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Abstract: Presently, Thailand runs various sustainable development-based policies to boost the
growth in economy, society, and environment. In this study, the economic and social growth was
found to continuously increase and negatively deteriorate the environment at the same time due to a
more massive final energy consumption in the petroleum industries sector than any other sectors.
Therefore, it is necessary to establish national planning and it requires an effective forecasting model
to support Thailand’s policy-making. This study aimed to construct a forecasting model for a final
energy consumption prediction in Thailand’s petroleum industry sector for a longer-term (2018–2037)
at a maximum efficiency from a certain class of methods. The Long Term-Autoregressive Integrated
Moving Average with Exogeneous variables and Error Correction Mechanism model (LT-ARIMAXS
model) (p, d, q, Xi, ECT(t−1)) was adapted from the autoregressive and moving average model
incorporating influential variables together in both long-term relationships to produce the best model
for prediction performance. All relevant variables in the model are stationary at Level I(0) or Level
I(1). In terms of the extraneous variables, they consist of per capita GDP, population growth, oil price,
energy intensity, urbanization rate, industrial structure, and net exports. The study found that the
variables used are the causal factors and stationary at the first difference as well as co-integrated.
With such features, it reflects that the variables are influential over the final energy consumption.
The LT-ARIMAXS model (2,1,2) determined a proper period (t− i) through a white noise process with
the Q test statistical method. It shows that the LT-ARIMAXS model (2,1,2) does not generate the issues
of heteroskedasticity, multicollinearity, and autocorrelation. The performance of LT-ARIMAXS model
(2,1,2) was tested based on the mean absolute percentage error (MAPE) and the root mean square
error (RMSE). The LT-ARIMAXS model (2,1,2) can predict the final energy consumption based on the
Sustainable Development Plan for the 20 years from 2018 to 2037. The results showed that the final
energy consumption continues to increase steadily by 121,461 ktoe in 2037. Furthermore, the findings
present that the growth rate (2037/2017) increases by 109.8%, which is not in line with Thailand’s
reduction policy. In this study, the MAPE was valued at 0.97% and RMSE was valued at 2.12% when
compared to the other old models. Therefore, the LT-ARIMAXS model (2,1,2) can be useful and
appropriate for policy-making to achieve sustainability.
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1. Introduction

Thailand has continuously put efforts into accelerating the economic development of the country
by focusing on widening urbanization. In parallel, the government is trying its best to encourage
both domestic and international private investment. This is to ensure that the industrial structure is
broadened. At the same time, Thailand is also focusing on export activities where Thailand is to be
a production base, so that Thailand’s market share will continue to expand. Additionally, there are
also policies designed to increase spending, attract more foreign tourists and increase the minimum
wage rate, resulting in the increments of both local and foreign labors. Therefore, these policies
have supported the Thai economy to grow with a 4.3% growth rate in 2016/2017 [1], and a 2.5%
population growth rate (2016/2017) [2]. However, the economic and population growth in Thailand has
continuously caused the environment to deteriorate. In 2017, CO2 emissions from energy consumption
increased by 1.3% when compared to 2016 [3]. These CO2 emissions are highly contributed by the
petroleum industries sector, accounting for 50.1% of the final energy consumption (2017). In fact,
the final energy consumption has resulted in continuous economic growth, and that growth has also
been affected by inflation due to the constant increase of world oil prices [1,3]. In addition, 89% of
carbon dioxide is released by the energy sector with a growth rate of 10.3% (2016/2017). The petroleum
industries sector produces more CO2 due to its maximal power consumption. This reflects the fact
that the above sector releases the most greenhouse gas. Emissions are expressed in the form of CO2

(with the highest emissions) as well as other gases including methane (CH4), nitrous oxide (N2O),
hydrofluorocarbons (HFC), perfluorocarbons (PFC), sulfur hexafluoride (SF6), and nitrogen trifluoride
(NF3) [4,5].

The sustainable development policy is the future policy that Thailand aims to achieve. The focus
of the policy covers three main areas: economic growth, social growth, and environmental growth.
The policy is achieved when those three areas are simultaneously developed. For Thailand,
both short-term (five years) and long-term (20 years) plans have been set [1]. Nonetheless,
the implementation of Thailand’s sustainable development policy results in growth in both the
economy and population. This also affects the increment of energy consumption. Thus, Thailand has
set a long-term reduction goal of 20 years (2018–2037) in the final energy consumption based on the
petroleum industries sector not exceeding 90,000 ktoe [3]. This is because the petroleum industries
sector accounts for highest energy consumption (50.1%) and produces most of the greenhouse gases [5].
Therefore, the most important tool in effective policy planning for sustainability is to forecast the future
possibility [3,5].

However, the best forecasting model on energy consumption must also be able to support
sustainable development policy planning. From the various relevant studies that have been reviewed,
there are different models and forecasting techniques optimized for different forecasting timelines, be it
short-term or long-term. Therefore, it is necessary to examine what has been done in this area to increase
the quality of the proposed model. In fact, there have been few stream studies exploring total energy
consumption. For instance, Zhao, Zhao, and Guo [6] started to estimate the electricity consumption of
Inner Mongolia by deploying gray model (GM(1,1) model) optimized by moth-flame optimization
(MFO) with a rolling mechanism from 2010 to 2014. Their study indicated which model could improve
the forecasting performance of annual electricity consumption significantly. Li and Li [7] also initiated
a comparative study by using the autoregressive integrated moving average model (ARIMA model),
GM(1,1) model, and ARIMA–GM model to forecast energy consumption in Shandong, China from
2016 to 2020. Their prediction results showed that the energy demand of Shandong Province between
those years would increase at an average annual rate of 3.9%. Similarly, Xiong, Dang, Yao and
Wang [8] proposed a novel GM(1,1) model based on optimizing the initial condition in accordance
with the new information priority principle to predict China’s energy consumption and production
from 2013 to 2017. The study produced findings indicating that China’s energy consumption and
production will keep increasing, as will the gap between them. Furthermore, Panklib, Prakasvudhisarn,
and Khummongkol [9] attempted to forecast electricity consumption in Thailand by using an artificial
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neural network and multiple linear regression model (MLR model) for the years 2010, 2015, and 2020.
Their estimation revealed that the electricity consumption of Thailand in 2010, 2015, and 2020, retrieved
from the regression, would reach 160,136, 188,552, and 216,986 GWh, respectively, whereas 155,917,
174,394, and 188,137 GWh were the results obtained from the artificial neural network model (ANN
model). Additionally, an ANN integrated with genetic algorithm was also presented by Azadeh,
Ghaderi, Tarverdian, and Saberi [10] to estimate the electricity consumption in the Iranian agriculture
sector in 2008. They observed that the integrated genetic algorithm (GA) and ANN model dominated
the time series approach, yielding less mean absolute percentage error.

By incorporating values of socio-economic indicators and climatic conditions, Günay [11] modeled
artificial neural networks with the use of predicted values of socio-economic indicators and climatic
conditions to predict the annual gross electricity demand of Turkey in 2028, which produced a result
where the demand would double, accounting for 460 TW in 2028, when compared to the years 2007 to
2013. Dai, Niu and Li [12] explored energy consumption forecasting in China from 2018 until 2022
by adopting a model of ensemble empirical mode decomposition and least squares support vector
machine with the technology of the improved shuffled frog leaping algorithm. Their results showed
China’s energy consumption to have a significant growth trend. Based on Wang and Li [13], they tried
to find whether China’s coal consumption during 2016 to 2020 would be higher or lower than the level
of 2014. Here, they optimized a time series model with a comprehensive analysis of data reliability.
According to the analysis, it indicated that the annual Chinese coal consumption during 2016–2020
would be lower than the level of 2014 provided the annual average GDP growth rate was less than
8.2% per year. Suganthi and Samuel [14] developed econometric models to study the influence of
the socioeconomic variables on energy consumption in India from 2030 to 2031 and found that the
electricity demand depended on the Gross National Product (GNP) and electricity price, and the total
energy requirement was found to be 22.944 × 1015 kJ.

In addition, Xu et al. [15] analyzed the change of energy consumption and CO2 emissions in
China’s cement industry and its driving factors over the period between 1990 to 2009 by applying
a log-mean Divisia index (LMDI) method. With such analysis, the study reveals that, by applying
the best available technology, an additional energy saving potential of 26% and a CO2 mitigation
potential of 33% can be gained when compared with 2009. Kishita, Yamaguchi, and Umeda [16]
tried to analyze electricity consumption in the telecommunications industry in 2030 by deploying
an electricity demand model for the telecommunications industry (EDMoTI). The prediction results
pointed out that electricity consumption in 2030 would be 0.7–1.6 times larger than the level of 2012
(10.7 TWh per year). For a shorter time of prediction, Zhao, Wang and Lu [17] conducted a study to
forecast the monthly electricity consumption in China by proposing a time-varying-weight combining
method: the High-order Markov chain based time-varying weighted average (HM–TWA) method.
Their forecasting performance evaluation showed that the HM–TWA produced a better outcome for
the component models and traditional combining methods.

Nonetheless, several studies have examined the total energy demands and its consumption for a
longer term of forecasting. For instance, Hamzacebi and Es [18] implemented optimized grey modeling
to forecast the total electric energy demand of Turkey from 2013 to 2025. Their prediction reflected that
the direct forecasting approach resulted in better predictions than the iterative forecasting approach
in estimating the electricity consumption in Turkey. An Improved Gray Forecast Model was also
drawn by Mu et al. [19] to predict CO2 emissions, energy consumption, and economic growth in China
from 2011 and 2020 by using an improved grey model. Based on their prediction results, China’s
compound annual emissions, energy consumption, and real GDP growth for the predicted years was
found to be 4.47–0.06% and 6.67%, respectively. Furthermore, Zeng, Zhou, and Zhang [20] proposed a
Homologous Grey Prediction Model to predict the energy consumption of China’s manufacturing from
2018 to 2024 where their study revealed that the total energy consumption in China’s manufacturing
was slowing down, however, the amount was still too large. Additionally, Jiang, Yang and Li [21]
adapted a metabolic grey model (MGM), ARIMA model, MGM–ARIMA model, and back propagation
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neural network (BP) to forecast energy demand from 2017 to 2030. From their estimation, it showed
that India’s energy consumption would increase by 4.75% a year in the next 14 years at a 5% growth
rate. By using the same, but improved, forecasting model, Ediger and Akar [22] analyzed the primary
energy demand by fuel in Turkey from 2005 to 2020 using the ARIMA model and seasonal ARIMA
(SARIMA) methods to estimate the above demand, and showed that the average annual growth rates
of individual energy sources and total primary energy would decrease in all cases, except wood,
and the animal–plant went negative.

Furthermore, Ekonomou [23] developed an artificial neural network to estimate the Greek
long-term energy consumption from 2005 to 2008, 2010, 2012, and 2015. Overall, the study
has constituted an accurate tool for the forecasting problem in Greek long-term energy
consumption. In addition, Ardakani and Ardehali [24] utilized an IPSO (improved particle swarm
optimization)–ANN model to forecast EEC (electrical energy consumption) for Iran and the U.S.
from 2010 to 2030, which resulted in the mean absolute percentage error of 1.94% and 1.51% for Iran
and the U.S., respectively. In the context of Thailand, a study of characteristics and factors towards
energy consumption was conducted by Supasa et al. [25], who explored five household group energy
consumption characteristics and seven driving forces of growth in residential energy consumption
from 2000 to 2010 by applying the energy input–output method. Their calculations indicated that
about 70% of total residential energy consumption was indirect energy consumption from consuming
products and services. Seung et al. [26] predicted the future electricity demand for cooling in the
building sectors in Singapore from 2014 to 2030 by applying a MLR model. Their study revealed
that the electricity demands accounted for 31 ± 2% of the total electricity consumption in Singapore.
Additionally, Wang et al. [27] attempted to estimate the total industrial energy consumption and
energy-related carbon emissions in Tianjin from 2003 to 2012 by using an energy decomposition
analysis. From their evaluation, energy efficiency could be enhanced by energy-saving efforts and the
optimization of the industrial structure.

In fact, Zou, Liu, and Tang [28] analyzed the factors that contributed towards the changes in energy
consumption in Tangshan city from 2007 to 2012 by applying the logarithmic mean Divisia index.
Their findings showed that the technical effect played a vital role in reducing energy consumption
in most sectors. Another investigation of the impacts of urban land use on energy consumption in
China from 2000 to 2010 was undertaken by Zhao, Thinh, and Li [29]. They used a panel data analysis
with nighttime light (NTL) data estimation. Their study on sigh has shown that an increase in the
irregularity of urban land forms and the expansion of urban land will accelerate energy consumption,
which indicates the relationship between urban growth and energy consumption. Similarly, Tian, Xiong,
and Ma [30] evaluated the potential impacts of China’s industrial structure on energy consumption
by deploying a fuzzy multi-objective optimization model based on the input–output model from
2015 to 2020. From their analysis, they concluded that the industrial structure adjustment had great
potential in energy conservation, and such an adjustment could save energy by 19% (1129.17 Mtce) at
the average annual growth rate of 7% GDP. Ayvaz and Kusakci [31] employed a nonhomogeneous
discrete grey model (NDGM) to forecast electricity consumption from 2014 to 2030. In their findings,
they proved that the grey model proposed produced a better forecasting performance.

Previous studies have used varied methodologies and analyses, while the forecasting timeline
includes short-term (1–5 years), mid-term (6–10 years), and long-term (11–20 years). From this point of
view, only few studies have been conducted for long-term forecasting, accounting for about 28% out of
the reviewed research. Moreover, the long-term forecasting studies are very limited, and that limitation
may result in lower quality when compared to short-term and mid-term studies. From the study of
related research on prediction models, we have found some shortcomings in long-term forecasting
including a lack of true variable selection for a causality based on context and study interest, a lack of
co-integration test and the error correction mechanism test, and a lack of a spurious test. In addition,
those models did not identify the problems of heteroskedasticity, multicollinearity, and autocorrelation.
In the context of Thailand, in the past, most energy consumption forecasting models used were of
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those models adapted from traditional approaches such as the Ordinary Least Square (OLS) model,
the Autoregressive Moving Average (ARMA) model, the ARIMA model, and the ANN model. In fact,
the above models were for forecasting with potentially high errors. They did not consider the causal
variables in the real context of Thailand. Therefore, the influence of the factors towards dependent
variables were unknown. When the output was used in national policy-making, this would negatively
affect the country at large. However, the models are for short-term forecasting [5]. These models
cannot be used for national long-term policy-making. As a result, the country has failed to head in the
right direction for achieving the reduction goal and sustainable development.

Hence, we considered the above gap as an important issue that has to be addressed.
Simultaneously, we developed a forecasting model for final energy consumption by adapting various
theoretical concepts, conceptual frameworks, research, variable selection, and the implementation
of the heteroskedasticity test, multicollinearity test, and autocorrelation for spurious check.
Additionally, the co-integration model was optimized by incorporating an error correction mechanism
test to differentiate this model from the other existing models. This newly developed model comes
under the name of the Long Term-Autoregressive Integrated Moving Average with Exogeneous
variables and Error Correction Mechanism model (LT-ARIMAXS model). However, we developed the
LT-ARIMAXS model to differentiate from other models and to fill the recent gap existing in old models
that was found in the research review. The existing models include the MLR model, ANN model, BP
model, GM(1,1) model, ARMA model, and ARIMA model, among others. The LT-ARIMAXS model is
a forecasting model that aims to create an effectiveness in long-term forecasting to support long-term
policy planning. Hence, the findings of this study become useful and applicable in both Thailand’s
context and other contexts. The research’s flow chart is illustrated in Figure 1 and determines all the
relevant variables for the final energy consumption forecasting model, whose characteristics fall under
the long-term sustainable development policy of 20 years (2018–2037), with the Augment Dickey Fuller
theory only at the same level by using data from 1985 to 2017. Moreover, only crucial and influential
variables are used in the forecasting model.

Figure 1. The flowchart of the LT-ARIMAXS model.
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The remainder of this paper is as follows: Section 2 discusses the materials and methods.
Section 3 shows the results. Section 4 summarizes the discussion. Section 5 presents the conclusion.

2. Materials and Methods

2.1. Autoregressive Model and Moving Average Model

The autoregressive model and moving average model or Box–Jenkins are two models that
emphasize only the stationary data [32,33], described as follows.

In the case of the random seasonal process, it is an uncertain or specific seasonal process.
For instance, a country encounters a political conflict for the past many years. At the same time,
a demonstration occurs at the second quarter. This situation causes a sales drop. However, the political
conflicts may seem stable this year in the same quarter. Thus, the sale is consistent. Here, the seasonal
process that took place last year at the second quarter temporarily affects this year’s second quarter,
which can be called the stationary seasonal process. In this case, it is not necessary to drop off the
season, but it can be incorporated into the model. This can be called the seasonal autoregressive
moving average or (seasonal ARMA). The model is explained as below [34,35]:

Xt is a quarter time series and falls under a stationary seasonal process. This time series Xt can be
written as:

Xt = A1Xt−4 + vt , |A1| < 1 (1)

where vt is a random error variable, which is a white noise. The above equation is a AR(4) model
where the coefficient of Xt−1, Xt−2 and Xt−3 is 0, and |A1| < 1 is the condition indicating the stationary
seasonal process in time series Xt. If this Xt is brought to find an average value, a variance of the
Theoretical Autocorrelation Function (TAC) and Theoretical Partial Autocorrelation Function (TPAC)
is computed through the following equation:

Let µ = 0, Variance γ0 = σ2

1−A2
1
, the TAC is pointed in Equation (2) and TPAC is drawn in

Equation (3).

ρk =

{
(A1)

k
4 ,

0,
k = 0, 4, 8, ... when it is other case (2)

φkk =

{
ρ4

0,
k = 4when it is other case (3)

Since |A1| < 1, when considering Equation (2), it can be concluded that, if 0 < A1 < 1, TAC will
exponentially reduce at time 4, 8, 12, . . . ; if, as time slowly passes, TAC will be exponentially up and
down at time 4, 8, 12, . . . ; if |A1| is closely approaching 1, a seasonal pattern will be clearer and last
longer; and if |A1| is close to 0, the pattern will disappear. Equation (3) shows that the TPAC is not
equivalent to 0.

Based on Equation (1), it reflects only on the impact of season in AR, but the time series can be as
the ARMA in practice, and this can be written as below:

A(Ls)Xt = B(Ls)vt (4)

where s is the time duration of season.

A(Ls) = 1− A1Ls − A2L2s − . . . ApLps (5)

B(Ls) = 1− B1Ls − B2L2s − . . . BQLQs (6)

We consider Equation (4) as the pure seasonal ARMA model at (P, Q)s. In practice, it is possible
that Xt is in AR(1), together influencing the season as the equation below:

Xt = A1Xt−1 + A1Xt−4 + vt, |α1| < 1 and |A1| < 1 (7)
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Equation (7) indicates the influence of seasonal process when s = 4, and time series Xt in quarter
2 is related to quarter 1, while quarter 2 of this year is related to quarter 2 last year.

Meanwhile, Equation (4) shows Xt in some seasons of the ARMA model at (P, Q)s or ARMA
(p, q) together, and vt in ARMA (p, q) is as follows:

vt =
β(L)
α(L)

εt (8)

where εt is the random error variable with white noise α(L) = 1 − α1L − α2L2 − . . . αpLp and
β(L) = 1− β1L− β2L2 − . . . βqLq. Therefore, Equation (4) can be drawn as below:

A(Ls)α(L)Xt = B(Ls)β(L)εt (9)

Equation (9) is called the multiplicative seasonal ARMA model at (p, q)× (P, Q)s, and can be
denoted as ARMA (p, q)(P, Q)s or ARMA (p, q)× (P, Q)s.

2.2. LT-ARIMAXS Model

In the construction of the LT-ARIMAXS model for forecasting, the autoregressive model (AR) and
moving average model (MA) were basically integrated to first structure an ARIMA model. Once the
ARIMA model was obtained, it was then applied to generate the LT-ARIMAXS model together with a
co-integration test at the same level for every variable in the equations. In addition, there was also an
adaptation of an error correction mechanism test in this particular model, as discussed below.

2.2.1. A Forecasting Model with ARIMA Model

It is a notion that differentiating at d with a particular time series will make a non-stationary
time series a stationary time series. With such differentiation applied in the Box–Jenkins model, it can
become known as ARIMA(p, d, q) [34,35].

For better understanding, Xt is denoted as the non-stationary time series, where
Zt = ∆Xt = Xt − Xt−1 is the stationary time series. Here, a proper model for this time series
Xt is ARIMA(1, 1, 0) and it can be written as:

Zt = α0 + α1Zt−1 + εt where t = 1, 2, . . . , T (10)

If time at T is taken into account, the ARIMA(1, 1, 0) becomes:

ZT = α0 + α1ZT−1 + εT (11)

and X1, X2, . . . XT (or denoted as IT) is now known for their value.
When using Equation (11), we forecast ẐT+1, ẐT+2, ẐT+3 from the following equation.

ẐT+1 = α0 + α1∆XT

ẐT+2 = α0 + α1∆
∧
XT+1

ẐT+3 = α0 + α1∆
∧
XT+2

ẐT+j =

...
α0 + α1∆

∧
XT+(j−1)


(12)

From Equation (12), it can be seen that X̂T may not need forecasting. This is because the true
information is known, which is XT ; hence, the forecasting result of X̂T+1 can be computed from.

X̂T+1 = XT + ẐT+1 (13)
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while the forecasting result of X̂T+2, X̂T+3, . . . , X̂T+j can be calculated as follows:

X̂T+j = XT +
j

∑
k = 1

ẐT+k (14)

As for forecasting with ARIMA(p, 1, q), it can be applied by Equation (14), but the equation
transformation is complicated.

Assuming the ARIMA(p, 1, q) model is written as below:

Xt = ϕ0 + ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + . . . + ϕpXt−p

+ϕp+1Xt−p−1 + εt − β1εt−1 − β2εt−2 − . . .− β1εt−q
(15)

where ϕ0 = α0, ϕ1 = α1 + 1, ϕj = αj − αj−1 and ϕp+1 = −αp.
When the ARIMA model is obtained, it can then be used to construct the LT-ARIMAXS model.

The construction is explained below.

2.2.2. A Forecasting Model with LT-ARIMAXS Model

For the LT-ARIMAXS model, we have adapted the concept from the basic models
including ARIMA models [32,33], co-integration and error correction mechanism model [36,37].
This LT-ARIMAXS model was examined for the unit root test and variable selection for stationary
into this model formation. We have determined the Level (I(0)) or first difference (I(1)) to analyze
co-integration [36]. This point of analysis must reflect the relationship at the same level. However, this
LT-ARIMAXS model must consist of the co-integration and error correction mechanism test (ECT) [37]
to increase efficiency and the zero error in the model. In addition, the LT-ARIMAXS model comes with
the suitability of future application in different areas in line with the policy of a particular country.
This is due to the difference of the LT-ARIMAXS model with other models so that the ARIMA model
focuses on the variables of Autoregressive (AR), Integrated (I), and Moving Average (MA) only at
time t − i especially in past data. In this paper, the LT-ARIMAXS model differs from other old models
due to the emphasis of Exogeneous Variables (∑

p
i = 1 Yt−i), which is believed to be an important yet

appropriate variable in the study. As for the reason, it is the influential variable that can affect the
dependent variable. Additionally, the LT-ARIMAXS model uses Autoregressive (AR), Integrated (I),
and Moving Average (MA) during time t− i in the study’s model. The LT-ARIMAXS model utilizes the
co-integration and error correction mechanism test from the theory of Johansen and Juselius to increase
the effectiveness of the model [36,37]. The co-integration model and error correction mechanism model
can be explained below.

This model applies the Johansen co-integration test to examine a pattern called multivariate
co-integration, which is the method proposed by Johansen and Juselius [36]; it is used to examine
the long-term relationship between the variables. The essence of cointegration is that the linear
combination of variables is stationary. Cointegration tests also require that all variables are integrated
in the same order [37]. We can use the following formula to conduct the cointegration test.

Xt = α0 +
p

∑
i = 1

αiXt−i + εt (16)

where Xt is a (n × 1) vector of variables, α0 is a vector of constants, αi is a (n × n) matrix of parameters,
and εt is a (n × 1) vector of error term. Subtracting Xt−1 from each side of Equation (16) and letting I
be an (n × n) identity matrix, it can be rewritten as follows.

∆Xt = α0 + πXt−1 +
p

∑
i = 1

∏
i

∆Xt−i + εt (17)
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where ∏i and π are the coefficient matrix and πXt−1 is the error correction term, while the coefficient
matrix π provides information about the long term relationships among the variables. The number of
the co-integration vectors can be determined by using the trace test and maximum eigenvalue test
suggested by Johansen [37], as demonstrated in Equation (18) and (19).

λtrace = −T
n

∑
i = r+1

ln(1− λ̂1) (18)

λmax(r, r + 1) = −T
n

∑
i = r+1

ln(1− λ̂r+1) (19)

where T is the sample size and λ is the eigenvalue. Based on Equations (17) and (18), if the null
hypothesis is rejected, it shows the testing variables consist of co-integration. On the other hand, if the
null hypothesis is accepted, there is no co-integration.

After performing co-integration test, another important test must be carried out, which is error
correction mechanism test [37]. We can find that the change of Xt not only depends on the change of
Yt but also depends on the change of the last period Yt−1 and Xt−1. Considering the non-stationarity,
the OLS test cannot be used to perform the regression. Therefore, Equation (32) can deform to the
equation below.

∆Xt = β1∆Yt − (1− δ)(Xt−1 −
β0

1− δ
− β1 + β2

1− δ
Yt−1) + εt (20)

Hence, the LT-ARIMAXS model can be written below.

Xt = ϕ0 + ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + . . . + ϕpXt−p

+ϕp+1Xt−p−1 + εt − β1εt−1 − β2εt−2 − . . .− β1εt−q

+
p
∑

i = 1
Yt−i+

p
∑

i = 1
ECTt−i

(21)

Let ϕ0 = α0, ϕ1 = α1 + 1, ϕj = αj−1, ϕp+1 = −αp,
p
∑

i = 1
Yt−i = exogeneous variables, which are

stationary at the level and
p
∑

i = 1
ECTt−i = the error correction mechanism test.

Equation (21) indicates the components of the LT-ARIMAXS model comprised of:
(1) Autoregressive variables (AR); (2) Moving Average (MA); (3) exogenous variables (); and (4)

error correction mechanism
p
∑

i = 1
ECTt−i. The LT-ARIMAXS model is built and developed with the

assurance of being Heteroskedasticity, Multicollinearity, and Autocorrelation free. There is also an
analysis of period identification with the Q-statistics test as to ensure that the model is not spurious
while it becomes efficient in the forecasting with fewer errors. The model is then able to be applied in a
different context and management policy.

2.2.3. Measurement of the Forecasting Performance

To evaluate the forecasting effect of each model, we employed the mean absolute percentage error
(MAPE) and the root mean square error (RMSE) to compare the forecasting accuracy of each model.
The calculated equations are shown below [35,38].

MAPE =
1
n

n

∑
i = 1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (22)

RMSE =

√
1
n

n

∑
i = 1

(ŷi − yi)
2 (23)
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The LT-ARIMAXS model is a newly developed method completed by adapting various concepts
from the general models including autoregressive (AR), integrate (I), and moving average (MA).
For the variable selection criterion, the variables must only be causal factors or stationary at the same
level. The stationary level I(0) or first difference I(1) are used to test the unit root test. With the right
variables, we fulfill the criterion. Those variables are put forth for a co-integration test. When they
are found to be co-integrated, they are then used in structuring the LT-ARIMAXS model (p, d, q, Xi,
ECT(t−1)) with an appropriateness check of period (t − i) through the implementation of a white noise
process by the Q test statistic method. In this paper, the LT-ARIMAXS model (p, d, q, Xi, ECT(t−1)) must
not be free from heteroskedasticity, multicollinearity, and autocorrelation. Testing the LT-ARIMAXS
model (p, d, q, Xi, ECT(t−1)) can be done based with MAPE and RMSE, and comparing those two
values with existing models. Once the model is obtained, forecasting the future is the next essential
step. We have combined the dataset using Microsoft Office Excel. In addition, EViews 9.5 software is
deployed to implement the model, and it flows as below.

(1) Place the stationary variables at the same level in the analysis of the long-term relationship based
on the Johansen and Juselius concept.

(2) Create a forecasting model by adapting the advance statistics of the so-called LT-ARIMAXS
model with full consideration of the relationship of all causal variables in terms of both the error
correction mechanism test and the co-integration test.

(3) Examine the goodness of fit in two aspects: (1) appropriateness check of period (t − i) through
the implementation of a white noise process by the Q test statistic method; and (2) performance
test for the LT-ARIMAXS model based on MAPE and RMSE. Compare those two values derived
from the LT-ARIMAXS model with the existing model, including MLR model, the ANN model,
BP Model, GM(1,1) model, ARMA model, and ARIMA model.

(4) Forecast final energy consumption by using the LT-ARIMAXS model for the period from 2018 to
2037, totaling 20 years. The flowchart of the LT-ARIMAXS model is shown in Figure 1.

3. Results

3.1. Screening of Influencing Factors for Model Input

We tested the factors in the context of Thailand’s sustainable development policy.
Here, we deployed the time series data of the period 1987–2017. The tested factors consisted
of eight variables, namely final energy consumption (ln(EC)), per capita GDP (ln(GDP)),
population growth (ln(Population)), oil price (ln(OP)), energy intensity (ln(EI)), urbanization rate
(ln(UG)), industrial structure (ln(IS)), and net exports (ln(X− E)). The test was conducted based on
the Augment Dickey Fuller theory at Level I(0) and first difference I(1), as illustrated in Table 1.

Table 1. Unit root test at Level I(0) and First Difference I(1).

ADF Test at Level I(0) ADF Test at First Difference I(1) MacKinnon Critical Value

Variables Value Variables Value 1% 5% 10%
ln(EC) −2.85 ∆ ln(EC) −4.56 *** −4.22 −3.53 −3.20

ln(GDP) −2.24 ∆ ln(GDP) −5.26 *** −4.22 −3.53 −3.20
ln(Population) −2.75 ∆ ln(Population) −4.25 *** −4.22 −3.53 −3.20

ln(OP) −3.05 ∆ ln(OP) −5.11 *** −4.22 −3.53 −3.20
ln(EI) −3.11 ∆ ln(EI) −4.95 *** −4.22 −3.53 −3.20

ln(UG) −2.39 ∆ ln(UG) −4.77 *** −4.22 −3.53 −3.20
ln(IS) −3.12 ∆ ln(IS) −5.71 *** −4.22 −3.53 −3.20

ln(X− E) −3.60 ∆ ln(X− E) −4.78 *** −4.22 −3.53 −3.20

Note: EC is the final energy consumption; GDP is the per capita GDP; Population is the population growth; OP is
the oil price; EI is the energy intensity; UG is the urbanization rate; IS is the industrial structure; X− E is the net
export, *** denotes a significance, α = 0.01, compared to the Tau test with the MacKinnon Critical Value, ∆ is the first
difference, and ln is the natural logarithm.
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Table 1 presents the testing result of the Tau test compared to the MacKinnon critical value.
The result showed that all variables had the unit root or were found to be non-stationary at Level I(0),
and explained the insignificance at 1%, 5%, and 10%. Therefore, carrying out the First Difference I(1)
was required. When testing the unit root at Level I(1), it was found that all variables were stationary at
Level I(1) with the significance level of 1%, 5%, and 10%. Later, all stationary variables are taken for
the co-integration test by Johansen Juselius to analyze the long-term relationship of every variable at
the same level as shown in Table 2.

Table 2. Co-integration test by Johansen Juselius.

Variables
Hypothesized
No of CE(S)

Trace Statistic
Test

Max-Eigen
Statistic Test

MacKinnon Critical Value
Status

1% 5%

∆ ln(EC),
∆ ln(GDP),

∆ ln(Population),
∆ ln(OP),
∆ ln(EI),

∆ ln(UG),
∆ ln(IS)

∆ ln(X− E)

None *** 231.15 165.85 18.75 15.40 I(1)

At Most 1 *** 79.41 81.45 5.50 3.12 I(1)

*** denotes significance α = 0.01.

3.2. Analysis of Co-Integration

Table 2 shows that all variables had a long-term relationship (co-integration) because the results
of the trace test were 231.15 and 79.41, which were higher than the MacKinnon critical values at
significance levels of 1% and 5%. The maximum eigenvalue test results were 165.85 and 81.45,
which were higher than the MacKinnon critical values at the same significance levels. Consequently,
those variables were used to form a forecasting model by adapting the LT-ARIMAXS model and
applying short- and long-term relationships into the model.

3.3. Formation of Analysis Modeling with the LT-ARIMAXS Model

All stationary variables at the first difference are tested for the co-integration at the same level to
construct the LT-ARIMAXS Model at time (1,1,1). All exogenous variables at time t − 1 and ECT(t − 1)
are not proper as evaluated by the Q-statistic. However, we have started to build the Best model
named as the LT-ARIMAXS model at period (t − i) of p,d,q, and the good fit of period (t − i) falls at
LT-ARIMAXS (2,1,2), which is shown in Figure 2 and Table 3.

Figure 2. The correlogram of the residual error of the LT-ARIMAXS model (2,1,2). Note: Columns
1 and 2 show the velocity trend of the correlation coefficient that shrank to two times the standard
deviation (obtained by EViews). AC is the value of the autocorrelation coefficient. PAC is the value of
the partial correlation coefficient. Q-stat denotes the Q test statistic method at time t − i.
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Table 3. The result of the LT-ARIMAXS model (2,1,2).

Independent Variables Dependent Variable ∆ln(EC)t

AR(1) 2.79 ***
AR(2) 3.15 ***
MA(1) 2.99 ***
MA(2) 2.41 **

∆ln(GDP)t−1 7.06 ***
∆ln(Population)t−1 2.45 **

∆ln(OP)t−2 6.15 ***
∆ln(EI)t−1 3.42 ***

∆ln(UG)t−1 5.26 ***
∆ln(IS)t−1 7.34 ***

∆ ln
(
X− E)t−2 5.01 ***

ECTt−1 −2.15 **

Note: AR is Autoregressive model, MA is Moving Average model, *** denotes significance α = 0.01, ** denotes
significance α = 0.05, R-squared is 0.91, adjusted R-squared is 0.90, the Durbin–Watson statistic is 2.01, the F-statistic
is 229.25 (probability is 0.00), the ARCH test is 35.01 (probability is 0.1), the LM test is 1.65 (probability is 0.10),
and the response test (χ2 > critical) represents the significance.

Figure 2 reflects that the LT-ARIMAXS (2,1,2) model became the best forecasting model as all
values of the Q test statistic at time (t− i) were in the criteria and met all conditions, or the insignificance
fell as follows: α = 0.01, α = 0.05, and α = 0.1. Therefore, this model can be used to forecast the final
energy consumption. However, we have discovered the best model at time LT-ARIMAXS (2,1,2),
and this allowed us to understand the influence in changes or elasticity of all independent variables
causing the changes over the final energy consumption at time (t − i), as illustrated in Table 3.

Table 3 illustrates the parameters of the LT-ARIMAXS (2,1,2) model at a statistically significant
level of 1% and 5%. The findings illustrated that, when per capita GDP (∆ln(GDP)t−1at time (t − 1)
changed about 1%, it changed the final energy consumption (∆ln(EC)t) equivalent to the elasticity
coefficient of 7.06% at the significance level of 1%, which went in the same direction. When population
growth (∆ln(Population)t−1at time (t− 1) changed about 1%, it showed influence over the final energy
consumption (∆ln(EC)t) equivalent to the elasticity coefficient of 2.45% at the significance level of 5%,
which also went in the same direction. When oil price (∆ln(OP)t−2) at time (t − 2) changed about
1%, the final energy consumption (∆ln(EC)t) was affected to change by the elasticity coefficient of
6.15% at the significance level of 1%, whose change was in the same direction. When energy intensity
(∆ln(EI)t−1) at time (t − 1) changed about 1%, the final energy consumption (∆ln(EC)t) was also
changed by the elasticity coefficient of 3.42% at the significance level of 1%, which went in the same
direction. When the change in urbanization rate (ln(UG)t−1) at time (t − 1) accounted for 1%, the final
energy consumption (∆ln(EC)t) was also affected to change by the elasticity coefficient of 5.26% at
the significance level of 1%, which went in the same direction. When industrial structure (ln(IS)t−1)
at time (t − 1) changed about 1%, it affected the final energy consumption (∆ln(EC)t) equivalent to
the elasticity coefficient of 7.34% at the significance level of 1%, whose direction went in the same
direction. Furthermore, when net exports (ln

(
X− E)t−2 ) at time (t − 2) changed about 1%, the final

energy consumption (∆ln(EC)t) was changed equally with the elasticity coefficient of 5.01% at the
significance level of 1% in the same direction.

However, from the analysis of the LT-ARIMAXS model (2,12), it was found that ECTt−1 was
equal to −2.15% at the significance level of 5%. This shows that the error-correction mechanism
(ECTt−i) can precisely explain the fluctuations and the adjustment. Specifically, ECTt−1 denotes that,
under the impacts of controlled variables, when short-term fluctuations deviate from the long-term
equilibrium, the changes of final energy consumption in t time can eliminate the non-equilibrium
error of the t − 1 time by 2.15% and make a reverse adjustment to bring the non-equilibrium point
back to the equilibrium point. Furthermore, the LT-ARIMAXS model (2,1,2) is free from the issue of
heteroskedasticity, multicollinearity, and autocorrelation.
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In addition, we compared some selected forecasting models in terms of their effectiveness with
MAPE and RMSE, which is indicated in Table 4. LT-ARIMAXS model was compared with other
models: the MLR model, the BP model, the ANN model, the ARMA model, the GM(1,1) model,
and the ARIMA model shown below.

Table 4. The performance monitoring of the forecasting model (%).

Forecasting Model MAPE RMSE

MLR model 19.76 20.76
BP model 10.67 14.63

ANN model 8.55 9.95
ARMA model 8.51 9.17
GM(1,1) model 6.69 8.52
ARIMA model 5.75 6.41

LT-ARIMAXS model (2,1,2) 0.97 2.12

Table 4 shows that LT-ARIMAXS model (2,1,2) with analytical data for 1985–2017 consisting
of independent variables in the model including final energy consumption at the time period t − 1
(ln(EC)t−1) or AR(1), final energy consumption at time period t − 2 (ln(EC)t−2) or AR(2), Moving
Average (1) or MA(1), Moving Average (2) or MA(2), per capita GDP at time period t− 1 (ln(GDP)t−1),
population growth at time period t − 1 (ln(Population)t−1),oil price at time period t − 2 (ln(OP)t−2),
energy intensity at time period t − 1 (ln(EI)t−1), urbanization rate at time period t − 1 (ln(UG)t−1),
industrial structure at time period t − 1 (ln(IS)t−1), net exports at time period t − 2 (ln

(
X− E)t−2 ),

and the error-correction mechanism at time period t − 1 (ECTt−1) provided the lowest MAPE value
at 0.97% and RMSE value at 2.12%. The ARIMA model, the GM(1,1) model, the ARMA model,
the ANN model, the BP model, and the MLR model had MAPE values of 5.75%, 6.69%, 8.51%, 8.55%,
10.67%, and 19.76%, respectively, and RMSE values of 6.41%, 8.52%, 9.17, 9.95%, 14.63%, and 20.76%,
respectively. The findings show that the LT-ARIMAXS model (2,1,2) is most effective. This was
observed as MAPE and RMSE being the lowest when compared to the old models. Furthermore, it is
very useful for long-term forecasting and national policy-making and planning in boosting sustainable
development in the long-run. Therefore, the LT-ARIMAXS model (2,1,2) was used to forecast CO2

emissions in the following step.

3.4. Final Energy Consumption Forecasting Based on the LT-ARIMAXS Model

Table 4 shows that the LT-ARIMAXS Model comes with highest efficiency by looking at the
lowest value of MAPE and RMSE compared with past forecasting models. Therefore, we chose
the LT-ARIMAXS Model for long-term forecasting (2018–2037). Once we attained the best model,
i.e., the LT-ARIMAXS Model (2,1,2), the long-term forecasting on the final energy consumption in
Thailand’s petroleum industries sector for 20 years (2018–2037) was conducted, as shown in Figure 3.

Figure 3 shows that final energy consumption from 2018 to 2037 in Thailand constantly increases
where the 2037 rate was found to be 109.8% higher than 2017. At the same time, it presents that the 2037
final energy consumption would be equivalent to 121,461 ktoe, which is higher than the government’s
reduction goal, i.e., the final energy consumption in Thailand’s petroleum industries sector should
not exceed more than 90,000 ktoe. As for the study, it reflects that the final energy consumption does
not go along with the national policy effectively, and has negative effects on Thailand’s sustainable
development in the long-run.
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Figure 3. The forecasting results of final energy consumption from 2018 to 2037 in Thailand.

4. Discussion

This research differs from other previous studies, as this LT-ARIMAXS model has a higher
effectiveness and better long-term forecasting, while producing fewer discrepancies in prediction.
Based on the many relevant studies reviewed, most existing models were only made available
for short-term forecasting capability ranging from one to five years. Zhao, Zhao, and Guo [6]
applied the GM model optimized by MFO with rolling mechanism in the forecasting for the period
2010–2014. Li and Li [7] used the ARIMA model, GM model, and ARIMA-GM model to forecast energy
consumption in Shandong, China from 2016 until 2020. Xiong, Dang, Yao, and Wang [8] utilized the
GM(1,1) model based on optimizing the initial condition in accordance with the new information
priority principle in the prediction from 2013 to 2017. Panklib, Prakasvudhisarn and Khummongkol [9]
chose ANN model and MLR model in the forecasting for 2010, 2015, and 2020. In addition, Azadeh,
Ghaderi, Tarverdian, and Saberi [10] incorporated ANN integrated with the genetic algorithm in a
one-year prediction. Günay [11] implemented Artificial Neural Networks using predicted values of
socio-economic indicators and climatic conditions for the same one-year coverage of forecasting. Dai,
Niu, and Li [12] applied ensemble empirical mode decomposition and least squares support vector
machine based on an improved shuffled frog leaping algorithm for 2018–2022 forecasting. Suganthi
and Samuel [14] used the econometrics model for 2030–2031 forecasting. Additionally, there have also
been some studies that have attempted to forecast for six years but not 20 years. Hamzacebi and Es [18]
implemented an optimized Grey Modeling for 2013–2025 forecasting. Mu et al. [19] used improved
grey model for the 2011–2020 prediction. Zeng, Zhou, and Zhang [20] developed a homologous grey
prediction model for 2018–2024 forecasting. Furthermore, Jiang, Yang, and Li [21] used MGM model,
ARIMA model, MGM–ARIMA model, and BP model for the forecasting period of 2017–2030. Ediger
and Akar [22] deployed ARIMA model and SARIMA model for 2005–2020 forecasting. Ekonomou [23]
applied ANN model for 2005–2008, 2010, 2012, and 2015 prediction. Seung et al. [26] also deployed
a MLR model for 2014–2030 forecasting. Ayvaz and Kusakci [31] chose to apply a NDGM model
in prediction for the period 2014–2030. However, by reviewing various studies, it was found that
long-term forecasting has become a popular topic most researchers have chosen to study, and various
different methodologies have been implemented. In this study, we selected the most appropriate
model for long-term forecasting. The LT-ARIMAXS model functioned better and was more efficient,
with less erro, when compared to other models. With the output of the model, it is very useful and
fits in Thailand’s policy-making and planning. Furthermore, it can become the best guideline for any
interested researchers to further develop and explore.

Nonetheless, the limitation of this research lies upon the diesel price as the government controls
the price by using the Diesel Oil Support Fund. As a result, it does not reflect the real economy and



Energies 2018, 11, 2063 15 of 18

energy demand due to this government intervention, which may result in inaccurate forecasting. If the
government allows the oil price to move with the world market, we would be able to obtain the true
influence of the diesel price over the change in final energy consumption. In addition, the government’s
policy does not specifically define the government expenditure, especially on mega projects the
government has invested in, which heavily effects the economy, society, and environment. If such
variable can be utilized and considered in policy-making, we wouls also be able to see the influence
affecting the change in energy consumption. However, we highly expect that the LT-ARIMAXS model
is applied for a formulation of sustainable development-based policy and future research. In addition,
it is used to forecast greenhouse gases as determined by Thailand in all terms of durations including
short-term (1–5 years), mid-term (6–10 years), and long-term (11–20 year). However, the variables
must be contributed as the causal factors, especially a global diesel price and government expenditure.
Nonetheless, all factors are tested for the stationary, co-integration, and the error correction mechanism.
Most importantly, these two factors of global diesel price and government expenditure are used in
direct and indirect relationship analysis to ensure the real influence.

A government policy formulation requires a number of factors. Apart from variables used in this
study, the other true influential factors must be considered. Those factors are those truly affecting
the change in final energy consumption especially in long-term forecasting. The true and complete
factors must be emphasized and applied in future policy-making since their characteristics qualify
and fulfill the criterion as complete factors. Increasing the numbers of foreign tourists, the increment
of foreign workers, and carbon emission intensity are some factors to consider. Since the existing
models do not produce a precise output and are less efficient in forecasting, the LT-ARIMAXS model
has, therefore, been designed to fill this gap. Additionally, the LT-ARIMAXS model is structured with
detailed research methodology together with a fine selection of variables emphasizing on the influential
factors over the changes in the final energy consumption. At the same time, both co-integration and
an error correction mechanism test are carried out to ensure zero heteroscedasticity, multicollinearity,
and autocorrelation. The proper period is specified based on the Q-statistic test for constructing
the LT-ARIMAXS model (2,1,2). With all processes put together, the model is completely ready for
long-term prediction (2018–2037) and analysis of MAPE and RMSE for further comparison with the
MLR model, the BP model, the ANN model, the ARMA Model, the GM(1,1) model, and the ARIMA
model. The study reflected that the LT-ARIMAXS model (2,1,2) has a higher effectiveness with less
error based on the evaluation from MAPE and RMSE.

However, the LT-ARIMAXS model is unique in terms of its variables used, as only causal factors
affecting future forecasting are considered. This means all irrelevant factors are removed from the
modeling. This study is very instrumental not only for Thailand but also other countries. To ensure
its structure, all variables are rightly deployed, according to the proper context by analyzing the
co-integration and carrying out an error correction test together by specifying the right period for the
right sectors. The LT-ARIMAXS model does not limit the casual factors, but the users must give details
in all processes for a better performance of the model. We used various software for our analysis
by collecting data via Excel and constructing the LT-ARIMAXS model with EViews 9.5 due to its
capability in precise and long-term analysis and supportive to window (64 bit). Nonetheless, for those
individuals interested in using the LT-ARIMAXS model, they can download the EViews 9.5 student
version for Windows (Windows 10, Windows 8, Windows 7, and Windows Vista) for free, but it only
allows free usage for two years. A Pentium or better CPU with 512 MB Memory and 270 MB Disk
Space is required.

However, from this study, it can be concluded that the final energy consumption in the long-run
(2018–2037) by using the LT-ARIMAXS model will be higher than the targeted amount. In addition,
this model differs from any existing models used on the prediction within Thailand since the model’s
prediction result can really support Thailand’s national policy-making at a higher efficiency. Since the
LT-ARIMAXS model is developed, only true influential variables over the final energy consumption
in particular sectors are deployed and become applicable at a wider scope of prediction compared to
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past predictions. If the government decides to utilize the LT-ARIMAXS model as part of obtaining
sustainability, all influences produced from the LT-ARIMAXS model (2,1,2) must be considered to
attain a proper management of changes in all casual factors. One of the major key variables in the
LT-ARIMAXS model is the error-correction mechanism (ECT). This is because the implication of the
model is very beneficial for a long-term prediction for Thailand and other countries. When there are
changes, shocks, or variations in the variables deviating from the equilibrium, the ECT is the value
telling that those variables will adjust to the equilibrium in the next period (t − i). However, the ECT
parameter will indicate the capability range of the adaptation to the equilibrium and it will guide the
government to set a clearer path in policy-planning. In addition, the focus in modeling should be
emphasized while other untaken variables are used for consideration by specifying a proper period of
application to maximize the model’s use.

5. Conclusions

This study has formed another area to explore and acted as a guideline for future research. This has
made the model standout from other past models. At the same time, it has helped to narrow the gap and
strengthen the existing weaknesses in previous studies, reducing potential discrepancies. Therefore,
this study was necessary as it is beneficial and instrumental for both academia and strengthening
future sustainable development policy. This LT-ARIMAXS model has been structured based on
previous models, and has become the first model to optimize the advance statistic. Simultaneously,
it was designed to fill the gap of forecasting capability, especially long-term forecasting, which is
important and necessary to develop to reduce any potential residual discrepancies. The reason for
this assurance is that it allows us to improve policy formulation in the right direction in the most
efficient and effective manner. We have developed this LT-ARIMAXS model by commencing with
variable selection. This selection uses only influential variables, which have an impact on the change
in final energy consumption, and must be felt within the sustainable development concept in both the
long-term and short-term. When the right variables are obtained, they are used for the unit root test to
identify the stationary at the same level. If any variables are found to be stationary yet at different
levels, they are immediately eliminated. In this study, it was found that all involved variables were
stationary at first difference, and they were used for the co-integration test to evaluate the long-term
relationship. This test showed that all variables were co-integrated at Level I(1). After all those
processes, the LT-ARIMAXS model (2,1,2) was structured consisting of the autoregressive model (AR),
moving average model (MA), exogeneous variable, and error correction mechanism test (ECTt−1).
However, the LT-ARIMAXS model (2,1,2) was improved for the right period (t − i) as shown in the
correlogram of the residual error with the use of the Q statistic test. With this test, we were able to
identify the period for this modeling to be the most effective. In addition, we tested the effectiveness
of the LT-ARIMAXS model (2,1,2) by MAPE and RMSE, whose values were later found to be lowest,
equivalent to 0.97% and 2.12% when compared to the ARIMA model, GM(1,1) model, ARMA model,
ANN model, BP model, and MLR model. Thus, the LT-ARIMAXS model (2,1,2) was used to forecast the
final energy consumption in the petroleum industries sector in Thailand for 20 years (2018–2037). As a
result, the model produced outcomes where the rate 2037 was 109.8% higher than 2017. Additionally,
the final energy consumption was found to be 121,461 ktoe by 2037, and this exceeds the government
limit of 90,000 ktoe. Hence, the above output can be applied in policy-making and planning in the
future to ensure that the right policy for the right direction is established, unlike any other previous
years (1985–2017).

Author Contributions: P.S. and K.K. were involved in the data collection and preprocessing phase,
model constructing, empirical research, results analysis and discussion, and manuscript preparation. All authors
have approved the submitted manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was performed with the approval of King Mongkut’s University of Technology
Thonburi and the Office of the National Economic and Social Development Board.



Energies 2018, 11, 2063 17 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Office of the National Economic and Social Development Board (NESDB). Available online: http://www.
nesdb.go.th/nesdb_en/more_news.php?cid=154&filename=index (accessed on 27 June 2018).

2. National Statistic Office Ministry of Information and Communication Technology. Available online: http:
//web.nso.go.th/index.htm (accessed on 28 June 2018).

3. Department of Alternative Energy Development and Efficiency. Available online: http://www.dede.go.th/
ewtadmin/ewt/dede_web/ewt_news.php?nid=47140 (accessed on 29 June 2018).

4. Achawangkul, Y. Thailand’s Alternative Energy Development Plan. Available online: http://www.unescap.
org/sites/default/files/MoE%20_%20AE%20policies.pdf (accessed on 29 June 2018).

5. Thailand Greenhouse Gas Management Organization (Public Organization). Available online: http://www.
tgo.or.th/2015/thai/content.php?s1=7&s2=16&sub3=sub3 (accessed on 29 June 2018).

6. Zhao, H.R.; Zhao, H.R.; Guo, S. Using GM(1,1) Optimized by MFO with Rolling Mechanism to Forecast the
Electricity Consumption of Inner Mongolia. Appl. Sci. 2016, 6, 20. [CrossRef]

7. Li, S.; Li, R. Comparison of forecasting energy consumption in Shandong, China Using the ARIMA model,
GM model, and ARIMA-GM model. Sustainability 2017, 9, 1181.

8. Xiong, P.P.; Dang, Y.G.; Yao, T.X.; Wang, Z.X. Optimal modeling and forecasting of the energy consumption
and production in China. Energy 2014, 77, 623–634. [CrossRef]

9. Panklib, K.; Prakasvudhisarn, C.; Khummongkol, D. Electricity Consumption Forecasting in Thailand Using
an Artificial Neural Network and Multiple Linear Regression. Energy Sources Part B Econ. Plan. Policy 2015,
10, 427–434. [CrossRef]

10. Azadeh, A.; Ghaderi, S.F.; Tarverdian, S.; Saberi, M. Integration of artificial neural networks and genetic
algorithm to predict electrical energy consumption. Appl. Math. Comput. 2007, 186, 1731–1741. [CrossRef]

11. Günay, M.E. Forecasting annual gross electricity demand by artificial neural networks using predicted
values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy 2016, 90, 92–101.
[CrossRef]

12. Dai, S.; Niu, D.; Li, Y. Forecasting of Energy Consumption in China Based on Ensemble Empirical Mode
Decomposition and Least Squares Support Vector Machine Optimized by Improved Shuffled Frog Leaping
Algorithm. Appl. Sci. 2018, 8, 678. [CrossRef]

13. Wang, Q.; Li, R. Decline in China’s coal consumption: An evidence of peak coal or a temporary blip?
Energy Policy 2017, 108, 696–701. [CrossRef]

14. Suganthi, L.; Samuel, A.A. Modelling and forecasting energy consumption in INDIA: Influence of
socioeconomic variables. Energy Sources Part B Econ. Plan. Policy 2016, 11, 404–411. [CrossRef]

15. Xu, J.; Fleiter, T.; Eichhammer, W.; Fan, Y. Energy consumption and CO2 emissions in China’s cement
industry: A perspective from LMDI decomposition analysis. Energy Policy 2012, 50, 821–832. [CrossRef]

16. Kishita, Y.; Yamaguchi, Y.; Umeda, Y. Describing Long-Term Electricity Demand Scenarios in the
Telecommunications Industry: A Case Study of Japan. Sustainability 2016, 8, 52. [CrossRef]

17. Zhao, W.; Wang, J.; Lu, H. Combining forecasts of electricity consumption in China with time-varying
weights updated by a high-order Markov chain model. Omega 2014, 45, 80–91. [CrossRef]

18. Hamzacebi, C.; Es, H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey
model. Energy 2014, 70, 165–171. [CrossRef]

19. Mu, H.; Dong, X.; Wang, W.; Ning, Y.; Zhou, W. Improved Gray Forecast Models for China’s Energy
Consumption and CO, Emission. J. Desert Res. 2002, 22, 142–149.

20. Zeng, B.; Zhou, M.; Zhang, J. Forecasting the Energy Consumption of China’s Manufacturing Using a
Homologous Grey Prediction Model. Sustainability 2017, 9, 1975. [CrossRef]

21. Jiang, F.; Yang, X.; Li, S. Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model,
MGM-ARIMA Model, and BP Neural Network Model. Sustainability 2018, 10, 2225. [CrossRef]

22. Ediger, V.S.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007,
35, 1701–1708. [CrossRef]

23. Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010,
35, 512–517. [CrossRef]

http://www.nesdb.go.th/nesdb_en/more_news.php?cid=154&filename=index
http://www.nesdb.go.th/nesdb_en/more_news.php?cid=154&filename=index
http://web.nso.go.th/index.htm
http://web.nso.go.th/index.htm
http://www.dede.go.th/ewtadmin/ewt/dede_web/ewt_news.php?nid=47140
http://www.dede.go.th/ewtadmin/ewt/dede_web/ewt_news.php?nid=47140
http://www.unescap.org/sites/default/files/MoE%20_%20AE%20policies.pdf
http://www.unescap.org/sites/default/files/MoE%20_%20AE%20policies.pdf
http://www.tgo.or.th/2015/thai/content.php?s1=7&s2=16&sub3=sub3
http://www.tgo.or.th/2015/thai/content.php?s1=7&s2=16&sub3=sub3
http://dx.doi.org/10.3390/app6010020
http://dx.doi.org/10.1016/j.energy.2014.09.056
http://dx.doi.org/10.1080/15567249.2011.559520
http://dx.doi.org/10.1016/j.amc.2006.08.093
http://dx.doi.org/10.1016/j.enpol.2015.12.019
http://dx.doi.org/10.3390/app8050678
http://dx.doi.org/10.1016/j.enpol.2017.06.041
http://dx.doi.org/10.1080/15567249.2011.631087
http://dx.doi.org/10.1016/j.enpol.2012.08.038
http://dx.doi.org/10.3390/su8010052
http://dx.doi.org/10.1016/j.omega.2014.01.002
http://dx.doi.org/10.1016/j.energy.2014.03.105
http://dx.doi.org/10.3390/su9111975
http://dx.doi.org/10.3390/su10072225
http://dx.doi.org/10.1016/j.enpol.2006.05.009
http://dx.doi.org/10.1016/j.energy.2009.10.018


Energies 2018, 11, 2063 18 of 18

24. Ardakani, F.J.; Ardehali, M.M. Long-term electrical energy consumption forecasting for developing and
developed economies based on different optimized models and historical data types. Energy 2014, 65, 452–461.
[CrossRef]

25. Supasa, T.; Hsiau, S.S.; Lin, S.M.; Wongsapai, W.; Wu, J.C. Household Energy Consumption Behaviour for
Different Demographic Regions in Thailand from 2000 to 2010. Sustainability 2017, 9, 2328. [CrossRef]

26. Seung, J.O.; Kim, C.N.; Kyaw, T.; Wongee, C.; Kian, J.E.C. Forecasting Long-term Electricity Demand for
Cooling of Singapore’s Buildings Incorporating an Innovative Air-conditioning Technology. Energy Build.
2016, 127, 183–193.

27. Wang, Y.; Ge, X.-L.; Liu, J.-L.; Ding, Z. Study and analysis of energy consumption and energy-related carbon
emission of industrial in Tianjin, China. Energy Strategy Rev. 2016, 10, 18–28. [CrossRef]

28. Zou, J.; Liu, W.; Tang, Z. Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan
City between 2007 and 2012. Sustainability 2017, 9, 452. [CrossRef]

29. Zhao, J.; Thinh, N.X.; Li, C. Investigation of the Impacts of Urban Land Use Patterns on Energy Consumption
in China: A Case Study of 20 Provincial Capital Cities. Sustainability 2017, 9, 1383. [CrossRef]

30. Tian, Y.; Xiong, S.; Ma, X. Analysis of the Potential Impacts on China’s Industrial Structure in Energy
Consumption. Sustainability 2017, 9, 2284. [CrossRef]

31. Ayvaz, B.; Kusakci, A.O. Electricity consumption forecasting for Turkey with nonhomogeneous discrete grey
model. Energy Sources Part B Econ. Plan. Policy 2017, 12, 260–267. [CrossRef]

32. Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root.
Econometrica 1981, 49, 1057–1072. [CrossRef]

33. Enders, W. Applied Econometrics Time Series; Wiley Series in Probability and Statistics; University of Alabama:
Tuscaloosa, AL, USA, 2010.

34. MacKinnon, J. Critical Values for Cointegration Tests. In Long-Run Economic Relationships; Engle, R.,
Granger, C., Eds.; Oxford University Press: Oxford, UK, 1991.

35. Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press:
Cambridge, UK, 1989.

36. Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration with applications
to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [CrossRef]

37. Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press:
New York, NY, USA, 1995.

38. Cryer, J.D.; Chan, K. Time Series Analysis with Applications in R, 2nd ed.; Springer: New York, NY, USA, 2008.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.energy.2013.12.031
http://dx.doi.org/10.3390/su9122328
http://dx.doi.org/10.1016/j.esr.2016.04.002
http://dx.doi.org/10.3390/su9030452
http://dx.doi.org/10.3390/su9081383
http://dx.doi.org/10.3390/su9122284
http://dx.doi.org/10.1080/15567249.2015.1089337
http://dx.doi.org/10.2307/1912517
http://dx.doi.org/10.1111/j.1468-0084.1990.mp52002003.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Autoregressive Model and Moving Average Model 
	LT-ARIMAXS Model 
	A Forecasting Model with ARIMA Model 
	A Forecasting Model with LT-ARIMAXS Model 
	Measurement of the Forecasting Performance 


	Results 
	Screening of Influencing Factors for Model Input 
	Analysis of Co-Integration 
	Formation of Analysis Modeling with the LT-ARIMAXS Model 
	Final Energy Consumption Forecasting Based on the LT-ARIMAXS Model 

	Discussion 
	Conclusions 
	References

