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Abstract: Suppressing the charge recombination at the interface of photoanode/electrolyte is the
crucial way to improve the quantum dot sensitized solar cells (QDSSCs) performance. In this scenario,
ZnS/SiO2 blocking layer was deposited on TiO2/CuInS2 QDs to inhibit the charge recombination at
photoanode/electrolyte interface. As a result, the TiO2/CuInS2/ZnS/SiO2 based QDSSCs delivers
a power conversion efficiency (η) value of 4.63%, which is much higher than the TiO2/CuInS2

(2.15%) and TiO2/CuInS2/ZnS (3.23%) based QDSSCs. Impedance spectroscopy and open circuit
voltage decay analyses indicate that ZnS/SiO2 passivation layer on TiO2/CuInS2 suppress the charge
recombination at the interface of photoanode/electrolyte and enhance the electron lifetime.
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1. Introduction

Semiconductor quantum dots (QDs) based on II-VI group such as CdSe [1], CdTe [2], CdS [3],
PbS [4], PbSe [5], and etc. have been extensively studied for QD sensitized solar cell (QDSSC)
and photocatalysis applications, due to tunable band gap, hot electron injection, higher absorption
coefficients, and multiple excition generation (MEG) [6,7]. However, highly toxic Cd or Pb-containing
QDs based solar cells show the excellent photostability and high power conversion efficiencies
(PCEs). However, high toxicity of Cd or Pb still limit the commercial applications in consideration of
environmental and health concerns. Therefore, the development of “green” QDs without carcinogenic
heavy metal element is crucial for the practical utilizations of QDSSCs.

Less-toxic I−III−VI2 group QDs, specifically CuInS2 (CIS) QD has been attracted as “green” QDs
due to high absorption coefficient (∼105 cm−1) and optimal band gap energy (1.0–1.5 eV), both of which
make it a promising candidate as a sensitizer in QDSSCs [8–10]. There are two common approaches
have been demonstrated for assembling CuInS2 QDs onto TiO2 electrodes: by direct adsorption or
bifunctional-linker-assisted adsorption and by successive ionic layer adsorption [11,12]. Owing to its
facile and reproducible preparation, the SILAR process gained much attention for depositing QDs
onto TiO2 surface with high QD loading and well controllable in size of QDs [13,14].

Chang et al. developed the TiO2/Cu2S/CuInS2/ZnS photoanode using the SILAR process and
achieved a PCE of 2.52% [15]. Zhou et al. prepared QDSSCs based on CuInS2 and introduction of In2S3

buffer layer suing SILAR process, which presented as high as ~1.06% PCEs [16]. Meng et al. developed
a CuInS2 QDs on reduced graphene oxide sheets using facile one-pot solvothermal approach and

Energies 2018, 11, 1931; doi:10.3390/en11081931 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/8/1931?type=check_update&version=1
http://dx.doi.org/10.3390/en11081931
http://www.mdpi.com/journal/energies


Energies 2018, 11, 1931 2 of 9

delivered a PCE of 1.5% [17]. Han et al. fabricated PbS/CuInS2/TiO2 using SILAR process and
obtained a PCE of 4.11% [18]. However, the lower performance of QDSSC is due to severe charge
recombination process at the TiO2/QD/electrolyte interface. To reduce the charge recombination in
QDSSCs, thin wide band gap inorganic barrier layer was deposited over TiO2 electrode, which acts as
an energy barrier hindering electrons from recombining. Until now, ZnS is a promising passivation
layer for suppressing the interfacial recombination in QDSSCs [19]. The ZnS over layer is introduced
by the facile SILAR process, which covers the TiO2 layer and the surface of QDs toward the electrolyte.
Therefore, the deposition of ZnS layer is useful technique to improve the solar cells performance due
to the passivation of the QD surface states, yielding in suppression of the recombination processes [20].

Herein, ZnS/SiO2 double barrier coating was sequentially deposited on CuInS2 QD to suppress
the recombination in QDSSCs. TiO2/CuInS2/ZnS/SiO2 structure favors the improvement of
photovoltaic properties of the QDSSCs. The QDSSC based on the CuInS2 QD sensitizer and ZnS/SiO2

double layer exhibits a PCE of 4.63% (with short circuit current density (JSC) = 12.83 mA cm−2, an open
circuit voltage (VOC) = 0.603 V, fill factor (FF) = 0.598) under AM 1.5 G one full sun illumination,
which is much higher than the CuInS2/ZnS (PCE = 3.23%) and CuInS2 (PCE = 2.15%).

2. Results and Discussion

2.1. Morphological Characterization

Figure 1(a,a1,b,b1,c,c1) show the scanning electron microscopy (SEM) images of the CuInS2,
CuInS2/ZnS, and CuInS2/ZnS/SiO2 layers on the surface of TiO2. The bare CuInS2 film in Figure 1a,a1
exhibit uniformly distributed nanoparticles on the TiO2 surface. All the samples exhibit the almost
similar surface morphology and there is a slight increase in the particle size of with the deposition
of ZnS and ZnS/SiO2 layers; however, the specific change in size of particles is difficult to examine
and was inconclusive. Therefore, elemental mapping from SEM analysis and X-ray photoelectron
spectroscopy (XPS) measurements were conducted to identify the ZnS and ZnS/SiO2 coatings on the
surface of TiO2. Moreover, the compositional distributions of a TiO2/CuInS2/ZnS/SiO2 sample are
further demonstrated by elemental mapping behavior, in which the homogeneous distribution and
coexistence of Cu, In, Zn, S, Si and O elements are clearly observed in TiO2/CuInS2/ZnS/SiO2 sample
(Figure 2). Such elemental mapping results unambiguously indicate that the CuInS2, ZnS and SiO2

were deposited successfully on the TiO2 surface.

Figure 1. SEM images of the (a,a1) CuInS2, (b,b1) CuInS2/ZnS, and (c,c1) CuInS2/ZnS/SiO2 layers on
the surface of TiO2.
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Figure 2. Elemental mapping images of the Cu, In, Zn, S, Si and O for the TiO2/CuInS2/ZnS/
SiO2 samples.

The composition of the CuInS2/ZnS/SiO2 sample was investigated by XPS, as depicted in
Figure 3. The XPS survey spectra in Figure 3a depict peaks for Ti2p, O1s, C1s, Cu2p, In3d, Zn2p, S2p,
and Si2p, respectively. The binding energy of Cu 2p3/2 and Cu 2p1/2 were observed at 932.9 and
952.7 eV, respectively (Figure 3b), with no evident shake-up satellite signals in this Cu2p spectrum.
The two major peaks of In are observed at 445.4 eV and 452.9 eV for In 3d5/2 and In 3d3/2, respectively
(Figure 3c). Figure 3d depicts the binding energies for Zn 2p3/2 and Zn 2p1/2 of the prepared sample
of CuInS2/ZnS/SiO2 at 1023.2 eV and 1046.2 eV respectively. The S 2p spectrum was yielded peaks of
S 2p3/2 and S 2p1/2 at 162.0 eV and 163.0 eV binding energies, respectively (Figure 3e). In the Si 2p
spectrum (Figure 3f), the main peak observed at 103.2 eV has been ascribed to Si in the oxidized form
(SiO2) and the other shoulder peak can be assigned to the presence of crystalline Si (elemental Si).

Figure 3. (a) XPS survey of TiO2/CuInS2/ZnS/SiO2 film. Core-level XPS spectrum of (b) Cu 2p,
(c) In 3d, (d) Zn 2p, (e) S 2p, and (d) Si 2p elements.
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2.2. Electrochemical Characterization

The J-V curves of the QDSSCs based on various photoanodes were obtained under AM
1.5 illumination (100 mW cm−2) are displayed in Figure 4 and the corresponding photovoltaic
parameters are tabulated in Table 1. When only CuInS2 are deposited on TiO2 film, the QDSSC
exhibits a JSC of 7.87 mA cm−2, VOC of 0.509 V, FF of 0.537, resulting a low PCE of 2.15%. However,
when ZnS and ZnS/SiO2 passivation layers were deposited, all the photovoltaic parameters were
greatly improved; the QDSSCs with a ZnS/SiO2 layer exhibit the good performance, with JSC, VOC,
and FF reaching 12.83 mA cm−2, 0.603 V, and 0.598, respectively and the highest PCE of 4.63%, which is
much higher than the PCE of 3.23% with a ZnS passivation layer. It is observed that the ZnO/SiO2 layer
exhibiting higher performance than the bare and ZnS layers in QDSSCs, which is due to suppression
of recombination losses in QDSSCs and increases the charge collection efficiency.

Figure 4. Current density−voltage (J−V) curves of CuInS2, CuInS2/ZnS and CuInS2/ZnS/SiO2

based QDSSCs.

Table 1. Photovoltaic properties and EIS results of QDSSCs fabricated various sensitized conditions.

Cell Voc (V) Jsc (mA cm−2) FF η% RS (Ω) RCE (Ω) Rct (Ω)

CuInS2 0.509 7.87 0.537 2.15 9.34 0.84 30.65
CuInS2/ZnS 0.569 9.95 0.571 3.23 10.03 1.03 23.95

CuInS2/ZnS/SiO2 0.603 12.83 0.598 4.63 10.24 1.16 55.02

Electrochemical impedance spectroscopy (EIS) characterizations were conducted to identify
the charge recombination processes in devices under forward bias (VOC) and dark condition.
Figure 5 depicts the EIS spectra of various photoelectrodes and the Nyquist plots were fitted using
Z-view software with the equivalent circuit provided in the inset of Figure 5. The corresponding fitting
results are shown in Table 1. The Nyquist plot consists of two semicircles and the first semicircle
represents the resistance (RCE) at the CE/electrolyte interface. The second semicircle denotes the
charge transfer resistance (Rct) at the interface of the TiO2/QDs/electrolyte. At higher frequency,
the intercept on the real axis corresponds to the series resistance (Rs) of FTO substrate and the
resistance of FTO/TiO2 [21,22]. It is noticed that there are no apparent differences observed in the RS

and RCE due to the same CE and electrolyte used in these experiments. However, there is a noticeable
difference in Rct; the Rct value for the CuInS2/ZnS/SiO2 based QDSSCs is 55.02 Ω, while Rct value for
the CuInS2/ZnS and CuInS2 based QDSSCs are only 30.65 Ω and 23.95 Ω, respectively. The charge
recombination resistance at the TiO2/QDs/electrolyte interface is mainly observed by Rct. The higher
Rct value represents the suppressed recombination of the electrons and holes, and enhances the
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electron transfer process at the interface of TiO2/QDs/electrolyte. Therefore, it is confirmed that the
deposition of ZnS/SiO2 layer on the CuInS2 QDs favors the efficient electron transfer from CuinS2 to
TiO2 photoanodes with suppression of the interfacial charge recombination processes, which is more
effectively than that of the ZnS passivation layer.

Figure 5. EIS curves of QDSSCs based CuInS2 and CuInS2/ZnS and CuInS2/ZnS/SiO2 cells in the
form of Nyquist-plots and the inset shows the equivalent circuit used to fit the impedance spectra.

Furthermore, Open circuit voltage decay (OCVD) measurements were carried out to study the
charge recombination process in QDSSCs and the results. OCVD analysis of QDSSCs was performed
during relaxation form an illuminated quasiequilibrium state to the darkness. Figure 6 depicts the
OCVD plots of the QDSSCs based on CuInS2, CuInS2/ZnS and CuInS2/ZnS/SiO2 photoanodes.
Apparently, the CuInS2/ZnS/SiO2 cell delivered considerably longer decay times than the CuInS2 and
CuInS2/ZnS cells, indicating a suppression of charge recombination process. Moreover, the VOC decay
and electron life time are directly related according to following equation [23]:

τe = −
(

kBT
e

)(
dVOC

dt

)−1
(1)

where kB is the Boltzmann constant, T is the absolute temperature, and e is the electronic charge.
It can be noticed that the τe of all the devices increases with decreasing VOC. Among the QDSSCs
investigated, the CuInS2/ZnS/SiO2 delivers longer τe than the CuInS2/ZnS and CuInS2 devices,
implying suppressed recombination and efficient electron transfer at the TiO2/QDs/electrolyte,
which is consistent with EIS analysis. Therefore, the slower VOC decay and longer τe of the
CuInS2/ZnS/SiO2 device efficiently suppressed the electron recombination from TiO2 and QDs to
electrolyte and higher charge collection efficiency contribute to the increased photovoltaic performance.
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Figure 6. OCVD curves of QDSSCs based CuInS2 and CuInS2/ZnS and CuInS2/ZnS/SiO2 cells.

Several paths for charge recombination occur at the TiO2/QDs/electrolyte interface,
which suppress the performance of QDSSCs. The deposition of ZnS/SiO2 layer on the surface of
TiO2/CuInS2 can effectively suppress the charge recombination process at the photoanode/electrolyte
interface (Figure 7) and enhance the QDSSCs performance.

Figure 7. Possible charge transfer behavior in the TiO2/CuInS2/ZnS/SiO2 QDSSCs.

3. Materials and Methods

3.1. Preparation of TiO2 Electrodes

TiO2 paste (20 nm, Ti-Nanoxide HT/TP, Solaronix) was doctor bladed on fluorine-doped tin oxide
(FTO, 1.3 × 1.6 cm2) substrate and heated at 450 ◦C for 30 min. The film thickness was about 7.5 µm
with an active area of 0.25 cm2 [24].

3.2. Deposition of CuInS2 QDs on TiO2 Electrodes

CuInS2 QDs was deposited on the TiO2 substrate using the SILAR process. TiO2 electrodes were
immersed into the three different solutions: one of 0.05 M of Cu(NO3)2 for 2 min, another of 0.05 M of
In(NO3)3 for 2 min, and a final one of 0.1 M of Na2S for 5 min. Following each immersion, the samples
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were rinsed with deionized (DI) water for 1 min to remove the excess precursors. This procedure
comprises one CuInS2 SILAR cycle and was repeated six times.

3.3. Deposition of ZnS, ZnS/SiO2 Passivation Layers on TiO2/CuInS2 Electrodes

The ZnS passivation layer was deposited on TiO2/CuInS2 electrodes by a SILAR process. Typically,
TiO2/CuInS2 electrodes were successively immersed into aqueous solutions containing 0.1 M of
Zn(NO3)2 and 0.1 M Na2S for 1 min, respectively. This process was repeated for three times and
the electrode is named as CuInS2/ZnS. Furthermore, SiO2 coating was deposited by dipping the
CuInS2/ZnS electrodes in ethanol solution containing 0.01 M tetraethylorthosilicate and 0.1 M NH4OH
for 1 h. The as-fabricated electrode is termed as CuInS2/ZnS/SiO2.

3.4. QDSSC Fabrication

CuS CE on FTO substrate was fabricated according to the literature [25]. The photoanode and
CuS CEs were combined using sealant (SX 1170-60, Solaronix) and the space between the electrodes
was filled with polysulfide electrolyte (1 M Na2S, 2 M S, and 0.2 M KCl in methanol and water at
a ratio of 7:3).

3.5. Characterizations

The morphology of the samples were evaluated by SEM (S-2400, Hitachi). XPS measurement
was investigated using VG Scientific ESCALAB 250. The J-V measurements were examined under
AM 1.5 sunglight (100 mW cm−2) using an ABET Technologies (USA) solar simulator. EIS was
investigated using a BioLogic SP-150 work station under one sun illumination over the frequency of
100 mHz–500 kHz.

4. Conclusions

Introduction of ZnS/SiO2 passivation layer on TiO2/CuInS2 QDs has been demonstrated to be an
effective and promising approach to significantly suppress the charge recombination at the interface
of photoanode/electrolyte and enhance the power conversion efficiency. Interestingly, an overall
η of 4.63% was obtained for the TiO2/CuInS2/ZnS/SiO2 device, which is 43% enhancement over
the η = 3.23% for the TiO2/CuInS2/ZnS and more than 115% increment over the η = 2.15% for the
TiO2/CuInS2 device. Overall, ZnS/SiO2 passivation layer is an effective approach to enhance the
overall power conversion efficiency of QDSSCs.
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