Singapore was carried out to verify the necessity of forecasting by a modular predictor.

The histograms of the error and the training time duration of different forecasting methods using
New England data are displayed in Figure 9. As shown in Figure 9a, the MAPE of the SVR that adopted
the proposed method was almost half that of the SVR using the traditional method. The MAPE of other
predictors employing the proposed method without the feature selection step decreased in different
levels compared with the predictors employing the traditional method. By analyzing the MAE in
Figure 9b and the RMSE in Figure 9c, a similar conclusion can be obtained. In addition, it is noted that
the model training time of the proposed method decreased because of the smaller modeling training
set. Therefore, the decreased error and training time reflect the advantages of the proposed method
and confirms the necessity of employing a modular predictor.
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The values of MAPE, MAE, and RMSE and the training time of each forecaster with different
approaches based on the data of New England and Singapore are shown in Table 14. The results for
New England indicate that the MAPE values of CART, RF, SVR, BPNN, and GPR with the proposed
method were reduced by 0.182%, 2.253%, 4.294%, 1.953%, and 3.775% compared with the CART, RF,
SVR, BPNN, and GPR with the traditional approach, respectively. Similarly, the results for Singapore
also verified the superior performance of the proposed method.

Table 14. Comparison of the error of different forecasting approaches with original feature set.

Method Forecaster Test for New England Test for Singapore

MAPE
(%)

MAE
(MW)

RMSE
(MW)

Time
(s)

MAPE
(%)

MAE
(MW)

RMSE
(MW)

Time
(s)

The
proposed
method

CART 5.348 738.641 1067.723 0.106 2.166 116.742 209.413 0.275
RF 4.867 671.261 941.661 10.445 1.930 105.306 199.974 10.776

SVR 4.228 580.80 849.806 0.431 1.914 103.356 196.145 0.405
BPNN 5.167 705.324 986.974 962.457 3.133 174.104 285.083 844.257
GPR 4.242 581.889 844.0766 2.102 1.523 82.573 170.478 1.569

The
traditional

method

CART 5.530 778.083 1076.316 7.976 3.597 196.391 273.112 2.601
RF 7.120 975.272 1235.783 486.263 2.088 114.732 209.064 402.743

SVR 8.522 1130.870 1556.371 123.394 5.067 267.048 361.547 91.623
BPNN 7.120 975.272 1235.783 6170.835 4.864 267.416 408.305 4686.007
GPR 8.017 1065.700 1387.252 1219.056 5.072 287.277 405.181 1054.359

6.3.2. Comparison of Forecasting Approaches with Feature Selection for New England and Singapore

A comparison between the proposed method and traditional method with feature selection was
performed on the New England and Singapore datasets. The results of the proposed method with
feature selection are shown in Table 8 (New England) and Table 13 (Singapore), and the results of
the traditional method with feature selection are shown in Table 15. The results indicate that the
error was reduced in different levels by adopting the proposed method. The largest reduction in
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MAPE resulted from the CMI + SVR and CART + BPNN methods with MAPEs of 2.799% and 3.072%,
respectively. The minimum error was achieved by the RreliefF + SVR combination with MAPEs of
4.746% (New England) and 1.373% (Singapore). In conclusion, the forecasted results obtained by the
proposed method were better than those of the traditional method regardless of the predictor used.
The most accurate combined method was RreliefF + SVR.

Table 15. Error of load forecasting of different methods with traditional forecasting approach for the
whole test set.

Feature
Selection
Method

Forecaster
Test for New England Test for Singapore

MAPE
(%)

MAE
(MW)

RMSE
(MW) MAPE (%) MAE

(MW)
RMSE
(MW)

MI

CART 8.452 1269.711 1701.808 3.247 178.082 239.891
RF 5.911 920.201 1339.227 1.855 103.612 168.744

SVR 7.587 1116.529 1521.691 4.246 222.376 314.547
BPNN 5.854 909.553 1390.574 2.103 115.674 176.764
GPR 5.680 881.310 1296.119 2.161 118.833 180.018

CMI

CART 8.420 1267.213 1705.926 3.320 182.186 241.884
RF 5.645 878.479 1281.361 1.838 102.269 164.790

SVR 7.669 1134.308 1560.853 4.206 219.965 313.680
BPNN 7.697 1173.160 1929.675 2.053 113.328 173.493
GPR 6.562 1029.708 1558.377 2.104 115.482 175.308

CART

CART 8.420 1267.213 1705.926 3.212 175.834 238.396
RF 5.970 921.976 1318.980 1.940 108.871 175.704

SVR 7.635 1127.940 1506.504 4.170 217.423 312.793
BPNN 6.044 922.497 1404.137 5.026 278.908 462.199
GPR 5.904 920.084 1372.375 2.860 161.948 250.843

RF

CART 8.056 1212.114 1653.079 3.262 179.431 242.135
RF 5.483 858.934 1306.136 1.833 102.516 167.013

SVR 7.316 1081.404 1482.864 4.147 216.703 310.201
BPNN 5.348 831.493 1196.481 1.790 99.181 160.264
GPR 5.774 902.872 1321.057 1.951 108.686 169.148

RreliefF

CART 8.056 1212.114 1653.079 3.188 174.799 237.592
RF 5.506 866.377 1333.577 2.003 111.688 176.002

SVR 7.350 1081.259 1464.366 4.319 226.854 319.170
BPNN 5.789 894.686 1320.901 1.958 107.762 168.592
GPR 6.015 967.163 1682.298 2.130 117.884 188.138

7. Conclusions

Accurate day-ahead load forecasting enhances the stability of grid operations and improves the
social benefits of power systems. To improve the accuracy of day-ahead load forecasting, a novel
modular parallel forecasting model with feature selection was proposed. Load data from New England
and Singapore were used to test the proposed method. The experimental results show the advantages
of the proposed method as follows:

(1) A modular predictor consisting of 24 independent predictors can efficiently capture load
characteristics with respect to different hours and thereby avoid the inaccurate analysis of a
single predictor.

(2) The feature selection adopted for the load corresponding to different hours analyzes the
relevance between the feature and a special load. Each optimal feature subset of different dimension
benefits the building of a more-accurate predictor.

(3) To serve the demand of dispatch departments of different regions, the interval time p = 24 was
chosen for structuring a general candidate feature set that met the requirements of the power system.
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Future work will concentrate on predictor parameter optimization and improve the efficiency of
forecasting in the modeling process and applying the proposed method to probabilistic load forecasting.
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Appendix A

Table A1. Optimal feature subset construction of different hours from 1:00 to 12:00 with different methods for New England.

Time Point 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Error MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI

CART 3.741 7 3.769 2 4.071 12 4.083 84 4.472 40 5.140 6 4.949 164 4.748 164 4.627 164 4.765 15 4.978 21 5.529 130
RF 3.294 34 3.419 22 3.632 9 3.783 30 4.008 9 4.828 18 5.456 61 5.314 59 4.526 64 4.171 45 4.147 42 4.414 67

SVR 3.064 10 3.167 28 3.189 27 3.314 23 3.553 59 3.852 38 4.353 57 4.327 47 3.682 61 3.510 58 3.598 72 3.789 23
ANN 3.226 8 3.329 7 3.422 26 3.897 27 3.521 30 4.215 16 4.889 40 4.345 29 3.891 23 3.848 31 3.911 11 4.342 32
GPR 3.087 119 3.226 115 3.359 9 3.381 99 3.629 96 4.087 36 4.476 54 4.432 102 3.805 65 3.645 49 3.781 36 3.852 31

CMI

CART 3.729 2 3.769 2 4.058 7 4.192 16 4.296 8 5.242 6 4.926 99 4.523 27 5.076 15 4.523 27 5.076 15 5.413 106
RF 3.447 20 3.447 23 3.590 12 3.717 13 3.848 6 4.505 57 4.750 40 4.531 130 4.136 49 3.949 159 4.009 159 4.281 124

SVR 3.043 13 3.126 12 3.238 12 3.341 4 3.375 48 3.722 91 4.008 60 3.972 73 3.469 88 3.351 68 3.448 93 3.667 88
ANN 3.062 47 3.123 42 3.134 28 3.329 53 3.365 23 3.821 64 4.178 83 4.167 35 3.590 78 3.341 75 3.418 57 3.576 63
GPR 3.052 134 3.189 23 3.288 18 3.366 16 3.593 21 4.017 18 4.128 150 3.911 158 3.517 168 3.352 91 3.455 106 3.612 88

CART

CART 3.729 3 4.050 6 4.071 4 4.134 5 4.558 6 5.596 13 4.958 9 4.751 4 4.634 7 4.725 10 4.524 19 5.512 10
RF 3.422 11 3.511 5 3.589 6 3.615 12 3.963 7 4.511 32 4.512 20 4.367 11 4.062 22 3.989 18 4.151 21 4.546 11

SVR 3.068 11 3.167 11 3.548 11 3.433 12 3.798 14 3.846 33 3.804 20 3.870 18 3.524 22 3.629 19 3.633 20 4.260 18
ANN 3.270 9 3.301 11 3.670 5 3.483 12 3.836 13 4.012 15 3.974 19 4.081 16 3.921 17 3.775 17 3.806 18 4.397 11
GPR 3.245 8 3.280 11 3.526 11 3.458 8 3.858 8 3.911 33 3.753 20 3.872 18 3.707 22 3.659 19 3.732 16 4.360 11

RF

CART 3.741 7 3.769 2 4.059 9 4.128 44 4.552 9 5.084 7 4.807 52 4.656 5 4.337 6 4.464 10 4.147 3 4.155 6
RF 3.533 51 3.679 27 3.790 28 3.777 11 3.991 25 4.522 30 4.624 12 4.416 9 3.973 26 3.922 15 3.801 28 4.227 7

SVR 3.140 41 3.512 14 3.312 42 3.469 11 3.5518 26 3.6554 19 3.9069 27 3.8594 46 3.3732 31 3.3966 44 3.376 43 3.7329 51
ANN 3.069 18 3.255 20 3.097 21 3.469 17 3.486 16 3.816 27 4.262 11 4.278 13 3.682 11 3.542 19 3.424 31 3.923 14
GPR 3.099 81 3.239 80 3.338 64 3.447 150 3.632 16 3.679 19 4.208 15 3.964 56 3.522 86 3.359 63 3.484 43 3.787 37

RreliefF

CART 3.741 10 3.769 2 4.059 8 4.156 42 4.475 20 4.917 4 4.729 38 4.646 15 4.443 7 4.030 15 4.417 4 4.448 20
RF 3.310 26 3.390 20 3.466 17 3.560 19 3.528 14 3.764 14 4.534 30 4.294 23 3.643 10 3.514 17 3.680 22 4.006 18

SVR 3.043 18 3.107 19 3.233 19 3.351 30 3.434 16 3.928 14 3.716 34 3.648 21 3.320 34 3.205 34 3.407 66 3.594 53
ANN 3.269 9 3.306 14 3.338 13 3.368 17 3.445 16 3.555 15 4.193 35 3.760 23 3.399 19 3.329 20 3.427 25 3.820 24
GPR 3.019 134 3.156 152 3.329 32 3.346 117 3.460 16 3.578 29 3.811 34 3.715 24 3.414 22 3.333 28 3.358 81 3.807 29
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Table A2. Optimal feature subset construction of different hours from 13:00 to 24:00 with different methods for New England.

Time Point 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Error MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPEE FD MAPEE FD MAPEE FD MAPE FD MAPEE FD

MI

CART 4.654 164 5.143 164 5.764 164 5.406 164 6.170 41 6.313 6 6.066 12 5.388 9 5.166 14 5.105 12 5.198 6 5.086 8
RF 4.663 41 4.926 33 5.190 38 5.351 46 5.547 31 5.358 98 5.117 136 4.506 23 4.376 28 4.779 9 4.794 41 4.847 72

SVR 3.927 23 4.263 35 4.456 49 4.518 82 4.645 68 4.516 69 4.418 69 4.165 21 3.867 24 3.901 73 3.860 154 4.039 115
ANN 4.042 19 4.362 14 4.626 35 4.799 29 4.746 37 5.262 46 4.849 33 4.371 15 3.919 27 4.599 42 4.261 27 4.203 35
GPR 3.974 24 4.177 36 4.524 29 4.689 28 4.616 32 4.823 21 4.770 32 4.272 24 4.010 26 4.157 24 4.291 22 4.446 18

CMI

CART 5.459 14 5.045 53 5.519 24 5.406 91 5.985 18 6.382 5 5.973 5 5.299 19 5.134 20 5.178 19 5.164 8 4.994 14
RF 4.445 146 4.608 151 4.843 150 5.064 162 5.326 164 5.352 157 5.136 126 4.496 136 4.394 126 4.176 145 4.731 153 4.804 133

SVR 3.923 107 4.102 97 4.339 99 4.539 86 4.501 105 4.540 70 4.398 87 3.944 113 3.717 90 3.763 94 3.895 93 3.972 111
ANN 3.846 64 3.827 53 4.304 54 4.452 49 4.698 86 4.500 72 4.416 94 4.273 156 3.780 32 3.943 76 3.971 78 3.902 117
GPR 3.916 105 4.080 40 4.474 53 4.686 94 4.469 172 4.455 168 4.709 76 4.508 16 4.116 39 4.075 49 4.304 103 4.432 118

CART

CART 4.655 11 5.141 8 5.768 12 5.412 9 6.320 11 6.955 8 6.393 9 5.978 13 5.324 11 5.742 9 5.214 6 5.182 7
RF 4.587 19 4.846 15 5.113 28 5.409 22 5.390 25 5.720 22 5.444 17 4.634 15 4.665 24 5.001 29 4.700 7 4.806 7

SVR 4.105 15 4.371 21 4.393 28 4.882 22 4.804 24 5.515 22 4.804 26 4.236 30 4.099 24 4.256 21 4.228 18 4.168 20
ANN 4.205 15 4.713 18 4.666 18 4.931 20 5.248 16 5.205 22 4.986 26 4.302 26 4.248 24 4.441 18 4.152 17 3.988 22
GPR 4.174 13 4.507 21 4.573 28 5.109 22 5.054 23 5.124 21 4.864 28 4.424 32 4.304 21 4.545 18 4.405 17 4.321 21

RF

CART 4.448 12 5.022 23 5.476 6 5.350 7 5.678 5 6.129 5 6.040 22 5.273 11 4.820 26 5.175 98 4.980 5 5.080 45
RF 4.445 7 4.617 55 4.845 109 5.045 52 5.226 73 5.296 70 5.101 85 4.484 68 4.450 76 4.780 75 4.711 64 4.810 50

SVR 3.971 100 3.983 35 4.122 82 4.635 94 4.556 32 4.589 40 4.725 101 4.089 37 7.848 25 3.847 97 3.936 90 3.996 141
ANN 4.101 17 4.638 16 4.585 32 4.882 13 5.205 17 5.275 11 5.227 11 4.413 17 3.890 21 4.411 10 4.328 23 4.336 19
GPR 4.069 48 4.091 74 4.515 42 4.662 41 4.912 32 4.577 159 4.886 56 4.491 43 4.026 70 4.182 81 4.367 79 4.497 18

RreliefF

CART 4.574 20 4.949 21 5.529 29 5.405 108 5.817 22 6.238 23 5.860 17 5.321 24 4.796 37 4.721 23 5.005 9 4.986 20
RF 4.365 17 4.716 20 4.908 74 5.065 136 5.293 15 5.166 16 5.029 81 4.403 109 4.368 140 4.613 14 4.612 20 4.619 16

SVR 3.693 65 3.876 66 4.104 52 4.426 49 4.496 67 4.528 41 4.558 68 3.983 52 3.809 44 3.803 109 4.008 43 4.056 38
ANN 4.089 19 4.246 26 4.644 20 4.902 39 5.000 25 5.216 16 5.161 31 4.633 30 4.379 23 4.218 14 4.566 24 4.291 21
GPR 3.980 40 4.161 34 4.411 33 4.632 36 4.748 45 4.472 160 4.391 170 4.301 45 3.976 43 4.284 34 4.001 172 4.324 16

Remark. The FD in Table 4 means feature dimension.
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Table A3. Optimal feature subset construction of different hours from 1:00 to 12:00 with different methods for Singapore.

Time Point 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Error MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI

CART 1.595 59 1.479 57 1.402 4 1.482 10 1.535 6 1.624 108 2.041 29 2.727 62 2.515 48 2.526 43 2.615 59 2.451 58
RF 1.349 72 1.138 64 1.112 61 1.137 66 1.201 79 1.453 75 1.836 57 2.229 55 2.389 55 2.359 52 2.379 59 2.332 58

SVR 1.225 74 1.057 61 1.056 58 1.025 57 1.114 59 1.377 90 1.401 57 1.565 43 1.749 44 1.723 55 1.796 58 1.738 57
ANN 1.349 47 1.179 56 1.133 10 1.276 59 1.262 76 1.453 33 1.558 30 1.926 48 2.323 58 2.319 53 2.321 48 2.424 21
GPR 1.170 75 0.955 109 0.904 92 0.963 86 1.025 110 1.281 101 1.452 94 1.859 110 2.021 113 2.039 41 1.952 98 1.876 99

CMI

CART 1.528 11 1.470 4 1.386 4 1.396 9 1.475 4 1.632 62 1.998 72 2.752 108 2.709 135 2.534 124 2.531 114 2.485 125
RF 1.266 31 1.093 15 1.305 33 1.052 30 1.133 50 1.416 44 1.847 23 2.191 49 2.333 42 2.345 38 2.353 43 2.237 43

SVR 1.209 43 1.027 28 0.950 33 1.082 35 1.123 55 1.316 65 1.387 39 1.508 34 1.651 52 1.732 33 1.692 44 1.631 44
ANN 1.239 17 1.062 21 1.034 28 1.072 31 1.149 29 1.312 27 1.542 23 1.979 31 2.202 23 2.107 28 2.037 24 2.129 47
GPR 1.148 122 0.930 138 0.882 163 0.900 167 1.037 73 1.090 122 1.470 27 1.879 36 2.054 43 2.012 48 1.925 135 1.892 50

CART

CART 1.559 14 1.528 14 1.403 3 1.482 12 1.608 2 1.675 143 2.323 50 2.718 7 2.950 18 2.875 19 2.593 102 2.478 102
RF 1.303 26 1.113 12 1.100 21 1.105 32 1.214 25 1.431 38 1.917 44 2.289 19 2.417 45 2.458 45 2.544 56 2.477 19

SVR 1.103 56 0.995 36 1.031 17 1.001 73 1.038 22 1.138 32 1.575 83 1.653 25 1.803 73 1.863 46 1.916 53 1.845 53
ANN 1.210 16 1.061 21 1.043 15 1.037 24 1.122 32 1.252 31 1.876 22 1.981 27 2.082 23 2.158 19 2.254 28 2.274 13
GPR 1.169 60 1.015 74 0.902 120 0.918 115 1.066 25 1.216 33 1.415 173 1.813 172 1.959 172 1.903 172 1.893 172 1.851 173

RF

CART 1.594 72 1.583 19 1.425 2 1.525 11 1.577 9 1.672 14 2.147 8 2.456 4 2.754 10 2.710 21 2.615 42 2.488 29
RF 1.371 5 1.089 24 1.081 22 1.105 31 1.190 35 1.381 21 1.608 10 2.042 9 2.336 10 2.239 18 2.334 41 2.238 19

SVR 1.186 58 0.993 13 0.904 30 0.972 38 1.035 27 1.080 39 1.370 20 1.483 27 1.617 30 1.588 29 1.682 30 1.649 23
ANN 1.242 17 1.016 18 0.926 28 1.014 44 1.033 24 1.149 23 1.461 11 1.689 14 1.945 25 1.930 31 1.953 9 1.952 15
GPR 1.163 38 0.949 76 0.897 76 0.897 60 0.946 105 1.115 39 1.427 27 1.835 30 1.982 31 1.966 26 1.952 35 1.882 31

RreliefF

CART 1.530 7 1.506 9 1.283 10 1.395 8 1.513 9 1.574 13 1.754 24 2.579 38 2.579 38 2.464 40 2.412 43 2.295 42
RF 1.300 10 1.083 18 1.042 38 1.070 31 1.178 12 1.173 14 1.448 18 2.109 19 2.248 57 2.216 59 2.204 64 2.191 9

SVR 1.197 21 1.019 13 1.003 14 1.047 14 1.098 59 1.080 26 1.343 38 1.464 24 1.620 42 1.671 43 1.679 42 1.678 34
ANN 1.242 17 1.016 18 0.926 28 1.014 44 1.033 24 1.149 23 1.645 11 1.689 14 1.945 25 1.930 31 1.953 9 1.952 15
GPR 1.159 95 0.950 94 0.910 95 0.925 96 0.989 88 1.128 16 1.442 22 1.780 18 1.886 34 1.901 37 1.876 41 1.778 42
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Table A4. Optimal feature subset construction of different hours from 13:00 to 24:00 with different methods for Singapore.

Time Point 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Error MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD MAPE FD

MI

CART 2.501 75 2.522 37 2.700 43 2.637 45 2.619 58 2.398 51 2.113 87 1.884 49 1.790 64 1.588 90 1.614 66 1.820 13
RF 2.353 49 2.376 42 2.387 48 2.486 44 2.534 57 2.258 62 2.049 49 1.793 43 1.632 64 1.526 59 1.485 45 1.529 55

SVR 1.795 49 1.850 42 1.878 43 1.898 43 2.010 54 1.883 54 1.629 111 1.469 39 1.317 94 1.372 40 1.337 41 1.301 75
ANN 2.280 25 2.362 36 2.466 23 2.334 32 2.259 44 2.324 29 1.936 45 1.797 52 1.682 65 1.482 41 1.450 38 1.390 33
GPR 1.912 95 2.036 40 2.032 43 2.098 43 2.095 102 1.821 170 1.752 101 1.554 44 1.357 94 1.304 91 1.283 102 1.253 119

CMI

CART 2.368 111 2.749 126 2.517 127 2.665 113 2.481 125 2.423 110 1.983 115 1.884 139 1.779 66 1.587 121 1.580 7 1.667 5
RF 2.263 37 2.307 36 2.309 36 2.349 28 2.342 35 2.160 31 1.933 40 1.672 41 1.593 30 1.466 29 1.456 8 1.451 53

SVR 1.702 49 1.768 34 1.792 45 1.914 42 1.937 41 1.806 33 1.646 32 1.442 27 1.359 33 1.301 41 1.324 54 1.352 37
ANN 2.232 27 2.125 30 2.163 43 2.300 36 2.381 23 2.218 39 1.761 31 1.851 21 1.488 15 1.405 34 1.358 22 1.377 25
GPR 1.913 48 1.978 45 1.994 44 2.055 40 2.054 102 1.884 128 1.667 171 1.448 172 1.296 172 1.244 171 1.239 125 1.282 92

CART

CART 2.486 103 2.557 4 2.630 4 2.734 4 2.626 151 2.398 104 2.132 15 1.940 20 1.911 86 1.591 58 1.638 156 1.734 7
RF 2.414 22 2.463 18 2.493 46 2.622 7 2.653 8 2.352 17 1.909 20 1.903 27 1.760 24 1.448 25 1.499 23 1.503 45

SVR 1.871 52 1.935 54 1.885 54 2.115 40 2.188 39 1.843 54 1.601 87 1.606 87 1.511 69 1.322 29 1.284 47 1.227 85
ANN 2.218 19 2.213 18 2.202 19 2.387 19 2.404 31 2.179 19 1.832 32 1.773 19 1.754 12 1.438 33 1.453 22 1.351 17
GPR 1.871 172 1.950 173 1.948 168 1.981 171 2.011 169 1.824 168 1.663 172 1.442 168 1.285 169 1.235 168 1.205 166 1.203 169

RF

CART 2.501 67 2.759 27 2.673 7 2.651 34 2.617 38 2.416 35 1.999 13 1.794 27 1.750 17 1.583 52 1.638 41 1.692 2
RF 2.272 36 2.323 33 2.328 35 2.364 34 2.396 39 2.098 26 1.881 25 1.628 19 1.527 10 1.427 16 1.410 15 1.478 24

SVR 1.670 28 1.751 23 1.857 22 1.853 39 1.944 36 1.789 16 1.577 57 1.394 22 1.299 56 1.240 15 1.195 12 1.244 38
ANN 1.972 11 2.256 10 2.224 8 2.245 10 2.326 13 1.949 21 1.822 33 1.551 7 1.419 12 1.323 17 1.244 19 1.396 32
GPR 1.876 44 1.981 30 2.125 34 2.023 54 2.108 42 1.893 91 1.767 35 1.502 32 1.377 13 1.269 16 1.244 18 1.265 47

RreliefF

CART 2.323 41 2.532 41 2.662 42 2.533 24 2.366 58 2.220 42 1.949 66 1.766 7 1.674 15 1.605 21 1.624 12 1.642 10
RF 2.201 84 2.298 9 2.243 17 2.262 14 2.271 35 1.998 14 1.713 18 1.468 21 1.366 17 1.308 15 1.337 17 1.400 24

SVR 1.714 41 1.768 20 1.799 37 1.801 15 1.815 14 1.646 23 1.564 20 1.409 11 1.258 16 1.265 24 1.252 24 1.299 21
ANN 1.972 11 2.256 10 2.224 8 2.244 10 2.326 13 1.949 21 1.822 33 1.551 7 1.419 12 1.322 12 1.244 19 1.396 32
GPR 1.856 29 1.882 41 1.861 31 1.937 41 1.936 30 1.789 33 1.645 95 1.450 35 1.316 56 1.296 41 1.279 72 1.208 170
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