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Abstract: While previous research has shown the use of attachable air-caps on windows to efficiently
reduce a building’s energy consumption, the air-caps considered had to be attached to the entire
window’s surface, thus limiting the occupants’ view and creating the inconvenience of needing to
detach and attach the air-caps. In this study, a window-mounted air-cap roller module using Velcro
tape that may be easily attached, detached, and rolled up or down was developed and performance
tested in a full-scale test bed. It was found that as the area of the air-caps attached on a window
increased, the required indoor lighting energy increased. However, the window insulation improved,
thus reducing the cooling and heating energy needed. Attaching the air-caps to the entire window
surface effectively reduced the building’s energy consumption, but views through the window may
be disturbed. Thus, the developed window-mounted air-caps enable an occupant to reduce the
building energy consumption and maintain their view according to their need. The findings of this
study may contribute to a reduction in building energy consumption without sacrificing a pleasant
indoor environment. Further studies may be needed to verify their efficacy under varying indoor
and outdoor conditions.
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1. Introduction

The concept of net zero energy buildings has been extensively examined; the concept that the
power generation from new renewable energy resources offsets the total energy consumption of the
building, thus achieving net-zero energy consumption [1–3]. Although many studies contributed to
the development of new and renewable energy resources to counterbalance the total energy spent in
the building, net zero energy buildings are mostly impossible without reduced energy consumption
of the building itself. The “2015 Renewable Energy Data Book”, published by the United States
Department of Energy, reported that energy consumption by buildings accounted for 39.8% of the
overall energy consumption in the United States [4]. It also predicted that the energy consumption of
the buildings would continue to increase. The energy usage of buildings for space heating, lighting,
and cooling is as high as 20.8%, 11.3%, and 10.0% of the total energy usage in the United States,
respectively [5]. Therefore, there is an increased requirement to develop technologies and methods to
reduce the energy consumed by buildings. Further, high energy consumption is related to the poor
insulation of building skins, especially that of windows. Various studies have been conducted to
investigate potential approaches for improving the thermal performance of windows, including the use
of double skins [6–15], phase change materials (PCM) [16–22], window blinds [23–32], awnings [33–35],
and light shelves [36–41]. Although several of these apparatuses may be efficiently used to reduce
the energy consumption of the buildings, they often have high installation costs or are difficult to be
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applied to the existing buildings. Air caps, originally developed by the Sealed Air Corporation [42]
as a packaging material, comprise a regular pattern of air pockets that are sealed between two sheets
of polyethylene film and have been depicted to improve window insulation. In previous studies, air
caps were attached to the entire window surface [43–45], which may have efficiently improved the
insulation performance of the window; however, this may disturb the view through the window and
increase the amount of energy required to ensure indoor lighting. Additionally, water or double-sided
adhesive tape was used to adhere the air caps [43,44], which caused problems while attaching and
detaching the air-caps. In this study, a window-mounted air cap roller module was developed for easy
attachment, detachment, and adjustment of the air caps. A full-scale test bed was used to verify the
effectiveness of the module in reducing the energy consumption that is required for heating, lighting,
and cooling a building.

1.1. Literature Review Research on Air Caps and Their Specifications

According to the information provided by the manufacturer [42], air cap pockets are generally
circular and their dimensions vary depending on the thickness of the air-filled layer, as shown in
Table 1. In this study, Type 2 air caps with 10-mm diameter circular air-filled pockets were used.
This choice was based on a previous study, in which the thermal performance of a window was
improved using air caps [43].

Table 1. Air cap specifications provided by the manufacturer.

Type D (Diameter of
Air Layer)

t (Thickness of
Coating Layer) Air Cap Section

1
10 mm

0.2 mm
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0.6 mm4 25 mm

5 30 mm

Table 2 presents a summary of previous work improving building insulation by implementing air
caps. In previous studies, researchers suggested attaching air caps directly onto the glass surfaces or
frames of windows to achieve an air-tight fit and improve insulation performance. However, attaching
air caps directly onto a window may impair viewing through the window, which is its original function.
Moreover, attaching air caps onto a window may decrease the amount of natural light entering the
building, thereby reducing the indoor illumination and increasing the energy demand for lighting.

Table 2. Previous studies on air caps for the improvement of window insulation performance.

Author (year)
Materials for

Attachment of Air
Caps

Parts to Which Air
Caps are Attached

Area of Window
to Which Air Caps

are Attached

Consideration of Views
Through Windows
Depending on Air

Cap Coverage

Lee et al. (2015) [43]
Water or

double-sided
adhesive tape

Glass surface or
window frame Entire surface Not considered

Hwang et al. (2015) [44] Water Glass surface of
window Entire surface Not considered

Lee et al. (2017) [45] Linear magnet and
insulation tape Window frame Entire surface Not considered
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1.2. Appropriate Indoor Temperature and Illumination Standards for Performance Evaluation

Indoor temperature and illumination are factors that determine the pleasantness of an indoor
space. Maintaining them at a constant level contributes to a reduction in total building energy
consumption by preventing unnecessary energy consumption for cooling, heating, and lighting [46].
Therefore, setting appropriate standards for indoor temperature and illumination is important in
controlling cooling and heating devices and lighting. A summary of the appropriate indoor temperature
and illumination standards for various countries is presented in Tables 3 and 4. Based on these
standards, the performance evaluation in this study was conducted for maintaining the summer
and winter indoor temperature standards of 26 ◦C and 20 ◦C, respectively. The appropriate indoor
illumination standard was determined as 500 lx [35]. The reasons for selecting this indoor illumination
standard for the performance evaluation in this study were the following. Upon examining the
illumination standards of the United States, Japan, and Korea, the values of 500 and 600 lx were found
to be used interchangeably as the illumination for a “normal” task grade. In the cases of Japan and
South Korea, 600 lx is designated as the maximum allowed illumination. In light of this, the 600 lx
value was excluded as an appropriate indoor illumination standard. Therefore, this study set 500 lx as
the appropriate indoor illumination standard and proceeded to carry out the performance evaluation
under this condition.

Table 3. Appropriate indoor temperature standard.

Standard Summer (◦C) Winter (◦C)

ANSI/ASHRAE Standard 55-2013 (USA) [47] 23.0–26.0 20.0–23.5
ISO Standard (Europe) [48] 23.0–26.0 20.0–24.0

Table 4. Appropriate indoor illumination standard.

Reference Standards Task Grade
Minimum
Allowed

Illumination (lx)

Standard
Allowed

Illumination (lx)

Maximum
Allowed

Illumination (lx)

IES (USA) [49]
Normal 500 750 1000
Simple 200 300 500

JIS Z 9110 (Japan) [50] Normal 300 500 600
Simple 150 200 300

KS A 3011 (Republic of
Korea) [51]

Normal 300 400 600
Simple 150 200 300

2. Proposal and Performance Evaluation Methods

2.1. Proposal of Window-Mounted Air Cap Roller Module

The proposed window-mounted air cap roller module shown in Figures 1–3 allows a user to roll
the air cap sheets up or down to vary the window area to which the air caps are attached in accordance
with the desired view and illumination through the window. However, decreasing this area may
reduce the insulation performance of the windows, resulting in an increase in the building’s energy
consumption. To overcome this limitation, the window-mounted air cap roller module was attached
to the window frame. This was based on the findings of a previous report, which indicated that the
insulation performance of a window was improved more when the air caps were attached to the
window frame than when they were attached to the glass surface of the window [43]. Velcro™ tape
and dual-sided insulation tape were used to attach the air caps to the window frame to improve the
insulation and allow easy attachment and detachment of the air cap sheet. An aluminum insulating
rod, prepared by insulating treatment, was attached to the lower part of the window-mounted air
cap roller module to allow an indoor occupant to easily adjust the air cap sheet. The insulating rod
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was designed for insulation by using an extruded polystyrene (XPS) insulation board attached to
the lower part of the window-mounted air cap roller module. Additionally, an insulation bar was
inserted between the air cap sheet and the glass surface of the window to resolve the gap caused by
the attachment of the air cap to the window frame. The aluminum insulation bar was prepared by
inserting an extruded polystyrene insulation board into it for insulation and air-tightness. Springs
were placed at both ends of the insulation bar for solid and convenient attachment to the inside of the
window frame. A test bed of the proposed window-mounted air cap roller module was installed for
the performance evaluation (shown in Figure 4).
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2.2. Environment for Performance Evaluation

The developed full-scale test bed for performance evaluation of the window-mounted air
cap roller module is detailed in Table 5 and illustrated in Figure 5. The test bed was 4.9 m wide,
2.5 m high, and 6.6 m long. The window to which the air caps were attached was 2.2 m wide,
1.8 m high, and included transparent double glazing. To form an external environment for the
performance evaluation, an artificial climate chamber was installed outside the window to control
the temperature. The external temperatures for the performance evaluation were determined to
be −11.3 ◦C and 36.5 ◦C for winter and summer, respectively [52]. The artificial climate chamber
included an artificial solar radiation apparatus to control the light intensity, height, and angle of the
artificial light source to form various external environmental conditions. Because the artificial solar
light radiation apparatus employed an artificial light source, the environmental conditions created
for the performance evaluation were different from the actual conditions. However, the artificial
light source satisfied the Grade A measurement homogeneity standards, according to the ASTM
E927-85 international standard. This ensured that uniform external environmental conditions were
maintained between the performance evaluation cases. Due to the characteristics of the artificial solar
light radiation apparatus used in this study, the performance evaluation was performed only with the
windows in question facing south.

Temperature and illumination sensors were installed as shown in Figure 6 to collect indoor
environmental information. A temperature sensor was installed at the center of the indoor space,
whereas four illumination sensors were installed at positions 2.2 and 4.4 m away from the window at
a height of 0.75 m, in accordance with their optimal measuring distance [53].

As shown in Table 6, to undertake the performance evaluation in this study, air conditioning and
lighting appliances were installed in the test bed, and automated control of the air conditioner and
lighting device was also established. The air conditioner employed in this study allowed home
network-based control, and the rated power for cooling and heating was 11,000 and 13,200 W,
respectively. On/off control of the air conditioner to maintain the appropriate indoor temperature was
performed automatically in coordination with the indoor temperature sensor. In the off mode, the air
conditioner operated at minimum power without cooling or heating the indoor space but was never
entirely turned off. For example, cooling of the indoor space was performed in summer when the
indoor temperature was higher than 26 ◦C; however, when the indoor temperature was below 26 ◦C,
the air conditioner operated at minimum power with only the fan running and did not perform cooling
duty. Heating of the indoor space was performed in winter when the indoor temperature was lower
than 20 ◦C; however, when the indoor temperature was below 20 ◦C, heating was not performed, and
the air conditioner continued to operate at minimum power. An LED lighting device allowed control in
eight levels of illumination. The position of the lighting device was determined based on a four-point
method recommended by the Illuminating Engineering Society [49]. Illumination sensors 1, 2, 3, and 4
were connected to lights 1, 2, 3, and 4, respectively, to control the indoor illumination values. When the
measured illumination value was below 500 lx, the lights were automatically brightened, beginning
with the illumination sensor that showed the lowest illumination value, until an illumination of 500 lx
was reached. For example, when an indoor illumination value of 400 lx was measured by illumination
sensor 1, the light connected to that sensor was brightened from level 1 up to level 8, until the value
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reached 500 lx or higher. If the minimum indoor illumination value did not reach 500 lx even after
the brightness control of light No. 1 to level 8, the brightness level of light No. 3, which was the light
nearest to the illumination sensor, showed the lowest illumination value, and was sequentially elevated
from level 1 to level 8 until the minimum indoor illumination value measured by the illumination
sensors exceeded 500 lx. This brightness control was repeated until the minimum indoor illumination
value exceeded 500 lx.

Table 5. Overview of test bed.

Room size, Material

Size: 4.9 m (W) × 6.6 m (D) × 2.5 m (ceiling height)
Reflectability: Ceiling (86%), wall (46%), floor (25%)

Material: Insulation panel (thickness: 0.1 m)

Window size, Material

Size: 1.9 m (W) × 1.7 m (H)
Type: Double glazed 24 mm (6CL + 12A + 6CL)

Thermal transmittance: 2.83 W/m2K (summer), 2.69 W/m2K (winter)
Transmissivity: 80%

Artificial solar Light Radiation Apparatus

Precision of solar light radiation: Grade A (according to ASTM E927-85)
Range of illumination: 0–80,000 lx

Directions: South aspect

Temperature Sensor

Sensing element: silicon photo sensor, with filter
Detection range: 0–200,000 lx

Precision: ±3%

Illuminance Sensor

Sensing element: NTC 10 KΩ; AN type
Detection range: −40 ◦C to +90 ◦C

Precision: ±0.3 ◦C

Energy Monitoring System

Measurement capacity: Single phase (220 V, 1–50 A)
Measurement items: Power/voltage/current, real-time, and accumulated amount

Error rate: within 2.0%

Table 6. Specifications of the lighting devices and air conditioner.

Device Specifications

Lighting

Type: 8-level dimming (LED type)
Electricity consumption according to the level of dimming lighting control: lv 1 (12 W), lv 2

(18 W), lv 3 (22 W), lv 4 (28 W), lv 5 (34 W), lv 6 (39 W), lv 7 (43 W), lv 8 (51 W)
heating temperature: 35 ◦C

Air conditioner

Model: AP-SM302 (EHP)
Heating/cooling capacity: 13,200 W/11,000 W

Heating/cooling energy consumption: 3.90 kW/3.90 kW
COP: heating: 3.38/cooling: 2.82
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2.3. Method of Performance Evaluation

In this section, the performance evaluation method for the proposed window-mounted air cap
roller is detailed. As shown in Table 7, the evaluation was conducted for six cases: (Case 1) air caps
attached to the entire window surface; (Case 2) air caps attached from a height of 1.2 m, corresponding
to eye level at a sitting position, to the top of the window; (Case 3) air caps attached from a height of
1.5 m, corresponding to eye level at a standing position, to the top of the window; (Case 4) air caps
attached from a height of 1.8 m from the floor to the top of the window; (Case 5) air caps attached from
a height of 2.1 m from the floor to the top of the window; and (Case 6) no air caps attached. The settings
for Cases 4 and 5 were established by adjusting the settings of Cases 1, 2 and 3, which considered the
eye level of building residents. In other words, the heights of the air caps in Cases 2, 3, 4, and 5 were
adjusted in 0.3-m increments to make it possible to undertake performance evaluations according to
the area of air cap coverage.

Because the lighting devices and air conditioner were automatically switched on and off to
maintain the appropriate lighting and temperature levels, the power consumed by these devices
was used as a performance indicator for each case. The thermal properties of the air cap sheets
were dependent on the position of the internal air layers, thus limiting the calculation of thermal
conductivity, heat transmission coefficient, and thermal resistance.

Furthermore, the power consumed by the lighting devices was calculated by setting the minimum
illumination measured by the indoor illumination sensors to 500 lx. In addition, to evaluate the
reduction of the energy consumption for cooling and heating in each case, the temperature sensor
located at the center of the indoor space was connected to the air conditioner, which was automatically
controlled to maintain the predetermined appropriate indoor temperature. In this study, the power
consumed by the automatically controlled air conditioner was used as a quantitative performance
evaluation indicator. However, the cooling and heating energy consumption was measured while
performing dimming control of the lights to satisfy the appropriate indoor illumination standard.
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The performance evaluation was limited to summer and winter, when air conditioners and
heating are most used, between 10 a.m. and 3 p.m. The selected external illumination and temperature
conditions for summer and winter are shown in Table 8 [52] and were simulated by varying the input
solar radiation and artificial lighting.

Table 7. Cases for the performance evaluation.

Case
Ratio of Air Cap

Coverage Area to Entire
Window Area (%)

Case
Ratio of Air Cap

Coverage Area to Entire
Window Area (%)
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10:00–12:00 12:00–13:00 12:00–14:00 

Summer 

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx 

Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2 

Altitude 76.5° 

External temperature 34(±1) °C 

Winter 

External illumination 20,000(±100) lx 30,000(±100) lx 20,000(±100) lx 

Solar radiation 283(±2) W/m2 340(±2) W/m2 283(±2) W/m2 

Altitude 29.5° 

External temperature −10(±1) °C 

  

(Case 1) Air caps covering the
entire window surface

100
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Table 8. External illumination, solar radiation, and outdoor temperature conditions in each time zone. 

Season 

Time Zone 

10:00–12:00 12:00–13:00 12:00–14:00 

Summer 

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx 

Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2 

Altitude 76.5° 

External temperature 34(±1) °C 

Winter 

External illumination 20,000(±100) lx 30,000(±100) lx 20,000(±100) lx 

Solar radiation 283(±2) W/m2 340(±2) W/m2 283(±2) W/m2 

Altitude 29.5° 

External temperature −10(±1) °C 

  

(Case 4) Air caps attached
from a height of 1.8 m to the

top of the window

27.5
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Table 8. External illumination, solar radiation, and outdoor temperature conditions in each time zone. 

Season 

Time Zone 

10:00–12:00 12:00–13:00 12:00–14:00 

Summer 

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx 

Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2 

Altitude 76.5° 

External temperature 34(±1) °C 

Winter 

External illumination 20,000(±100) lx 30,000(±100) lx 20,000(±100) lx 

Solar radiation 283(±2) W/m2 340(±2) W/m2 283(±2) W/m2 

Altitude 29.5° 

External temperature −10(±1) °C 

  

(Case 2) Air caps attached
from a height of 1.2 m to the

top of the window

73
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Table 8. External illumination, solar radiation, and outdoor temperature conditions in each time zone. 

Season 

Time Zone 

10:00–12:00 12:00–13:00 12:00–14:00 

Summer 

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx 

Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2 

Altitude 76.5° 

External temperature 34(±1) °C 

Winter 

External illumination 20,000(±100) lx 30,000(±100) lx 20,000(±100) lx 

Solar radiation 283(±2) W/m2 340(±2) W/m2 283(±2) W/m2 

Altitude 29.5° 

External temperature −10(±1) °C 

  

(Case 5) Air caps attached
from a height of 2.1 m to the

top of the window

9.1
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Table 8. External illumination, solar radiation, and outdoor temperature conditions in each time zone. 

Season 

Time Zone 

10:00–12:00 12:00–13:00 12:00–14:00 

Summer 

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx 

Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2 

Altitude 76.5° 

External temperature 34(±1) °C 

Winter 

External illumination 20,000(±100) lx 30,000(±100) lx 20,000(±100) lx 

Solar radiation 283(±2) W/m2 340(±2) W/m2 283(±2) W/m2 

Altitude 29.5° 

External temperature −10(±1) °C 

  

(Case 3) Air caps attached
from a height of 1.5 m to the

top of the window

46
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Table 8. External illumination, solar radiation, and outdoor temperature conditions in each time zone. 
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Time Zone 

10:00–12:00 12:00–13:00 12:00–14:00 

Summer 

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx 

Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2 
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Table 8. External illumination, solar radiation, and outdoor temperature conditions in each time zone.

Season
Time Zone

10:00–12:00 12:00–13:00 12:00–14:00

Summer

External illumination 70,000(±100) lx 80,000(±100) lx 70,000(±100) lx
Solar radiation 429(±2) W/m2 503(±2) W/m2 429(±2) W/m2

Altitude 76.5◦

External temperature 34(±1) ◦C

Winter

External illumination 20,000(±100) lx 30,000(±100) lx 20,000(±100) lx
Solar radiation 283(±2) W/m2 340(±2) W/m2 283(±2) W/m2

Altitude 29.5◦

External temperature −10(±1) ◦C

3. Results and Discussion of Performance Evaluation

In contrast to Case 6, which did not have air cap attachments, Cases 1 through 5, all of which
had air cap attachments, presented lower average indoor illumination. This was due to the reduced
amount of natural light introduced into the indoor space by the air caps attached to the windows.
In addition, increases in the air-cap coverage area reduced the amount of natural light being introduced
indoors, resulting in lower average indoor illumination. It was also possible to confirm this through
the indoor images of each case, as presented in Table 9. As shown in Table 10, the results indicated that
increases in the air cap coverage area resulted in increases in energy consumption for indoor lighting
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purposes. For example, Cases 1 through 5 presented an increase in energy consumption between
4.3% and 17.8% during the summer season and an increase between 12.3% and 52.1% during the
winter season compared with Case 6. To summarize the above, an increase in the air cap coverage
area reduced the natural light volumes, which in turn increased the energy consumption required to
maintain the appropriate indoor illumination levels. In regards to Cases 1 through 5, which had air
cap attachments, an increase in energy consumption between 5.6% and 25.7% during the summer and
winter seasons compared with Case 6 was needed to reach the appropriate 500 lx indoor illumination
level. In light of this, these cases were considered inappropriate to reduce the energy consumption for
lighting purposes.

Table 9. Images of individual cases and sum of electrical power consumption for each case.

Case

Indoor Images for Each Case Sum of Electrical
Power

Consumption by
Lighting Devices

(kWh)

Case

Indoor Images for Each Case Sum of Electrical
Power

Consumption by
Lighting Devices

(kWh)

Summer
(External

Illuminance:
80,000 lx)

Winter
(External

Illuminance:
30,000 lx)

Summer
(External

Illuminance:
80,000 lx)

Winter
(External

Illuminance:
30,000 lx)

1
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Case 
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Power 

Consumption 
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Summer 
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Illuminance: 

80,000 lx) 

Winter 
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Illuminance: 

30,000 lx) 

Summer 

(External 

Illuminance: 

80,000 lx) 

Winter 

(External 

Illuminance: 

30,000 lx) 

1 

  

0.834 4 

  

0.703 

2 

  

0.798 5 

  

0.657 

3 

  

0.731 6 

  

0.620 

Table 10. Lighting device control and power consumption for maintaining appropriate indoor 

illumination. 

Summer 

Case 
External 

Illuminance (lx) 

Illumination (lx) Lighting control: 

light number (dimming level) 

Power  

Consumption (kWh) Min. Ave. 

1 
80,000 76.0 285.1 1(8) + 3(8) + 2(3) 

0.642 
70,000 66.1 188.2 1(8) + 3(8) + 2(5) 

2 
80,000 78.8 311.3 1(8) + 3(8) + 2(3) 

0.630 
70,000 68.4 202.2 1(8) + 3(8) + 2(4) 

3 
80,000 82.2 339.9 1(8) + 3(8) + 2(2) 

0.591 
70,000 70.2 224.4 1(8) + 3(8) + 2(3) 
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Table 10. Lighting device control and power consumption for maintaining appropriate indoor 

illumination. 

Summer 

Case 
External 

Illuminance (lx) 

Illumination (lx) Lighting control: 

light number (dimming level) 

Power  

Consumption (kWh) Min. Ave. 

1 
80,000 76.0 285.1 1(8) + 3(8) + 2(3) 

0.642 
70,000 66.1 188.2 1(8) + 3(8) + 2(5) 

2 
80,000 78.8 311.3 1(8) + 3(8) + 2(3) 

0.630 
70,000 68.4 202.2 1(8) + 3(8) + 2(4) 

3 
80,000 82.2 339.9 1(8) + 3(8) + 2(2) 

0.591 
70,000 70.2 224.4 1(8) + 3(8) + 2(3) 

0.834 4
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Table 10. Lighting device control and power consumption for maintaining appropriate indoor 

illumination. 

Summer 

Case 
External 

Illuminance (lx) 

Illumination (lx) Lighting control: 

light number (dimming level) 

Power  

Consumption (kWh) Min. Ave. 

1 
80,000 76.0 285.1 1(8) + 3(8) + 2(3) 

0.642 
70,000 66.1 188.2 1(8) + 3(8) + 2(5) 
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Table 10. Lighting device control and power consumption for maintaining appropriate indoor 

illumination. 

Summer 

Case 
External 

Illuminance (lx) 

Illumination (lx) Lighting control: 

light number (dimming level) 

Power  

Consumption (kWh) Min. Ave. 

1 
80,000 76.0 285.1 1(8) + 3(8) + 2(3) 

0.642 
70,000 66.1 188.2 1(8) + 3(8) + 2(5) 

2 
80,000 78.8 311.3 1(8) + 3(8) + 2(3) 

0.630 
70,000 68.4 202.2 1(8) + 3(8) + 2(4) 

3 
80,000 82.2 339.9 1(8) + 3(8) + 2(2) 

0.591 
70,000 70.2 224.4 1(8) + 3(8) + 2(3) 

0.703

2
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The effects on the heating and cooling energy consumption of attaching the air cap roller module
are presented in Table 11. The greatest reduction in the cooling and heating energy consumption
occurred when the air caps were attached to the entire window surface (Case 1). However, the cooling
and heating energy consumption was lower in all cases except Case 6, in which no air caps were
attached. When the air caps were only attached to a part of the window surface (Cases 2, 3, 4, and 5),
the cooling and heating energy consumption decreased by 2.0% to 21.9% for summer and by 8.3%
to 27.5% for winter when compared with Case 6. In the summer simulation, the cooling energy
consumption notably increased in Case 4, in which the air caps were attached from a height of 1.8 m
above the floor to the top of the window. In the winter simulation, the heating energy consumption
notably increased in Case 3, in which the air caps were attached from a height of 1500 mm above
the floor to the top of the window. Therefore, the proposed window-mounted air cap roller module
may effectively reduce the cooling and heating energy consumption even if the air cap coverage area
is adjusted to permit viewing through the window and to allow light into the room. Additionally,
the module enables an occupant to choose the level of viewing possible through the window and
reduces the cooling and heating energy consumption, depending on the circumstances.

When considering only the reduction in total energy consumption, the best method for applying
the window-mounted air cap roller module proposed in this paper is that of Case 1, in which air
caps were attached to the entire window surface; however, that case did not allow viewing through
the window. However, the energy consumed did decrease as the air cap coverage area was reduced,
as shown in Figure 7. The energy consumption dramatically increased in Case 4 during the summer
and in Case 3 during the winter. Therefore, considering the energy savings and viewing performance,
the optimal height for the air cap module is 1.5 m. This is the height at which occupants can still see
through the windows and energy consumption is significantly decreased.
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Table 10. Lighting device control and power consumption for maintaining appropriate indoor illumination.

Summer

Case
External

Illuminance (lx)
Illumination (lx) Lighting control:

light number (dimming level)
Power

Consumption (kWh)Min. Ave.

1
80,000 76.0 285.1 1(8) + 3(8) + 2(3)

0.64270,000 66.1 188.2 1(8) + 3(8) + 2(5)

2
80,000 78.8 311.3 1(8) + 3(8) + 2(3)

0.63070,000 68.4 202.2 1(8) + 3(8) + 2(4)

3
80,000 82.2 339.9 1(8) + 3(8) + 2(2)

0.59170,000 70.2 224.4 1(8) + 3(8) + 2(3)

4
80,000 84.7 483.2 1(8) + 3(8) + 2(1)

0.58970,000 73.1 243.7 1(8) + 3(8) + 2(3)

5
80,000 87.5 509.2 1(8) + 3(8)

0.55270,000 74.9 251.9 1(8) + 3(8) + 2(3)

6
80,000 90.4 559.2 1(8) + 3(7)

0.52870,000 76.1 280.2 1(8) + 3(8) + 2(3)

Winter

Case
External

Illuminance (lx)
Illumination (lx) Lighting control:

light number (dimming level)
Power

Consumption (kWh)Min. Ave.

1
30,000 386.2 5130.4 1(3)

0.19220,000 270.3 3727.5 1(8) + 3(1)

2
30,000 391.5 5257.1 1(3)

0.16820,000 274.1 3800.2 1(8)

3
30,000 401.7 5391.8 1(2)

0.14020,000 289.4 4065.9 1(7)

4
30,000 407.2 5474.5 1(1)

0.11420,000 284.5 4140.3 1(6)

5
30,000 409.6 5680.5 1(1)

0.10520,000 293.1 4546.2 1(5)

6
30,000 415.8 5800.1 1(1)

0.09220,000 292.2 4695.6 1(4)
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Table 11. Air conditioner power consumption required to maintain appropriate indoor temperature
for each case.

Summer

Electrical Power Consumption Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Power consumed by air conditioner (kWh) 1.955 2.072 2.129 2.483 2.599 2.653
Reduction of energy consumption in comparison
with the case without air cap attachment (Case 6) 26.3% 21.9% 19.8% 6.4% 2.0% -

Winter

Electrical Power Consumption Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Power consumed by air conditioner (kWh) 2.595 2.665 3.095 3.195 3.370 3.676
Reduction of energy consumption in comparison
with the case without air cap attachment (Case 6) 29.4% 27.5% 15.8% 13.1% 8.3% -

4. Conclusions

A window-mounted air cap sheet roller module was proposed and evaluated to address the
impairment of viewing caused by the application of air caps on windows while still reducing building
energy consumption. The proposed module was first designed as an air cap attachment module that
allowed the air cap sheet to be rolled up and secured with Velcro™ tape. An insulation bar was used
to resolve the gap between the air caps and window glass surface caused by the attachment of the air
caps to the window frame.

A performance evaluation of the proposed model was then completed using a full-scale test bed.
Lighting energy consumption increased by 4.3% to 17.8% in summer and by 12.3% to 52.1% in winter
compared with the case in which no air caps were attached; therefore, the use of air cap sheets is not
appropriate for reducing the lighting energy consumption. Heating and cooling energy, however,
were significantly decreased through the use of the module. The greatest reduction in heating and
cooling energy usage was found when the air caps were attached to the entire window surface (Case 1).
However, when the air caps were only attached to part of the window surface (Cases 2, 3, 4, and 5),
the cooling and heating energy consumption decreased by 2.0% to 21.9% for the summer and by 8.3%
to 27.5% for the winter compared with Case 6, indicating that the proposed window-mounted air cap
roller module was effective. Cooling energy consumption notably increased during the summer in
Case 4, in which the air caps were attached from a height of 1800 mm above the floor to the top of the
window. Heating energy consumption notably increased during winter in Case 3, in which the air
caps were attached from a height of 1.5 m above the floor to the top of the window.

Therefore, the air caps may be attached to the entire surface of a window to reduce the energy
consumption but may also be effectively attached from the top of the window to a height of 1500 mm
above the floor to allow viewing through the window, while still reducing the amount of energy
consumed. Therefore, the window-mounted air cap roller module may enable a building occupant
to choose the level of viewing secured through windows and reduce the cooling and heating energy
consumption, depending on the circumstances.

The proposed window-mounted air cap roller module allowed air caps to be conveniently attached
to a window while resolving the problem of the impairment of views caused by the attachment of
air caps onto the entire window surface. However, the performance evaluation in this study was
carried out in an artificial environment by controlling specific variables. Further studies may be
needed to overcome this limitation by considering various variables, such as air cap dimensions,
heat transmission coefficient, time lag, material properties, and the effectiveness of air cap applications
under different climate characteristics. In addition, although this study was conducted to improve
viewing through a window when air caps were attached, the view from an indoor space depending on
various external environmental conditions was not analyzed. Therefore, further studies may also be
needed to analyze the views through windows from an indoor space.
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