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Abstract: Highly intermittent renewable energy sources pose new challenges to microgrid operation
and control. Thus, many distributed control strategies have been proposed to solve this problem.
However, for most previous studies, the system frequency fluctuation can be further controlled on the
basis of the optimal control strategy. This paper proposes a novel distributed optimal control strategy
of a battery energy storage system in an islanded microgrid to provide desired optimal control
performance and fast frequency recovery. The proposed control strategy is implemented through a
multi-agent system based on consensus algorithm, which only requires information collected through
a local communication network. Furthermore, the measurement of supply–demand mismatch is
replaced by the control signal obtained from a supplementary controller with the improved linear
active disturbance rejection control algorithm. The stability of microgrid frequency can be greatly
enhanced through this improvement. Finally, the validity of proposed method is demonstrated by
various case studies which are given in this paper.

Keywords: distributed optimal control; islanded microgrid; battery energy storage system;
linear active disturbance rejection control; frequency recovery

1. Introduction

The microgrid, as is defined by the Consortium for Electric Reliability Technology Solutions
(CERTS), is the integration of interconnected load and distributed energy resources and acts as a
single controllable entity with respect to the traditional power grid [1,2]. However, due to the high
intermittence of renewable energy sources (RESs), new challenges have been posed to the operation
and control of microgrid.

In order to overcome this problem, battery energy storage systems (BESSs) [3] are installed
in microgrids due to their fast dynamic responses and accurate performances in absorbing
excessive power and compensating for insufficient power. In [4], a BESS was used to provide fast
active power compensation and improve performances of load frequency control. In [5], a novel
state-of-charge-based control strategy is proposed to smooth the output fluctuation of a hybrid
system. Finally, in [6], a cooperation control strategy for wind power and battery storage is proposed
to provide frequency regulation. The supply–demand balance can be well guaranteed through an
appropriately designed control strategy of BESSs. Additionally, the rotating inertia of a microgrid is
significantly reduced due to the widely use of power electronic converters, which will result in greater
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frequency oscillation if there exists supply–demand mismatch [7,8]. Hence, in order to stabilize system
frequency during the optimal control process, it’s significantly important to employ more effectively
control strategies.

Generally, there are three main control strategies, including centralized control strategy [9,10],
decentralized control strategy (DCS) [11,12], and distributed control strategy. The centralized control
strategy, which is implemented through a central controller, requires global information of a microgrid.
That is to say, a complex communication network and a powerful central controller are essential.
Additionally, microgrid will be broken down by the single-point fault of the central controller.
In contrast, components based on fully decentralized control strategy are only controlled by the
local information and do not need to communicate with each other, which enhances system robustness.
However, because of the deficiency of broader available information, it is not effective to use all
available resources of microgrid for optimization [13]. Conversely, DCS only needs the information
obtained from the local communication network.

Recently, there are various DCSs for microgrid operation and control. In [14], an incremental cost
consensus algorithm is proposed to illustrate the use of distributed control in a microgrid, and the
algorithm was extended by considering the generator capacity. Then, in [15], based on the incremental
cost consensus algorithm, an improved distributed control strategy is proposed through changing the
updating rules to minimize total power loss. Similarly, in [16], another improved distributed control
strategy based on the consensus algorithm is proposed for microgrid optimal control. Moreover,
the distributed cooperative control strategy proposed in [17] also effectively maintains total power
balance and minimizes total power loss. Then, inspired by the dynamic average consensus estimation
method, an optimal control strategy is proposed in [18] to minimize the generation cost of components
in a distributed manner. With further investigation of the distributed algorithm, authors in [17,18]
propose a novel distributed strategy in [13] to coordinate multiple BESSs under wind uncertainties.
The fully distributed power dispatch method proposed in [19] achieves rapid frequency recovery
and minimizes generation cost for a microgrid, in which a subgradient-based consensus algorithm
is used to recover frequency and an average consensus algorithm is used to eliminate frequency
disturbance caused by measurement error. However, although the aforementioned literatures can
realize distributed optimal control of microgrid, the fluctuation of frequency can be further controlled
during the optimal control process.

Microgrids based on the previous optimal methods still have small supply–demand deviation
after the optimization process. It can be neglect in traditional power systems. However, the frequency
of a microgrid changes more rapidly and sharply with the existence of supply–demand mismatch.
Additionally, considering the stochastic characteristic of wind turbine generators and other renewable
energy sources, it’s necessary to propose a more available control strategy which can provide faster
frequency recovery during optimization process. Therefore, this paper proposes a novel distributed
optimal control strategy to realize the minimization of BESS cost, and to simultaneously provide
fast frequency recovery. The multi-agent system (MAS) framework [20] and the consensus-based
optimization algorithm are employed in this paper. Furthermore, the measurement of supply–demand
mismatch is replaced by the control signal calculated by a supplementary controller based on the
improved linear active disturbance rejection control (ILADRC) algorithm [21] to realize fast frequency
recovery. Compared with methods in [14,16] and other literatures, the frequency stability of a microgrid
can be better guaranteed based on the proposed method.

This paper is arranged following: Section 2 introduces consensus algorithm and ILADRC theory.
Section 3 formulates the problem. The proposed control strategy and its implementation are described
in Section 4. Simulation results and analysis are shown in Section 5. Finally, conclusions are drawn
in Section 6.
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2. Preliminary

2.1. Consensus Algorithm

The theory of a consensus algorithm is described in this section. G = (N , E) expresses a network.
N = 1, 2, · · · , n denotes nodes set, E denotes edges set. Edge (i, j) ∈ E denotes the connected nodes.
The initial value of node i is xi(0) ∈ R. And the initial values of entire network can be expressed
as x(0) = (x1(0), x2(0), · · · , xn(0))T . The purpose of Multi-Agent System is to obtain the value of
1
n ∑n

i=1(xi(0)) which can be calculated through the consensus algorithm. The iterations are as

xi(t + τ) = wiixi(t) + ∑
j∈Ni

wijxj(t) (1)

where t = 0, 1, 2, · · ·, wij denotes the calculation weight of xj at node i.
Then, Equation (1) is described as

x(t + τ) = Wx(t) (2)

where

W =


w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wnn


The converging speed of Multi-Agent System depends on W. Thus, this paper adopts an improved

metropolis algorithm [22] and wij can be described as

wij =


2

ni+nj+1 , j ∈ Ni

1−∑j∈Ni
2

ni+nj+1 , i = j

0, otherwise.

(3)

where Ni denotes the neighbor agents of agent i, ni denotes the amount of agents which are connected
with agent i, and nj denotes the amount of agents which are connected with agent j.

2.2. Improved Linear Active Disturbance Rejection Control

In a system, the output is usually denoted by y, the control signal is denoted by u, the external
disturbance is denoted by d. Then, the system can be expressed following

ÿ = bu + f (ẏ, y, u, d) (4)

where f denotes the sum of external and internal disturbance.
The system can be described in Equation (5). Then, in order to estimate y, ẏ, and f , a linear

extended state observer (LESO) is designed following Equation (6).
ẋ1 = x2

ẋ2 = x3 + b0u

ẋ3 = ḟ

y = x1

(5)

where b0 denotes the estimation value of b.
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
ż1 = z2 + β1(y− z1)

ż2 = z3 + β2(y− z1) + b0u

ż3 = β3(y− z1)

(6)

where
[β1, β2, β3] = [3ωo, 3ω2

o , ω3
o ]

With the estimation of disturbance, system control signal can be expressed as Equation (7).
This also transforms system into an integral cascade following Equation (8).

u =
u0 − z3

b0
(7)

ÿ = f + u0 − z3 ≈ u0 (8)

Finally, the control law of ILADRC is following [21]

u0 = kp(r− y)− kdẏ (9)

3. Problem Formulation

A framework of an islanded microgrid is presented in Figure 1, which consists of multiple BESSs,
two wind power generators, and three load demands. In a system’s stable state, the active power
balance of an islanded microgrid can be represented as:

∑
i∈NB

PBESSi + ∑
i∈NR

PRESi = ∑
i∈NL

PLi (10)

where PBESSi , PRESi , and PLi are the output power of ith BESS, RES, and load demand, respectively.
Furthermore, NB, NR, and NL are the index sets of BESSs, RESs, and load demands, respectively.

Although the wind power generator can make contributions to the frequency regulation through
the inertia control strategy, the output power cannot be accurately controlled due to its intermittent
nature. Additionally, the wind power generator is almost undispatchable. In contrast, because of
the fast dynamic responses and accurate performances, the BESSs can be dispatched to eliminate
the supply–demand mismatch caused by the intermittence of RESs and unpredicted fluctuation of
load demand.

The cost function for BESSs is often modeled as:

C(PBESSi ) =
1
2

ai(PBESSi )
2 + biPBESSi

s.t. Pmin
BESSi

≤ PBESSi ≤ Pmax
BESSi

(11)

where C is the cost, and nonnegative ai and bi are the cost coefficients. Pmin
BESSi

and Pmax
BESSi

are the lower
and upper bounds of ith BESS power output, respectively.

Then, the optimal control problem of BESSs can be described as follows:

Min ∑
i∈NB

C(PBESSi )

s.t. ∑
i∈NB

PBESSi + ∑
i∈NR

PRESi = ∑
i∈NL

PLi

Pmin
BESSi

≤ PBESSi ≤ Pmax
BESSi

(12)
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Figure 1. Islanded microgrid system.

The traditional solution of this situation is to use the Lagrange multiplier method, and the
Lagrange function for the optimal problem can be constructed as:

L = ∑
i∈NB

C(PBESSi ) + λ( ∑
i∈NL

PLi − ∑
i∈NR

PRESi ) (13)

where λ is the Lagrange multiplier associated with the equality constraint.
The Lagrangian operator L is minimized when the following equation is satisfied:

∂L
∂PBESSi

=
dC(PBESSi )

dPBESSi

− λ

= aiPBESSi + bi − λ

= 0

(14)

which yields the following optimal solution:

PBESSi =
λ− bi

ai
(15)

Then, through substituting Equation (15) into Equation (10), the optimized incremental cost of
each component can be represented as:

λ =
∑i∈NL

PLi −∑i∈NR
PRESi + ∑i∈NB

bi
ai

∑i∈NB
1
ai

(16)

Furthermore, considering of the generation constraints of each component, the optimal solution
is given as [23]: 

aiPBESSi + bi = r∗, Pmin
BESSi

< PBESSi < Pmax
BESSi

aiPBESSi + bi < r∗, PBESSi = Pmax
BESSi

aiPBESSi + bi > r∗, PBESSi = Pmin
BESSi

(17)

where r∗ = λ is the optimal incremental cost.
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The above solution can be solved through the centralized control strategy. However, due to the
timely communication and calculation manner, the centralized control strategy cannot provide the
desired responses under unexpected and rapidly changed disturbances. In contrast, the distributed
control strategy is flexible, scalable, reliable, and cost-effective to implementation, and it is wildly
adopted to maintain system stability and provide optimal control performances.

With the theory of consensus algorithm, the optimal control problem can be solved by Equation (18):

ri[k + 1] = ∑
j∈Nj

wijrj[k] (18)

where r is the incremental cost.
Given that all the components are operating in a stable state at t = 0, and following the consensus

algorithm, the optimal incremental cost will converge to Equation (19) at t = T.

r∗t=1·T =
∑i∈NB

(aiPBESSi + bi)

N
(19)

where T is a convergent period to obtain the optimized incremental cost with a consensus algorithm.
However, as described in Equation (20), the result obtained by the consensus algorithm in one

convergent period is not equal to that calculated by the Lagrange multiplier method with a centralized
control strategy. That is to say, the supply–demand balance is broken. The supply–demand mismatch
is described by Equation (21).

λ =
∑i∈NL

PLi −∑i∈NR
PRESi + ∑i∈NB

bi
ai

∑i∈NB
1
ai

=
∑i∈NB

PBESSi + ∑i∈NB
bi
ai

∑i∈NB
1
ai

6= ∑i∈NB
(aiPBESSi + bi)

N
= r∗

(20)

∆P = ∑
i∈NB

Pλ
BESSi

− ∑
i∈NB

Pr∗
BESSi

= ∑
i∈NB

1
ai
· (

∑i∈NB
Pλ

BESSi
+ ∑i∈NB

bi
ai

∑i∈NB
1
ai

− bi)

− ∑
i∈NB

1
ai
· (

∑i∈NB
(aiPr∗

BESSi
+ bi)

N
− bi)

6= 0

(21)

In order to deal with the above problem, an improved distributed approach was proposed by [14],
and the updating rule for the leader agent follows:

ri[k + 1] = ∑
j∈Nj

wijrj[k] + ε · ∆P[k] (22)

where ε is the convergence coefficient, which controls the convergence speed of the leader agent.
Then, [16] modified the updating rules for agents coordination, which are represented as:

ri[k + 1] = ∑
j∈Nj

wijrj[k] + ε · ∆Pi[k]

PBESSi [k + 1] =
ri[k + 1]− bi

ai

∆Pi[k + 1] = ∑
j∈Nj

wij · (∆Pi[k] + (PBESSi [k + 1]− PBESSi [k]))

(23)
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In the initial state, ∆Pt=0·T [0] = 0. After completing one convergent period, ∆Pt=1·T [0] 6= 0, then ε

works to eliminate the supply–demand mismatch until ∆Pt=n·T [0] = 0. As is shown in Equation (24),
the optimal incremental cost converges to that calculated by central control strategy.

λ =
∑i∈NB

PBESSi + ∑i∈NB
bi
ai

∑i∈NB
1
ai

=
∑i∈NBESSi

(aiPBESSi + bi)

N
= r∗

(24)

4. Proposed Distributed Optimal Control of BESS with Fast Frequency Recovery

Through the distributed control strategy introduced in Section 3, the optimal incremental cost
can converge to the desired value after nTs, which produces negative effects on system stability.
Furthermore, the authors also find that the frequency recovery process will take a long time, or even
have deviation following great and rapid changes of the wind turbine generator’s (WTG’s) output
power and load demand. This may result in a system crash. To overcome this problem, this paper
proposes a novel distributed optimal control of BESSs to realize fast frequency recovery and enhance
system stability.

4.1. Distributed Optimal Control Strategy

The system control structure of [14,16] is described in Figure 2, and the proposed control structure
is described in Figure 3. System power-frequency characteristic is described by ∆P

∆ f = 1
Ms+D . Most

previous studies in the literature have focused on modifying the updating rule of the consensus
algorithm for optimization. However, it still cannot greatly guarantee the frequency stability. This study
designed a supplementary controller to enhance the frequency stability, which is shown in Figure 3.
The deviation of frequency ∆ f is regarded as the controlled variable, and the control signal is regarded
as the referential deviation of supply–demand mismatch ∆Pre f [0]. Based on this improvement,
the deviation of frequency ∆ f is thoroughly eliminated and the frequency recovery process is
also accelerated.

Consensus 

Algorithm

, iP P
Lower Level of 

Battery Control

fref

iP System Power-

Frequency 

Characterist ic

P

Figure 2. System control process.

Consensus 

Algorithm

,ref

iP P Lower Level of 

Battery Control

f
ref

iP System Power-

Frequency 

Characterist ic

P

Supplementary 

Controller

Figure 3. Proposed system control process.

This paper employs ILADRC algorithm. Recently, the LADRC algorithm, which was developed
from the PID algorithm, is widely employed in power system control and other fields. It inherits the
essence of PID algorithm and removes its shortcoming. Furthermore, the LESO can well estimate
system external and internal disturbance. It is obvious that the intermittent and random power of
renewable energy sources is the external disturbance of microgrid. So, the BESSs in an islanded
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microgrid system can provide better control based on the LADRC to compensate for the fluctuation
of system supply–demand mismatch. That is to say, the stability of microgrid frequency can be
greatly enhanced. Furthermore, the effectiveness of ILADRC has proved better than the LADRC.
Consequently, the ILADRC has great anti-disturbance capability and robustness. This is also the main
reason that the ILADRC is employed in this paper. Moreover, the parameter tuning process of the
ILADRC-based controller is much easier than that of controllers based on other control algorithms.
Moreover, the ILADRC-based controller is independent of an accurate system model, which means
that a complex modeling process can be avoided.

4.2. Algorithm Implementation

With the proposed control strategy, the construction of the leader agent and normal agent are
shown in Figures 4 and 5, respectively. And Figure 6 shows the communication relationship of
BESSs. Firstly, the normal agent measures the component output power and initializes the value of
ri[0]. Then, the communication signal of ∆Pi[k] and ri[k] can be obtained through the updating rules
described in Equation (23). Different from the normal agent, the leader agent still has to measure the
value of system frequency and calculate the deviation of frequency ∆ f for initialization. Through
the consensus algorithm, the referential power output of each component can be calculated by the
optimized incremental cost r∗.

After obtaining the referential power of each BESS, it will be controlled by the lower-level control
block, as is shown in Figure 7. Considering the sampling process and time-delay characteristic,
the transfer function of the decoupled d axis current loop is described in Figure 8. Furthermore,
the transfer function can be equivalent to the inertial unit, and the inertia time constant is equal to 3Ts.
The agent of BESS1 is the leader agent, and the agents of others are the normal agents. Furthermore,
the variable-speed WTG model [21] is described in Figure 9; its principles and parameter values will
not be introduced in this paper.

Communication
Neighboring 

Agent
Leader Agent

Calculation
(23)

Supplementary 

Controller

Battery 

Control Unit

ref

iP

Measurement 

& 

Initialization

f

 0P

 0ir

   ,  i iP k r k

   ,  j jP k r k

   ,  j jP k r k   ,  i iP k r k

Figure 4. Leader agent block.

Communication
Neighboring 

Agent
Normal Agent

Calculation
(23)

Battery 

Control Unit

ref

iP Measurement

&

Initialization

 0ir

   ,  i iP k r k

   ,  j jP k r k

   ,  i iP k r k    ,  j jP k r k

Figure 5. Normal agent block.
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Figure 6. Node of BESSs.
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refP
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Filter
PWM

dq0 abc
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di qi

L

Calculation

(23)

Figure 7. Power control block of BESS.
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PWM
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





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di 1

1 1

R

L R s



 

di

Figure 8. Transfer function of BESS.
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

err
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K
K
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

1

WTVWTV
1

1conT s 

WTGP

 f
fK

maxP

minP

Figure 9. Simulation model of wind turbine generator.

The proposed control strategy of a microgrid is shown in Figure 10. The imaginary lines represent
the communication topology. The referential power output of each BESS can be obtained through
communicating with its neighboring agent.

Numerical simulations with the aforementioned control strategy under different operation
conditions were tested with the above model, and the results are described in Section 5. Then,
the validity of the proposed method is demonstrated through comparison to previous literatures in the
following section.
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(Leader Agent)
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BESS3 Agent

BESS4 Agent

BESS5 Agent

Figure 10. The proposed control strategy of the microgrid.

5. Simulation Results and Analysis

The simulation results are described in this section and the simulations are testing in an islanded
microgrid with a configuration of five BESSs, two WTGs, and three load demands. The parameters of
the BESS are summarized in Table 1, and the parameters of the WTG and load demand are summarized
in Table 2. The wind turbine generator used in this work is the doubly-fed induction generator, which
will not be introduced in detail in this paper. The supplementary controller parameters are shown in
Table 3. All the simulations are testing in MATLAB/Simulink and the step time is 0.01 s.

Table 1. Simulation parameters of BESS.

BESS ai bi Pmin
BESSi

(p.u.) Pmax
BESSi

(p.u.) Initial Value (p.u.)

BESS1 0.83 0.007 0 0.35 0.15
BESS2 0.79 0.006 0 0.40 0.10
BESS3 0.90 0.009 0 0.30 0.12
BESS4 0.93 0.012 0 0.25 0.13
BESS5 0.78 0.008 0 0.30 0.05

Table 2. Simulation parameters of load demand and wind turbine generator (WTG).

Load and WTG Initial Value (p.u.) Pmin
i (p.u.) Pmax

i (p.u.)

Load1 0.40 0 0.60
Load2 0.30 0 0.50
Load3 0.30 0 0.60
WTG1 0.25 0 0.50
WTG2 0.20 0 0.60

Table 3. Simulation parameters of the ILADRC-based controller.

b0 ωo ωc

5.172 1.101 10.241

Furthermore, this study adopted the rate of change of frequency (RoCoF) and the integral of
time-weighted absolute value of the error (ITAE) to be the evaluation indexes of system frequency
stability. The RoCoF and ITAE are described by Equations (25) and (26), respectively.

RoCoF =
∫

t|d f
dt
|dt (25)
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ITAE =
∫

t|∆ f |dt (26)

5.1. Case A

In this case, performances of the proposed method at initial state are investigated. The initial
power output of BESSs are shown in Table 1. The fluctuation of supply–demand and WTG power
output are supposed to be stable and their initial values are shown in Table 2. The response of total
active power deviation and microgrid frequency deviation are described in Figure 11. As is shown in
Figure 11, the frequency based on the proposed distributed strategy can be recovered to its normal value
in 2.7 s. And the overshoot of frequency is 0.0006 Hz, it’s better than those derived by other methods.
The detailed comparison results are shown in Table 4. Obviously, microgrid system with the proposed
distributed strategy has better frequency recovery capability and desired optimal performances.
The convergence curve of incremental cost is described in Figure 12 and the active power of each BESS
is shown in Figure 13.

0 10 20 30 40 50 60 70 80 90 100
(a) Time (s)

-0.01

0
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f 
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z)
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Method in [16]

0 2 4 6 8 10 12 14 16 18 20
(b) Time (s)

-5

0

5

10

P 
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.u
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10-3

Proposed method
Method in [14]
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Figure 11. System transient response. (a) Microgrid frequency deviation. (b) Total power deviation.
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Figure 12. Convergence curve of incremental cost.
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Figure 13. Power output of BESSs.

Table 4. Performance comparison from the initial state.

Control Strategy Overshoot ITAE RoCoF

Proposed method −0.0006 Hz 0.0012 0.0013
Method in [16] −0.0070 Hz 0.9232 0.0877
Method in [14] −0.0174 Hz 2.2521 0.2152

5.2. Case B

The validity of the proposed method in handling the situation with unpredicted fluctuation of
load demand is demonstrated. Suppose that WTG power is stable, and the load demand suddenly
increases from 1.0 p.u. to 1.1 p.u. at 10 s. The total active power deviation can be well eliminated by all
three distributed control strategies, as is shown in Figure 14b.
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Figure 14. System transient response. (a) Microgrid frequency deviation. (b) Total power deviation.

However, the overshoot of frequency based on the proposed control strategy is 0.0115 Hz,
which is smaller than 0.0617 Hz and 0.0148 Hz obtained through the methods in [14,16], respectively.
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Additionally, the settling time of the system frequency with the proposed control strategy, which
is 4.9 s, is shorter than that based on the other methods. The convergence curve of incremental
cost and the power of BESSs are described in Figures 15 and 16, respectively. Simulation results in
Table 5 indicate the significant importance of the supplementary controller with the ILADRC algorithm.
The supplementary controller can compensate for the deviation of frequency faster, and the incremental
cost of the BESSs can also converge to the optimization value simultaneously.

Table 5. Performance comparison with +0.1 p.u. load demand change.

Control Strategy Overshoot ITAE RoCoF

Proposed method −0.0115 Hz 0.0074 0.0070
Method in [16] −0.0148 Hz 1.8601 0.1721
Method in [14] −0.0617 Hz 8.1005 0.7325
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Figure 15. Convergence curve of incremental cost. (a) Convergence of incremental cost with the
proposed method. (b) Convergence of incremental cost with the method in [16]. (c) Convergence of
incremental cost with the method in [14].
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Figure 16. Power of the BESSs. (a) Power of the BESSs with the proposed method. (b) Power of the
BESSs with the method in [16]. (c) Power of the BESSs with the method in [14].

5.3. Case C

In the practical environment, unpredictable disturbances cannot be neglected anymore. Then,
the anti-disturbance ability of the distributed optimal control strategy is of significant importance. So,
the system performances under stochastic power output of the WTGs are investigated. The total load
demand is supposed to be stable at 1.0 p.u.

The stochastic characteristic of wind power is shown in Figure 17. The comparison results of
supply–demand mismatch and frequency deviation are described in Figure 18. From comparison
results shown in Table 6, it can be found that frequency fluctuation with the proposed method is
in an extremely smaller range than that based on other methods, which demonstrates the superior
anti-disturbance capability of the proposed method. The power of the BESSs and the convergence
curve of incremental cost are shown in Figures 19 and 20, respectively.

Table 6. Performances with stochastic disturbance of WTG.

Control Strategy ITAE RoCoF Range of ∆ f

Proposed method 0.1760 0.2955 −1.25 ×10−4 Hz ∼ 1.13 ×10−4 Hz
Method in [16] 1.1805 1.2697 −6.55 ×10−4 Hz ∼ 7.74 ×10−4 Hz
Method in [14] 3.9578 3.9021 −2.43 ×10−3 Hz ∼ 2.74 ×10−3 Hz
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Figure 17. The total stochastic power output of the WTG.
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Figure 18. System transient response. (a) Microgrid frequency deviation. (b) Total power deviation.
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Figure 20. Convergence curve of incremental cost.

6. Conclusions

In an islanded microgrid, the system frequency changes more rapidly and sharply than that in a
traditional power grid while supply–demand mismatch occurs. Therefore, this paper proposes a novel
distributed optimal control strategy of BESSs in an islanded microgrid, which can provide optimal
control performances and simultaneously realize faster frequency recovery, compared with previous
studies. A multi-agent system based on the consensus algorithm is adopted in the proposed control
strategy. A supplementary controller based on the ILADRC algorithm is employed to greatly enhance
the frequency stability. The validity of the proposed distributed strategy is demonstrated by adequate
simulation experiments, comparing the proposed method with two previous methods.

On the one hand, the proposed control strategy realizes the maximum welfare of the BESSs in a
microgrid, so it makes economic sense. On the other hand, practically, the proposed method guarantees
the microgrid stability while the components are operating at minimum cost, which ensures system
security and consumers’ experience. Based on the above aspects, this work realizes the economic
operation of a microgrid without reducing power quality, and it even greatly enhances system stability.

In future work, the proposed distributed optimal control strategy can be improved for a system
with more realistic constraints. Furthermore, it also has the potential to solve multi-microgrid optimal
control problem.
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Abbreviations and Notations

CERTS Consortium for Electric Reliability Technology Solutions
RESs Renewable Energy Sources
BESSs Battery Energy Storage Systems
WTG Wind Turbine Generator
MAS Multi-Agent System
LADRC Linear Active Disturbance Rejection Control
LESO Linear Extended State Observer
W Weight matrix
f System total disturbance of external and internal disturbance
xi System states
zi Estimation of system states
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βi Parameters of LESO
b0, ωo, ωc, kp, kd Controller parameters of LADRC
PBESSi Power output of the ith BESS
PRESi Power output of the ith RES
PLi Power output of the ith load
C(PBESSi ) Cost of the ith BESS
ai, bi Cost coefficients
NB, NR, NL The index sets of BESSs, RESs, and load demand
Pmin

BESSi
, Pmax

BESSi
The lower and upper bounds of ith BESS power output

L Lagrange function
λ Lagrange multiplier
ri Incremental cost of the ith BESS
r∗ Optimal incremental cost
ε Convergence coefficient
∆P[k] Supply-demand mismatch of kth iteration
RoCoF Rate of change of frequency
ITAE Integral of time-weighted absolute value of the error
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