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Abstract: A smart grid facilitates more effective energy management of an electrical grid system.
Because both energy consumption and associated building operation costs are increasing rapidly
around the world, the need for flexible and cost-effective management of the energy used by buildings
in a smart grid environment is increasing. In this paper, we consider an energy management
system for a smart energy building connected to an external grid (utility) as well as distributed
energy resources including a renewable energy source, energy storage system, and vehicle-to-grid
station. First, the energy management system is modeled using a Markov decision process that
completely describes the state, action, transition probability, and rewards of the system. Subsequently,
a reinforcement-learning-based energy management algorithm is proposed to reduce the operation
energy costs of the target smart energy building under unknown future information. The results
of numerical simulation based on the data measured in real environments show that the proposed
energy management algorithm gradually reduces energy costs via learning processes compared to
other random and non-learning-based algorithms.

Keywords: smart grid; smart energy building; distributed energy resource; renewable energy sources;
Markov decision process; reinforcement learning; Q-learning

1. Introduction

The term “smart grid” refers to a method of operating within the electrical grid system that is
associated with smart energy meters, Energy Storage Systems (ESSs), Renewable Energy Sources
(RESs), and communication networks among others [1]. In a smart grid environment, where energy
supply and demand are rapidly increasing in modern times, one of the most important issues is
developing an effective Energy Management System (EMS) to achieve various goals such as reducing
energy consumption, balancing energy supply and demand, increasing the utilization of RES, and
minimizing energy costs [2]. However, energy management in a smart grid is a very challenging task
given the informational unknowns about factors that change over time, such as load requirements,
energy prices, and amount of energy generation. For example, the amount of energy generated by RES
such as a Photovoltaic (PV) system is strongly influenced by weather conditions that change over time.
The variability of weather conditions makes the amount of energy generation hard to be predicted,
consequently leading to the difficulty in the energy management.

In recent years, many research groups working on the smart grid have focused on improving
EMS in various environments. Many studies, including [3,4], have focused on energy management for
Thermostatically Controlled Loads (TCLs). These works have tried to derive the optimal control policy
of TCLs in order to reduce the energy consumption of the smart grid or to meet the requirement of
ancillary services while guaranteeing users’ comfort. The energy management of ESS in microgrid
environments has been researched in literature. The term “microgrid”, which refers to a localized small
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electricity grid, can be occasionally disconnected from the traditional centralized grid and operate in
an island-mode by leveraging backup energy resources such as ESS, fuel generators, and RES. These
research efforts in [5–8] focused on decreasing dependency on the external grid or balancing between
energy supply and demand by increasing ESS utilization in the microgrids. There has also been a
considerable increase in the interest in energy management of Vehicle-to-Grid (V2G) systems [9–12].
By intelligent management of Electric Vehicles (EVs) charging and discharging scheduling, the profits
of V2G station or the costs charged to EV users are optimized.

As reported by the U.S. Energy Information Administration in [13], buildings accounted for the
consumption of more than 20% of the total energy delivered worldwide in 2016. This percentage is
expected to increase by an average of 1.5% per year through 2040. To prepare for a significant amount of
energy consumption in buildings, many research groups have actively worked to develop an EMS for
smart energy buildings. The smart energy building represents an Information Technology (IT) centric
building that automates its energy operation for achieving the optimal energy consumption. These
smart energy buildings can be considered as a type of microgrid systems since they can operate in
island-mode with the help of ESS, RES, or V2G systems. The literatures of [14–21] aimed at optimizing
the energy consumptions or minimizing operation costs by flexibly and intelligently managing the
various kinds of controllable energy sources and loads such as ESS, RES, and V2G system in the smart
energy building.

In basic terms, the Reinforcement Learning (RL) is the problem in an area of machine learning
concerned with how a learning agent learns what to do (action) in a given situation (state) by interacting
with an environment to maximize or minimize numerical returns (rewards) [22]. Because the actions
of the agent can affect all subsequent rewards, including the instant reward and its later actions, RL is
a closed-loop system. As one of popular methods in RL, Q-learning is widely used for its model-free
characteristic, which requires no prior knowledge regarding rewards or transition probabilities in the
system, which makes it suitable for operating a system dealing with real-time data without future
information or any prediction process. For this reason, many researchers focusing on EMS in the smart
grid, especially for TCLs, ESS, and V2G systems in [3,4,6,11,12], have adopted Q-learning in their
algorithms to control energy by using real-time information. However, the extant literature contains
little evidence of the use of Q-learning for managing energy in smart energy buildings. Much of
the research regarding smart energy buildings is on calculating energy schedules by using given or
predicted day-ahead information rather than real-time information.

In this study, an EMS for a smart energy building is considered. This study is motivated by a
Research and Development (R&D) project that aims at developing an EMS for a smart energy building
in the campus of Gwangju Institute of Science and Technology (GIST) in Republic of Korea. The main
objective of this project is to reduce the energy costs of a campus building by applying Artificial
Intelligence (AI) techniques to the EMS. The smart energy building investigated in this paper is
associated with a utility, a PV system, an ESS, and a V2G station, and it can exchange energy with those
systems in real-time. The EMS is modeled using a Markov Decision Process (MDP) that completely
describes the state space, action space, transition probability, and reward function. Furthermore, the
system accounts for all unknowns associated with future information on the load demand of the
building, amount of PV generation, load demand of V2G station, and energy prices of utility and V2G.
To reduce the energy operation costs associated with this unknown information, a Q-learning-based
energy management algorithm is proposed that improves the recommended actions for energy dispatch
at every moment by learning through experience without any prior knowledge. Through numerical
simulation results, we verify that the proposed Q-learning-based energy management algorithm
gradually reduces the daily energy cost of smart energy building as its learning process progresses.
The main contributions of this study can be summarized as follows:

• The energy management of a smart energy building is modeled using MDP to completely describe
the state space, action space, transition probability, and reward function.
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• We propose a Q-learning-based energy management algorithm that provides an optimal action of
energy dispatch in the smart energy building. The proposed algorithm can minimize the total
energy cost that takes into consideration the future cost by using only current system information,
while most existing work for energy management of smart energy buildings focuses on the
optimization based on 24 h ahead given or predicted future information.

• To reduce the convergence time of the Q-learning-based algorithm, we propose a simple Q-table
initialization procedure, in which each value of Q-table is set to an instantaneous reward directly
obtained by the reward function with an initial system condition.

• From the simulations using real-life data sets of building energy demand, PV generation, and
vehicles parking records, it is verified that the proposed algorithm significantly reduces the
energy cost of smart energy building under both Time-of-Use (ToU) and real-time energy pricing
approaches, compared to a conventional optimization-based approach as well as the greedy and
random approaches.

The remainder of this paper is organized as follows: an overview of related work is presented in
Section 2. In Section 3, the overall system structure of the smart energy building considered in this
paper is described, and the system model is formulated using an MDP. In Section 4, a Q-learning-based
energy management algorithm is proposed for the smart energy building. Section 5 presents a
performance evaluation, and Section 6 concludes this paper.

2. Related Work

In this section, we briefly summarize the related work on energy management in the smart grid
environment into three categories: energy management in microgrid, energy management in V2G, and
energy management in smart energy building.

2.1. Energy Management in Microgrid

As previously defined in Section 1, the microgrid represents a small electricity grid that is able
to operate in island-mode without the help of the external grid by utilizing its own backup energy
resources. Most research work in this category focuses on the optimal ESS control for reducing the
dependency on the external grid or balancing the energy supply and demand. Ju et al. [5] have
proposed a two-layer EMS for a microgrid, where ESS is integrated to maintain energy balancing and
minimize the operation cost. The lower layer is formulated as a quadratic mixed-integer problem to
minimize power fluctuations induced by demand forecast errors, and the upper layer is formulated as
a nonlinear mixed-integer problem to obtain the power dispatch schedules that minimize the total
operation cost. In [6], Kuznetsova et al. have suggested an two steps-ahead Q-learning-based ESS
scheduling algorithm that determines whether to charge or discharge the ESS under the unknown
information about future load demands and wind power generation. The simulation results of a case
study have verified that the algorithm increases the utilization of the ESS and wind turbine while
reducing grid dependency. In [7], an optimal ESS control strategy in a grid-connected microgrid
has been proposed. Especially, to improve the accuracy of State of Charge (SoC) calculation, the
authors have applied an extended ESS model, which utilizes 2D efficiency maps of power and
SoC, to the optimization problem. The simulation results have verified that the proposed strategy
with the extended ESS model guarantees the cost robustness regardless of demand forecast errors.
Farzin et al. [8] have focused on managing ESS under two possible scenarios in a microgrid: normal
operation mode and unscheduled islanding event. To deal with the trade-off between minimizing
the operation cost in the normal mode and increasing the load curtailment in the islanding event,
the authors have proposed a multi-objective optimization-based ESS scheduling framework that can
simultaneously optimize the cost and curtailment in each corresponding scenario.
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2.2. Energy Management in V2G

The research efforts in this category focus on the charging and discharging scheduling of EVs at
V2G station for optimizing the benefits of the V2G station or reducing the costs charged to EV users.
He et al. [9] have developed a scheduling algorithm for charging and discharging multiple EVs that
aims to minimize the costs charged to EV users. To optimize scheduling, they have proposed global
and local optimization problems expressed as convex optimization problems and verified that the local
optimization problem is more appropriate for a practical environment with a large population and
dynamic arrivals of EVs while providing performance close to that of the global optimization problem.
Yet another optimal scheduling model for EV charging and discharging has been proposed in [10],
where the authors have considered not only the costs charged to EV users but also user preferences
and battery lifetime of EVs. However, this model is not operated with real-time information, meaning
that scheduling is based on given day-ahead energy information rather than real-time information. EV
charging and discharging scheduling algorithms using real-time information have been suggested
in [11,12]. Given the unknown future energy price information, these algorithms determine the optimal
scheduling at each moment by using the RL technique based only on the current information regarding
energy prices to increase the daily profit for an EV user. However, these algorithms are limited in that
they can be applied only to a single EV.

2.3. Energy Management in Smart Energy Building

The research efforts in this category generally focus on the energy consumption optimization or
the operation cost minimization in smart energy buildings by managing various kinds of controllable
energy sources and loads. In [14], Zhao et al. have described the framework and algorithmic aspects
of a Cyber Enabled Building EMS, called CEBEMS. The objective of CEBEMS is to minimize the
energy cost of a building while satisfying the occupants’ set lighting and cooling system points using
decision-making control optimization. A case study involving a typical food service center as a
test building has been executed to demonstrate the applicability of this framework to commercial
buildings. Wang et al. [15] have proposed an intelligent multi-agent optimizer system to maximize
occupant comfort and minimize building energy consumption. The multi-agent consists of a central
coordinator-agent that coordinates the energy dispatch to local controller-agents and maximizes
occupant comfort, and three local controller-agents that use multiple fuzzy logic controllers to satisfy
different types of comfort demands. Within the range of set points for temperature, illumination
level, and CO2 concentration given by the occupants in advance, this optimizer system derives the
optimal points of the three elements to balance power consumption and comfort demands. In [16],
Wang et al. also have applied the intelligent multi-agent optimizer system proposed in [15] to a
V2G-integrated building to evaluate the impact of the aggregation of EVs on the building energy
consumption as a Distributed Energy Resource (DER). The results of simulation, carried out using data
of a 24 h period, have verified that a larger number of EVs are beneficial for satisfying the comfort
demands of occupants while reducing energy consumption. Missaoui et al. in [17] have proposed
an EMS for smart homes to obtain two solutions: comfort-preferred and cost-preferred. They have
conducted a case study with given energy prices and verified that the EMS significantly reduces
cost with both solutions. In [18], Basit et al. have proposed a home EMS aiming at optimizing the
operation cost by scheduling household appliances without violating the required operation duration
of non-schedulable devices. A day-ahead multi-objective optimization model for building energy
management has been proposed in [19]. Based on the forecasted information on PV generation, load
demand, and temperature, the synergetic dispatch of source-load-storage is scheduled to minimize
the operation cost under ToU energy pricing while maintaining the users’ comfort. The EMSs
operating in short-term to make real-time decisions have been considered in [20,21]. In [20], Yan et al.
have focused on managing the EV charging station integrated with a commercial smart building.
The chance-constrained optimization-based energy control algorithm that schedules power flows from
and to the grid, EV charging and discharging, and ESS charging and discharging in real-time has been
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proposed to reduce the operational cost of the EV charging station. Piazza et al. [21] have proposed
an EMS for smart energy buildings with a PV system and an ESS, where the system operates in two
stages: planning stage that optimizes building energy cost by planning the grid-exchanged power
profile and online replanning stage that aims at reducing building demand uncertainty.

Please note that our proposed Q-learning-based energy management algorithm falls into the third
category. However, the proposed approach is distinct from existing work in that it determines real-time
decisions of the optimal actions without any help of future information, while most existing work
requires an additional prediction process or simply assume that a set of predicted data is available to
solve optimization problems.

3. Energy Management System Model Using MDP

In this section, the overall system structure of a smart energy building is presented, and the system
model is formulated using an MDP composed of a state space, action space, transition probabilities,
and reward function.

3.1. Overall System Structure

The EMS of a smart energy building is considered with the aim of reducing building operation
costs under unknown future information. Figure 1 describes the structure of the smart energy building
considered in this paper. As shown, the smart energy building is connected to a utility and DERs
including a PV system, ESS, and V2G station.

Smart 
Building

V2G
Station

ESSPV

Utility

Generation
Demand

Demand

Utility price

V2G price

Figure 1. Illustration of smart energy building associated with utility, PV, ESS, and V2G station.

The four components associated with the smart energy building are characterized as follows:

• “Utility” represents a company that supplies energy in real-time. It is assumed that the smart
energy building is able to trade (buy and sell) energy with the utility company at any time at the
prices determined by the utility company.

• “PV system” is a power supply system that converts sunlight into energy by means of photovoltaic
panels. The energy generated by the PV system can be consumed to help meet the load demands
of the smart energy building and V2G station.

• “V2G station” describes a system where EVs request charging (energy flow from the grid to EVs)
or discharging (energy flow from EVs to the grid) services. It is assumed that the smart energy
building trades energy based on the net demand of the V2G station, which can be either positive
(if the number of EVs that require charging service is greater than the number of EVs that require
discharging service) or negative (vice versa).
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• “ESS” represents an energy storage system, capable of storing and releasing energy as needed in
a flexible way. As a simple example, the smart energy building can utilize the ESS to decrease its
operation cost by charging the ESS when energy prices are low and discharging the ESS when
energy prices are high. We assume that the ESS considered in this paper consists of a combination
of battery and super-capacitor. This hybrid ESS can take both the advantages of battery (high
energy density and low cost per kWh) and super-capacitor (quick charging/discharging and
extended lifetime) [23].

Let t denote the index of the present time step, and τ denote the length of each time step (min),
during which all system variables are considered to be constant. The EMS operates in a discrete-time
manner based on this time step, and the time step is repeated infinitely. In this study, we assume that
there are five unknowns in future information as follows:

• “Building demand” represents the energy demand required by the smart energy building itself due
to its internal energy consumption. The amount of energy demand of the building at each time
step t is denoted by eBldg

t (kWh).
• “PV generation” represents the energy generated by the PV system, and is denoted by ePV

t (kWh).
• “V2G demand” represents the energy demand of the V2G station, denoted by eV2G

t (kWh). Because
the V2G station has bidirectional energy exchange capability with the building, there are two
values of eV2G

t , a positive value when the V2G station draws energy from the building and a
negative value when it supplies energy to the building.

• “Utility price” represents the prices for energy transaction between the building and the utility
company, and is denoted by pUtil

t ($/kWh).
• “V2G price” represents the energy prices for energy transaction when EVs are charged or

discharged at V2G station, and is denoted by pV2G
t ($/kWh).

The utility price is usually determined by the utility company in the form of a ToU pricing or
a real-time pricing [24]. In the ToU pricing, the utility prices are just offered in a table with a few
levels of prices according to time zone. In the real-time pricing, the prices are dynamically determined
by wholesale energy market or energy supply and demand conditions. Likewise, V2G prices are
available in several forms of pricing policy. The ToU pricing for V2G is generally determined by the
utility company or V2G station itself in a way that the economic benefits are maximized. The real-time
pricing policy for V2G is determined in accordance with the wholesale energy market or the real-time
supply and demand condition by EVs charging and discharging [11]. Especially, there also exist some
V2G pricing policies that provide discriminative incentives to EV users who permit the discharging in
support of the grid operations [25]. Please note that no matter what policy the utility price and the
V2G price follow, they are changing stochastically depending on the time of day, typically holding
high values during the daytime and low values during the nighttime.

Future information on these five unknowns is not provided to the EMS at the present time
step t, meaning that the information from time step t + τ is unknown, whereas past and current
pieces of information are known to the system. The objective of the EMS is to gradually learn how to
manage energy through experience gained over successive time steps under the unknowns of future
information. In the following subsections, the state space, action space, transition probabilities, and
reward function of the EMS are formulated using an MDP under this assumption of unknowns.

3.2. State Space

Let eESS
t denote the SoC of the ESS at time step t, and EESS represent the maximum capacity of the

ESS. For safe use of the ESS, a guard ratio, denoted by η, at both ends of the ESS capacity is considered
as follows:

η · EESS ≤ eESS
t ≤ (1− η) · EESS. (1)
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We define the net demand of the smart energy building at time step t, denoted by eNet
t , as the sum

of the energy demands from the building and the V2G station minus the energy generated by the PV
system, as follows:

eNet
t = eBldg

t + eV2G
t − ePV

t . (2)

Because Building demand (eBldg
t ), PV generation (eV2G

t ), and V2G demand (ePV
t ) are unknown variables,

as mentioned in Section 3.1, the net demand of the smart energy building (eNet
t ) is an unknown variable.

Note it is assumed that there is no energy/exergy loss during the charging, discharging, and idling of
the ESS.

The time step t basically reaches infinity over time. However, because time is repeated with a
period of one day, the state of the time step is considered to be repeated with a period of one day as
well. Therefore, the state of the time step, denoted by t̂, can be defined as follows:

t̂ = t mod
h ·m

τ
, (3)

where h and m represent the number of hours per day (i.e., 24) and the number of minutes per hour
(i.e., 60), respectively.

Taking all the above into consideration, the state of the EMS at time step t, denoted by st, is
defined as follows:

st = [ eESS
t eNet

t t̂ ] ∈ S , (4)

where S is the state space of the EMS, and it is composed of five spaces: ESS SoC space EESS, energy
demand space Edemand, and time space T . Thus, S ≡ EESS × Edemand × T , where × represents
Cartesian product. Please note that the values of utility price (pUtil

t ) and V2G price (pV2G
t ), which

are usually dependent on the state of the time step t̂, are unknown, but they are not included in the
state space. Instead, the stochastic price unknowns are included in the reward function to be used by
the Q-learning.

3.3. Action Space

To satisfy eNet
t in each time step t, the EMS of the smart energy building chooses one action from

the action space A, which is given by

A = {Buying, Charging, Discharging, Selling}, (5)

where Buying represents the action of buying energy from the utility company to satisfy eNet
t , Charging

represents charging the ESS for later use, Discharging represents discharging the ESS to satisfy eNet
t ,

and Selling denotes the action of selling energy to the utility company. Please note that Charging and
Selling obviously include the actions of Buying and Discharging, respectively. For example, if the action
Charging is selected, the EMS buys more energy than the amount required to satisfy the net demand,
eNet

t , and the remaining energy is used for charging into the ESS.
We define at ∈ Ast as the action taken at time step t, where Ast denotes the possible action set in

the action space A under state st. In each time step t, Ast is constrained by ESS capacity, meaning that
at time step t, only actions that satisfy the SoC condition of the ESS in the next time step t + τ, that is,
0 + η · EESS ≤ eESS

t+τ ≤ (1− η) · EESS, can be included in Ast . Therefore, Ast is determined as follows:

Ast =


{Buying, Charging}, if 0 ≤ eESS

t < eNet
t ,

{Buying, Charging, Discharging}, if eNet
t ≤ eESS

t < eNet
t + ∆e,

{Buying, Charging, Discharging, Selling}, if eNet
t + ∆e ≤ eESS

t < EESS − ∆e,

{Buying, Discharging, Selling}, if EESS − ∆e ≤ eESS
t ≤ EESS,

(6)
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where ∆e denotes the energy unit for charging the ESS and selling to the utility company. Once the
possible action set Ast in each time step t is given by (6), the EMS selects one of the possible actions, at,
from Ast according to a certain policy π, which denotes the decision-making rule for action selection.
More information about π is covered in the next section.

Let E(at) denote the function of the amount of energy charged into the ESS with the taken action
at, represented by

E(at) =


0, if at = Buying,

∆e, if at = Charging,

−eNet
t , if at = Discharging,

−(eNet
t + ∆e), if at = Selling,

(7)

where negative values represent energy discharge from the ESS.
Please note that the derived state and action spaces can be easily extended if the EMS includes

other energy components in the smart energy building. For instance, if a Combined Heat and Power
(CHP) system is deployed, the state space may include more parameters such as the amount of energy
generation by CHP and the indoor temperature, and the action space includes the consuming energy
from CHP to meet the demand and the selling energy from CHP to the utility.

3.4. Transition Probability

The transition probability of the EMS from state st to state st+τ when action at is taken can be
represented as follows:

P(st+τ |st, at) = P(eESS
t+τ |eESS

t ) · P(eNet
t+τ |eNet

t ) · P( ̂t + τ|t̂ ), (8)

where P(eESS
t+τ |eESS

t ) and P( ̂t + τ|t̂ ) are given by

P(eESS
t+τ |eESS

t ) =

{
1, if eESS

t+τ = eESS
t + E(at),

0, otherwise,
(9)

and

P( ̂t + τ|t̂ ) =
{

1, if t̂← ̂t + τ,

0, otherwise,
(10)

and P(eNet
t+τ |eNet

t ) is represented by the product of P(eBldg
t+τ |e

Bldg
t ), P(eV2G

t+τ |eV2G
t ), and P(ePV

t+τ |ePV
t )

as follows:

P(eNet
t+τ |eNet

t ) = P(eBldg
t+τ |e

Bldg
t ) · P(eV2G

t+τ |eV2G
t ) · P(ePV

t+τ |ePV
t ). (11)

Because we assume that Building demand (eBldg
t ), V2G demand (eV2G

t ), and PV generation (ePV
t ) are

unknowns, the transition probability P(eNet
t+τ |eNet

t ) is not known to the system in time step t in advance.
However, because the present study applies the RL technique, it is not necessary to know these
transition probabilities. This is especially true for Q-learning, a model-free algorithm, in which the
transition probabilities are learned implicitly through the experience gained over successive time steps.

3.5. Reward Function

Let r(st, at) denote the reward function that returns a cost value indicating how much money the
smart energy building must pay for the energy used to operate the building. When action at is taken at
state st, the reward function is defined by
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r(st, at) =



eNet
t · pUtil

t − eV2G
t · pV2G

t , if at = Buying,

(eNet
t + ∆e) · pUtil

t − eV2G
t · pV2G

t , if at = Charging,

−eV2G
t · pV2G

t , if at = Discharging,

−∆e · pUtil
t − eV2G

t · pV2G
t , if at = Selling,

(12)

where the negative value of r(st, at) implies that the smart energy building earns money, whereas the
positive value is a cost that must be paid.

To account for the impact of the current action on future rewards, the total discounted reward at
time step t under a given policy π, denoted by R(π)

t , is defined as the sum of the instant reward at time
step t and discounted rewards from the next time step, t + τ, as follows:

R(π)
t = r(st, at) +

∞

∑
i=1

γi · r(st+iτ , at+iτ), (13)

where 0 ≤ γ ≤ 1 denotes the discount factor that determines the importance of future rewards from
the next time step, t + τ, to the infinity. For example, γ = 0 implies that the EMS will consider only the
current reward, while γ = 1 implies that the system weighs both current reward and future long-term
rewards equally. The objective of the EMS is to minimize the total discounted reward R(π)

t to reduce
the operating cost of the smart energy building.

4. Energy Management Algorithm Using Q-Learning

In this section, we propose an RL-technique-based energy management algorithm that minimizes
the total discounted reward defined by (13). Among the many types of algorithms included in the
RL technique, the Q-learning algorithm was adopted owing to its model-free characteristic, in which
transition probabilities can be learned implicitly through experience without any prior knowledge.

Let Q(st, at), denoting the action-value function that returns the expected total discounted reward
when action at is taken at state st by following a given policy π, be defined as follows:

Q(st, at) = E
{

R(π)
t

}
= E

{
r(st, at) +

∞

∑
i=1

γi · r(st+iτ , at+iτ)
}

.
(14)

The Q-learning algorithm tries to approximate the optimal action-value function Q∗, expressed as

Q∗(s, a) = E
{

r(st, at) +
∞

∑
i=1

min
at+iτ∈Ast+iτ

γi · r(st+iτ , at+iτ)

∣∣∣∣∣st = s, at = a

}
, (15)

by repeatedly updating the action-value function Q(st, at) through experience of successive time steps.
To approximate the optimal action-value function Q∗(S, A), we must to estimate the values of

Q(st, at) for all state-action pairs. Let a∗t (∈ Ast) denote the greedy action minimizing the value of Q at
state st, that is,

a∗t = arg min
at∈Ast

Q(st, at), (16)

and ε denote a positive small number between 0 and 1 (0 ≤ ε ≤ 1). To deal with the exploitation versus
exploration tradeoff issue [26], we adopt a ε-greedy policy, where one of the actions from possible
action set Ast is selected randomly with a probability of ε

|Ast |
for exploration, whereas for the majority

of the time, the greedy action a∗t in Ast is selected with a probability of 1− ε + ε
|Ast |

for exploitation.

As a result, the probability of selecting action at at state st under the policy π, denoted by Pπ(st, at), is
represented as follows:
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Pπ(st, at) =


1− ε +

ε

|Ast |
, if at = a∗t ,

ε

|Ast |
, if at 6= a∗t .

(17)

Once the action at is selected by following policy π, the reward function r(st, at) is calculated
using (12) and the state st evolves to the next state, st+τ . Simultaneously, the action-value function
Q(st, at) is updated according to the following rule:

Q(st, at)← (1− α)Q(st, at) + α
[
r(st, at) + γ · min

a∈Ast+τ

Q(st+τ , a)
]
, (18)

where α is a learning rate that determines how much the newly obtained reward overrides the old
value of Q(st, at). For instance, α = 0 implies that the newly obtained information is ignored, whereas
α = 1 implies that the system considers only the latest information.

For the initialization problem, the typical Q-learning algorithm simply initializes the action-value
function at time step 0, Q(s0, a0), with the value of 0 or ∞. However, convergence of the action-value
function requires significant time because a large number of time steps is required to explore and
update the values of Q(st, at) for all state-action pairs at least once. To reduce the convergence time of
the proposed algorithm, here we suggest that each value of Q(st, at) is initialized to the total discounted
reward R(π)

0 with γ = 0, which can be obtained easily as the instant reward at time step 0. That is, the
values of Q(s0, a0) for all state-action pairs can be explored preliminarily with instant rewards before
the actual learning process begins. Through this simple additional initialization step, it is expected
that the convergence time is significantly shortened.

Algorithm 1 shows the pseudocode of the main algorithm of the EMS using Q-learning. First,
Q(s, a) for all state-action pairs is initialized to the total discounted rewards with γ = 0 in line 1, and
the learning parameters γ, α, and ε are initialized in line 2. Lines 3–11 show the loop for each time
step t. The possible action set Ast satisfying the SoC condition of the ESS is determined in line 4, and
the greedy action a∗t is obtained in line 5. In lines 6–7, one action (at) is selected from Ast , which now
includes the greedy action a∗t obtained in line 5, according to the probability of selecting an action
under the policy π, and the potential reward r(st, at) and the next state st+τ that will result from taking
the selected action at are observed. Based on this observation, Q(st, at) is updated according to the
update rule (18) in line 8; finally, in lines 9–10, the time step t and the state st are transited to the next
time step, t + τ, and the next state, st+τ , respectively.

Algorithm 1 Energy management algorithm using Q-learning

1: Initialize Q(s, a), ∀s ∈ S , ∀a ∈ A, to total discounted rewards with γ = 0
2: Initialize learning parameters γ, α, and ε
3: for each time step t do
4: Determine possible action set Ast by (6)
5: Obtain greedy action a∗t by (16)
6: Select action at from Ast by policy π
7: Take action at and observe r(st, at), st+τ

8: Update Q(st, at) according to (18)
9: t← t + τ

10: st ← st+τ

11: end for

Figure 2 presents a simplified example of the Q-table updating procedure. The Q-table is given in
the form of a matrix, with each row indicating the state and each column indicating the action. Suppose
that the current state at time step t is

[
2∆e, 50, peak

]
. Then, Selling is supposed to be the greedy

action because its Q-value, 1.85, is the minimum among all Q-values in the current state. According to
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the policy π, the final action is selected from either Case I for exploitation or Case II for exploration.
In Case I, the greedy action, Selling, is selected with a probability of 1− ε + ε

|Ast |
. In Case II, an action

is randomly chosen among all actions with a probability of ε
|Ast |

regardless of Q-value. In both cases,

the Q-value, Q(s, a), for the selected action is updated according to (18).

Actions
States Buying Charging

Dis-

charging
Selling

3.18 2.63 2.27 1.85

2.45 2.23 2.12 1.97

1.94 2.57 2.87 3.29

Actions
States Buying Charging

Dis-

charging
Selling

3.18 2.76 2.27 1.68

2.45 2.23 2.12 1.97

1.94 2.57 2.87 3.29

Actions
States Buying Charging

Dis-

charging
Selling

3.18 2.76 2.27 1.85

2.45 2.23 2.12 1.97

1.94 2.57 2.87 3.29

Greedy action

: Case I - Exploitation with probability of : Case II - Exploration with probability of 

Update Q( )
using eq. (18)

Time step Time step 

Actions
States Buying Charging

Dis-

charging
Selling

3.18 2.76 2.27 1.85

2.45 2.23 2.12 1.97

1.94 2.57 2.87 3.29

Randomly selected action

Case I.

Case II.

Figure 2. Simplified example of Q-table updating.

5. Performance Evaluation

To evaluate the performance of the proposed energy management algorithm using Q-learning, we
consider a smart energy building in a smart grid environment, which is associated with a utility and
DERs, including PV system, ESS system, and V2G station, and perform numerical simulations based
on the data measured in real environments. As a simulation framework, MATLAB 2017b is used.

5.1. Simulation Setting

In the simulations, the length of each time step τ was set to 5 min, and the ESS capacity EESS was
set to 500 kWh. The ESS guard ratio was set to η = 0.02, and the initial SoC of the ESS eESS

0 was set to
be 250 kWh. Here, the final SoC of each day is constrained to be eESS

0 with a tolerance of ±10%, i.e.,
[225 275] kWh. The reason is that if the values of initial SoC vary every day, the initial condition of
the learning process can differ from day to day. In this case, more explorations to learn the Q-values
may be needed, resulting in longer convergence time. The energy unit for charging the ESS and selling
to the utility company was set to ∆e = 25 kWh. We set the learning rate α to 0.1. If α is too large,
the values of Q(s, a) may oscillate significantly. On the other hand, if it is too small, it may cause
long convergence time of the Q-learning algorithm. The ε-greedy parameter ε was set to 0.2, and
the discount factor γ was set to 0.95, as many studies dealing with long-term future rewards in RL
typically take γ with the values slightly less than 1 [4,12]. To examine the validity of these learning
parameters setting, the performance of the proposed algorithm will be analyzed with respect to ε and
γ through simulations in the next subsection (see Figures 10 and 11). The simulation input parameters
are summarized in Table 1.
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Table 1. Simulation input parameters.

Name Values

Length of time step τ = 5 (min)

ESS capacity EESS = 500 (kWh)

ESS guard ratio η = 0.02

Initial SoC of ESS eESS
0 = 250 (kWh)

Energy unit for Charging and Selling ∆e = 25 (kWh)

Learning rate α = 0.1

Discount factor γ = 0.95

ε-greedy parameter ε = 0.2

The building demand (eBldg
t ) and PV generation (ePV

t ) follow the energy demand profile and PV
generation profile, respectively, measured in a campus building in GIST during 100 weekdays (from
1 June 2016 to 18 October 2016) [27]. Examples of energy demand profile and PV generation profile for
three days measured at intervals of 5 min are presented in Figures 3 and 4. Likewise, Figure 5 shows
an example of vehicle parking records for three days in the district office in Gwangju [28]. Based on
these records, we simply modeled V2G demand (eV2G

t ), in which the vehicles of commuters require
charging and those of customers require discharging. Here, we assumed that every charger supports
typical level 1 (dis)charging, where the (dis)charging rate is fixed to 7 kW/h (0.583 kW per 5 min).
For the utility price (pUtil

t ) and V2G price (pV2G
t ), the ToU energy price tables given by Korea Electric

Power Corporation in 2017 were used as follows:

pUtil
t =


0.14 ($/kWh), if peak-load period,

0.08 ($/kWh), if mid-load period,

0.04 ($/kWh), if off-peak-load period,

(19)

pV2G
t =


0.11 ($/kWh), if peak-load period,

0.09 ($/kWh), if mid-load period,

0.06 ($/kWh), if off-peak-load period,

(20)

where the peak-load periods are 10:00–12:00 and 13:00–17:00; mid-load periods are 09:00–10:00,
12:00–13:00, and 17:00–23:00; and off-peak-load period is 23:00–09:00 [29]. As we assumed that
eBldg

t , ePV
t , eV2G

t , pUtil
t , and pV2G

t are five unknown information in Section 3.1, the current values of them
are measured at each time step t, but their future values are not available to the EMS.

Please note that as an effort to reduce the number of state-action pairs in Q-table, we discretized
each element in the state space as follows: eESS

t into 20 levels, eNet
t into 6 levels, and t̂ into 3 levels

(peak-load, mid-load, and off-peak-load periods). This discretization of the state space is expected
to be effective in shortening the convergence time of the proposed algorithm, cooperating with the
Q-table initialization procedure proposed in Section 4.
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Figure 3. Energy demand profile example for 3 days of campus building in GIST.
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Figure 4. PV generation profile example for 3 days of campus building in GIST.
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Figure 5. Vehicle parking records of district office in Gwangju.

5.2. Simulation Results

To verify the performance improvements achieved by applying the proposed algorithm, we
compare the results obtained using the proposed algorithm to those obtained using three other
algorithms, described as follows:

• Minimum instant reward—The system always chooses the action that gives the minimum instant
reward r(st, at) in the present time step t, without considering future rewards. This algorithm is
expected to provide similar results as the proposed algorithm with γ = 0.

• Random action—The action is selected randomly from the possible action set Ast , regardless of
the value of Q(st, at).

• Previous action maintain—This algorithm tries to always maintain its previous action while
keeping the SoC of the ESS (eESS

t ) between (50− β)% and (50 + β)% of the maximum capacity of
the ESS (EESS), regardless of any other information on the current state. Here, β is set to 20 so
that eESS

t is kept between 30% and 70% of EESS. For example, if the previous action is Buying or
Charging with eESS

t between 30% and 70%, the algorithm keeps selecting the Buying or Charging
action until eESS

t reaches 70%; then, it changes the action to Selling or Discharging.
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• Hourly optimization in [21]—At the beginning of every hour, this algorithm schedules the energy
dispatch by using the hourly forecasted profiles. We assume that the hourly profiles of building
demand (Figure 3) and PV generation (Figure 4) are given an hour in advance with Normalized
Root-Mean-Square Error (NRMSE) of 11.7% and 9.41%, respectively, as in [21].

The primary evaluation is devoted to investigating how the proposed energy management
algorithm using Q-learning improves performance as the learning process progresses. As a metric of
performance evaluation, daily cost is calculated as the sum of rewards over 24 h × 60 min

τ time steps.
The simulation results of daily cost variation versus increasing number of days experienced are shown
in Figure 6. The results show that the daily cost obtained using the proposed algorithm is close to that
obtained using the previous action maintain algorithm on the 1st day, but it quickly converged (within
about 3–5 days) to around $400, which is even lower than the hourly optimization algorithm, with the
help of the simple additional initialization step suggested in Section 4. This is because the proposed
algorithm selects better actions by using the learning process as it experiences more state-action pairs.
It is worth noting that the daily cost obtained using the minimum instant reward algorithm is higher
than that calculated using the random action algorithm because the minimum instant reward algorithm
tends to always sell energy from the ESS, disregarding expected future rewards, only to minimize the
instant reward value. From the overall results, it can be inferred that the higher the utilization of ESS
capacity, the higher is the reduction in daily cost.

In Figure 7, we compare the amount of energy bought daily from the utility by four algorithms.
At first glance, it may seem strange that the order of magnitude of the amount of energy bought daily
from the utility is almost opposite to that of daily cost shown in Figure 6. However, this result is valid
because the daily cost can be reduced through the process of buying (selling) more energy from (to) the
utility when the utility price is low (high) by utilizing the ESS. Especially, the minimum instant reward
algorithm buys the least amount of energy from the utility because it tends to always sell energy for
minimizing the instant reward value, while the proposed algorithm intelligently buys and sells the
largest amount of energy to reduce the daily cost.
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Figure 6. Daily cost comparison with respect to time in days.

To investigate the effect of ESS capacity on the average daily cost, we plotted the average daily
cost for 100 days with varying ESS capacity, EESS, between 0 and 1000 kWh in Figure 8. Here it is
assumed that eESS

0 is set to the half of each EESS. Overall, the proposed algorithm gives the lowest
average daily cost, the same as in Figure 6. It can be seen that when EESS is 0 kWh, all five algorithms
provide the same, and highest, average daily costs because only the Buying action is possible for all
five algorithms. However, as EESS increases, the average daily costs determined using the random
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action, previous action maintain, hourly optimization, and proposed algorithms decrease until EESS

reaches 400 kWh because ESS capacity can be utilized to store and release energy by the Charging,
Discharging, and Selling actions. For EESS values larger than 400 kWh, the previous action maintain,
hourly optimization, and proposed algorithms show slightly decreasing average daily costs with
respect to increasing EESS, whereas the random action algorithm is not affected by further changes
in EESS at all. This is because the three algorithms can utilize a larger amount of ESS capacity as the
value of EESS increases. However, increasing the ESS capacity generally requires a spike in purchasing
and installation costs, with no remarkable performance improvements associated with increasing ESS
capacity as shown in the Figure. Therefore, from the perspective of building operations, installing
an ESS with a capacity between 400 and 600 kWh would be sufficient to ensure an average daily
cost reduction.
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Figure 7. Amount of energy bought daily from utility with respect to time in days.
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Figure 8. Average daily cost with respect to ESS capacity.

To study the impact of the scale of the PV system, we scaled up and down the PV system by
multiplying PV generation (ePV

t ) with the scale factor ρ, where 0 ≤ ρ ≤ 2. For example, ρ = 2 means
that the scale of the PV system is doubled, whereas ρ = 0 means that the PV system is not associated
with the smart energy building at all. Here, EESS is set to 500 kWh. Figure 9 shows the simulation
results of the average daily cost with respect to ρ. Overall, the average daily costs decrease according
to increasing ρ. Especially, the proposed algorithm exhibits the lowest daily cost for any value of
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ρ, and its rate of decrease becomes slightly larger compared to those of the other four algorithms
as ρ increases. This indicates that the proposed algorithm can reduce the daily cost by managing
energy more intelligently with learning capability as the amount of energy generated by the PV system
increases. Therefore, unless the installation cost of the PV system is taken into consideration, the
larger the scale of the PV system, the more effective it would be for reducing the average daily cost of
building operation.
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Figure 9. Average daily cost with respect to scale factor of PV system.

In Figures 10 and 11, we plotted the average daily cost variation of the proposed algorithm
according to ε and γ, respectively, in order to examine the impact of these learning parameters on
the performance. The costs of the four other algorithms are plotted for comparison. In Figure 10,
the lowest average daily cost is achieved for ε = 0.2, and when ε = 1, almost the same cost as the
random action algorithm is achieved because the action is always selected randomly. In Figure 11,
the average daily cost gradually decreases as γ increases, and it becomes lower than the cost by the
hourly optimization algorithm when γ ≥ 0.8. Also please note that when γ = 0, the average daily
cost of the proposed algorithm is the same as the minimum instant reward algorithm because the total
discounted reward R(π)

t is composed of only the term of instant reward. These results imply that it
was appropriate to set the learning parameters ε and γ to 0.2 and 0.95, respectively.
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Figure 10. Average daily cost variation with respect to ε-greedy parameter.
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Figure 11. Average daily cost variation with respect to discount factor γ.

Finally, we investigated the performance in a case of the real-time energy pricing. Figure 12 shows
an example of the real-time hourly energy price profiles for the same three days of Figures 3–5 in three
U.S. states [30], and the average daily cost under the real-time pricing is presented in Figure 13. We
simply assume that both pUtil

t and pV2G
t are the same as shown in Figure 12. Figure 13 shows that

the proposed algorithm provides the lowest cost among the five algorithms for all the three real-time
energy prices. Therefore, it can be concluded that the proposed algorithm is significantly effective for
energy cost reduction regardless of the type of energy pricing policy.
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Figure 12. Real-time hourly energy price example for 3 days in 3 U.S. states.
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Figure 13. Average daily cost with real-time energy prices.
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6. Conclusions and Discussion

In this study, we proposed an RL based energy management algorithm for smart energy buildings
in a smart grid environment. Smart energy buildings are capable of exchanging energy with an
external grid and DERs such as a PV, an ESS, and a V2G station in real-time. We first developed the
energy management system model by using a Markov decision process that completely describes the
state space, action space, transition probability, and reward function. To reduce the energy costs of a
building given unknown future information about the amount of building load demand, V2G station
load demand, and energy generation by PV system, a Q-learning-based energy management algorithm
that identifies better energy dispatch actions by learning through experience without prior knowledge
was proposed. Through numerical simulations based on data measured in the real environments,
we verified that the proposed algorithm significantly reduces energy costs compared to the random
and other existing algorithms. We showed that the proposed algorithm successfully reduces energy
costs under widely-used energy pricing policies of ToU and real-time. It is expected that the proposed
learning-based energy management algorithm is applicable in various smart grid environments such
as residential microgrids and smart energy factories under different energy pricing policies. As future
work, we will extend the proposed algorithm so that it can work in more complicated cases with
additional energy components such as CHP, TCLs, or wind turbines, and empirically validate the
proposed algorithm in real smart buildings.
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