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Abstract: A numerical model is presented for the estimation of Wave Energy Converter (WEC)
performance in variable bathymetry regions, taking into account the interaction of the floating units
with the bottom topography. The proposed method is based on a coupled-mode model for the
propagation of the water waves over the general bottom topography, in combination with a Boundary
Element Method for the treatment of the diffraction/radiation problems and the evaluation of the
flow details on the local scale of the energy absorbers. An important feature of the present method is
that it is free of mild bottom slope assumptions and restrictions and it is able to resolve the 3D wave
field all over the water column, in variable bathymetry regions including the interactions of floating
bodies of general shape. Numerical results are presented concerning the wave field and the power
output of a single device in inhomogeneous environment, focusing on the effect of the shape of the
floater. Extensions of the method to treat the WEC arrays in variable bathymetry regions are also
presented and discussed.

Keywords: renewable energy; marine environment; wave energy converters; variable bathymetry
effects; arrays

1. Introduction

Interaction of the free-surface gravity waves with floating bodies, in water of intermediate
depth and in variable bathymetry regions, is an interesting problem with important applications.
Specific examples concern the design and evaluation of the performances of special-type ships and
structures operating in nearshore and coastal waters; see, e.g., [1,2]. Also, pontoon-type floating bodies
of relatively small dimensions find applications as coastal protection devices (floating breakwaters)
and they are also frequently used as small boat marinas; see, e.g., [3–7]. In all these cases, the estimation
of the wave-induced loads and motions of the floating structures can be based on the solution of
the classical wave-body-seabed hydrodynamic-interaction problems; see, e.g., [8,9]. In particular,
the performance of the Wave Energy Converters (WECs) operating in nearshore and coastal areas,
characterized by variable bottom topography, is important for the estimation of the wave power
absorption, determination of the operational characteristics of the system and could significantly
contribute to the efficient design and layout of the WEC farms. In this case, wave-seabed interactions
may have a significant effect; see [10,11].

In the above studies the details of the wave field propagating and scattered over the variable
bathymetry region could be important in order to consistently calculate the responses of the floating
bodies. For rapidly varying seabed topographies, including steep bottom parts, local or evanescent
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modes may have a significant impact on the wave phase evolution during propagation. Such a fact
was demonstrated through the interference process in one-directional wave propagation as observed
for either varying topographies (see e.g., [12,13]) or abrupt bathymetries including coastal structures
(see e.g., [14–16]). For such problems, the consistent coupled-mode theory has been developed in [17],
for the water waves propagation in variable bathymetry regions. Furthermore, it was subsequently
extended for 3D bathymetry in [18], and applied successfully to treat the wave transformation over
nearshore/coastal sites with steep 3D bottom features, like underwater canyons; see, e.g., [19,20].

In recent works [21,22] the coupled-mode model is further extended to treat the wave-current-seabed
interaction problem, with application to the wave scattering by non-homogeneous current over general
bottom topography. The problem of the directional spectrum transformation of an incident wave
system over a region of strongly varying three-dimensional bottom topography is further studied in [22].
The accuracy and efficiency of the coupled-mode method is tested, comparing numerical predictions
against experimental data by [23] and calculations by the phase-averaged model SWAN [24,25]. Results are
shown in various representative test cases demonstrating the importance of the first evanescent modes
and the additional sloping-bottom mode when the bottom slope is not negligible.

In this work, a methodology is presented to treat the propagation-diffraction-radiation problem
locally around each WEC, supporting the calculation of the interaction effects of the floating units
with variable bottom topography at a local scale. The method is based on the coupled-mode model
developed by [17], and extended to 3D by [18], for water wave propagation over general bottom
topography, in conjunction with the Boundary Element Method (BEM) for the hydrodynamic analysis
of floating bodies over general bottom topography [15] and the corresponding 3D Green’s function [26].
An important feature of the present method is that it is free of mild-slope assumptions and restrictions
and it is able to resolve the 3D wave field all over the water column, in variable bathymetry regions
including the interactions of floating bodies of general shape. Numerical results are presented and
discussed concerning simple bodies (heaving vertical cylinders) illustrating the applicability of the
present method.

2. Formulation

We consider here the hydrodynamic problem concerning the behavior of a number N of identical
cylindrical-shaped WECs, D(k)

B , k = 1, N, of characteristic radius a and draft d, operating in the
nearshore environment, as shown in Figure 1.
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The variable bathymetry region is considered between two infinite sub-regions of constant,
but possibly different depths h = h1 (region of incidence) and h = h3 (region of transmission). In the
middle sub-region, it is assumed that the depth h exhibits an arbitrary variation. The wave field is
excited by a harmonic incident wave of angular frequency ω, propagating with direction θ; see Figure 1.
Under the assumptions that the free-surface elevation and the wave velocities are small, the wave
potential is expressed as follows:

Φ(x, z; t) = Re
{
− igH

2ω
ϕ(x, z; µ) · exp(−iω t )

}
, (1)

where x = (x1, x2), and satisfies the linearized water wave equations; see [27]. In the above equation H
is the incident wave height, g is the acceleration due to gravity, µ = ω2/g is the frequency parameter,
and i =

√
−1. The free surface elevation is then obtained in terms of the wave potential as follows:

η(x; t) = − 1
g

∂Φ(x, z = 0)
∂ t

. (2)

Using standard floating-body hydrodynamic theory [8], the complex potential can be decomposed
as follows:

ϕ(x, z) = ϕP(x, z) + ϕD(x, z) +
2ω2

gH
ϕR(x, z), ϕR(x, z) =

N

∑
k=1

6

∑
`=1

ξk`ϕk`(x, z), (3)

where ϕP(x, z) is the normalized propagation wave potential in the variable bathymetry region in the
absence of the WECs, ϕD(x, z) is the diffraction potential due to the presence fixed (motionless) bodies
D(k)

B , k = 1, N, that satisfies the boundary condition ∂ϕD(x, z)/∂nk = −∂ϕP(x, z)/∂nk on k-WEC,
where nk = (n1, n2, n3)k the normal vector on the wetted surface of the k-body, directed outwards the
fluid domain (inwards the body). Furthermore, ϕk`(x, z), k = 1, N, denotes the radiation potential
in the non-uniform domain associated with the `-oscillatory motion of the k-body with complex
amplitude ξk`, satisfying ∂ϕk`(x, z)/∂n = nk`, equal to the `-component of generalized normal vector
on the wetted surface of the k-WEC (nk` = (r× nk)`−3 for ` = 4, 5, 6).

In the case of simple heaving WECs, only the vertical oscillation of each body is considered
ξk = ξk3, which is one of the most powerful intensive modes concerning this type of wave energy
systems. In the present work we will concentrate on this simpler configuration, leaving the analysis of
the more complex case to be examined in future work. For an array of heaving WECs the hydrodynamic
response is obtained by:

ξk3 = (Akm)
−1(XPm + XDm), k, m = 1, . . . N, (4)

where XPm + XDm denote the exciting vertical force on each WEC due to propagating and diffraction
field, respectively, and the matrix coefficient Akm is given by:

Akm = −ω2(M + akm)− iω(Bmδkm + bkm) + (Cm + c)δkm, (5)

where δkm denotes Kronecker’s delta and M is the body mass (assumed the same for all WECs).
The hydrodynamic coefficients (added mass and damping) are calculated by the following integrals:

akm −
1

iω
bkm = ρ

x

∂DBm

ϕk3nm3 dS, k, m = 1, . . . N, (6)

of the heaving-radiation potential of the k-WEC on the wetted surface ∂DBm of the m-WEC.
Moreover, c = ρgAWL is the hydrostatic coefficient in heaving motion with AWL the waterline surface,
and Bm, Cm are characteristic constants of the Power Take Off (PTO) system associated with the m-th
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degree of freedom of the floater. The components of the excitation (Froude-Krylov and diffraction)
forces are calculated by the following integrals of the corresponding potentials:

XPm =
ρgH

2

x

∂DBm

ϕPnm dS, XDm =
ρgH

2

x

∂DBm

ϕDnm dS, m = 1, . . . N, (7)

on the wetted surface ∂DBm of the m-WEC. The total power extracted by the array is obtained as:

P(N; ω, θ) =
1
2

ω2

∣∣∣∣∣ N

∑
k=1

ηm
e f f Bm(ξk)

2

∣∣∣∣∣, (8)

where ηk indicates the efficiency of the PTO associated with the k-th degree of freedom (that could be a
function of the frequency ω). Finally, the q-index can be estimated by:

qN(ω, θ) = N−1P(N; ω, θ, H)/P1(ω, θ, H), (9)

where P1(ω, θ, H) indicates the output of a single device operating in the same environment and wave
conditions. Obviously, the calculated performance depends on the frequency, direction and height of
the incident wave, as well as on the physical environment and the positioning of the WECs in the array
(farm layout). Finally, the operational characteristics of the farm, in general multi chromatic wave
conditions, characterized by directional wave spectrum, could be obtained by appropriate spectral
synthesis; see, e.g., [20,22].

3. Propagating Wave Field

The wave potential ϕP(x, z) associated with the propagation of water waves in the variable
bathymetry region, without the presence of the scatterer (floating body), can be conveniently calculated
by means of the consistent coupled-mode model developed [17], as extended to three-dimensional
environments by [18]. This model is based on the following enhanced local-mode representation:

ϕP(x, z) = ϕ−1(x) Z−1(z; x) +
∞

∑
n=0

ϕn(x) Zn(z; x). (10)

In the above expansion, the term ϕ0(x)Z0(z; x) denotes the propagating mode of the generalized
incident field. The remaining terms ϕn(x) Zn(z; x), n = 1, 2, . . . , are the corresponding evanescent
modes, and the additional term ϕ−1(x)Z−1(z; x) is a correction term, called the sloping-bottom mode,
which properly accounts for the satisfaction of the Neumann bottom boundary condition of the
non-horizontal parts of the bottom. The function Zn(z; x) represents the vertical structure of the n-th
mode. The function ϕn(x) describes the horizontal pattern of the n-th mode and is called the complex
amplitude of the n-th mode. The functions Zn(z; x), n = 0, 1, 2 . . ., are obtained as the eigenfunctions
of local vertical Sturm-Liouville problems formulated in the local vertical intervals −h(x) ≤ z ≤ 0,
and are given by:

Z0(z; x) =
cosh[k0(x)(z + h(x))]

cosh
(
k0(x)h(x)

) , Zn(z; x) =
cos[kn(x)(z + h(x))]

cos(kn(x)h(x))
, n = 1, 2, . . . (11)

In the above equations the eigenvalues
{

ik0(x), kn(x)
}

are obtained as the roots of the local
dispersion relations:

µ h(x) = k0(x) h(x)tanh[k0(x)h(x)], µ h(x) = −kn(x) h(x) tan[kn(x)h(x)]

n = 1, 2, . . .
(12)
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The function Z−1(z; x) is defined as the vertical structure of the sloping-bottom mode. This term
is introduced in the series in order to consistently satisfy the Neumann boundary condition on the
non-horizontal parts of the seabed. It becomes significant in the case of seabottom topographies
with non-mildly sloped parts and has the effect of significant acceleration of the convergence of the
local mode series Equation (10); see [17]. In fact, truncation of the series (10) keeping only a small
number 4–6 totally terms have been proved enough for calculating the propagating wave field in
variable bathymetry regions with bottom slopes up to and exceeding 100%. For specific convenient
forms of Z−1(z; x) see the discussion ([17]). By following the procedure described in the latter work,
the coupled-mode system of horizontal equations for the amplitudes of the incident wave field
propagating over the variable bathymetry region is finally obtained:

∑
n=−1

Amn(x) ∇2 ϕn (x) + Bmn(x) ∇ϕn (x) + Cmn(x)ϕn(x) = 0, m = −1, 0, 1 . . . (13)

where the coefficients Amn, Bmn, Cmn of the coupled-mode system (13) are defined in terms of the
vertical modes Zn(z; x). The coefficients are dependent on x through h(x) and the corresponding
expressions can be found in Table 1 of [17]. The system is supplemented by appropriate boundary
conditions specifying the incident waves and treating reflection, transmission and radiation of waves.
It is worth mentioning here that if only the propagating mode (n = 0) is retained in the expansion (11)
the above CMS reduces to an one-equation model which is exactly the modified mild-slope Equation
derived in [13,28]. So, the present approach could be automatically reduced to mild-slope model in
the subregions where such a simplification is permitted, saving a lot of computational cost. On the
other hand in subregions where bottom variations are strong the extra (evanescent) modes are turned
on and have substantial effects concerning the 3D wave field all over the water column, as illustrated
in [17,18].

Table 1. Optimum PML parameters.

ω < 2 σ̃o = 1 R/λ = 2 N/λ = 15 n = 5
2 ≤ ω < 7 σ̃o = 1 R/λ = 3 N/λ = 20 n = 3
7 ≤ ω < 8 σ̃o = 1 R/λ = 3 N/λ = 15 n = 3
8 ≤ ω ≤ 9 σ̃o = 1 R/λ = 3 N/λ = 10 n = 3

4. A Novel BEM for the Diffraction and Radiation Problems in 3D Environments

The corresponding problems on the diffraction and radiation potentials ϕD(x, z) andϕk(x, z),
associated with the operation of the floating WECs, are treated by means of low-order Boundary
Element Method, based on simple singularity distributions and 4-node quadrilateral boundary
elements ([29]), ensuring continuity of the geometry approximation of the various parts of the boundary.
The potential and velocity fields are approximated by:

ϕ(r) = ∑
p

FpΦp(r), ∇ϕ(r) = ∑
p

FpUp(r), (14)

where the summation ranges over all panels and Fp(r) and Up(r) denote induced potential and velocity
from the p-th element with unit singularity distribution to the field point r; see, e.g., [30] and the
references cited there. We mention here that a minimum number of 10–20 elements per wavelength
is used in discretizing the free surface, in order to eliminate errors due to damping and dispersion
associated with the above discrete scheme. In order to eliminate the infinite extent of the domain and
treat the radiating behaviour of the diffraction and radiation fields at far distances from the bodies,
an absorbing layer technique is used, based on a matched layer all around the fore and side borders of
the computational domain on the free surface; see, e.g., [31]. The thickness of the absorbing layer is
of the order of 1–2 characteristic wavelengths and its coefficient is taken increasing within the layer;



Energies 2018, 11, 2092 6 of 16

see Figure 2. The efficiency of this technique to damp the outgoing waves with minimal reflection is
dependent on the thickness of the layer.Energies 2018, 11, x FOR PEER REVIEW  6 of 16 
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Thus, the diffraction and radiation potentials are represented by integral formulations with
support only on the wetted surface of the floating body (ies) ∂DC, the bottom surface ∂DΠ and free
surface ∂DF; see Figure 2. In accordance with the present absorbing layer model, the free surface
boundary condition is modified as follows:

∂ϕ

∂n
− µ σϕ = 0 , r ∈ ∂DF, (15)

where µ = ω2/g and the coefficient σ = 1 everywhere on ∂DF, except in the absorbing layer
(indicated in Figure 2), where this is given by:

σ =

(
1 + i σ0

(R− Ra)
n

λn

)
, R =

√
x2

1 + x2
2 > Ra (16)

where λ is the local wavelength.
Also, it is assumed for the starting radius of the absorbing layer that Ra >> λ. The discrete

solution is then obtained using collocation method, by satisfying the boundary conditions at the
centroid of each panel on the various parts of the boundaries. Induced potentials and velocities from
each panel to any collocation point are calculated by numerical quadratures, treating the self-induced
quantities semi-analytically.

4.1. Investigation of the Optimal Parameters of the Absorbing Layer

The radiation condition expresses the weakening behavior of the outgoing waves at the far field,
and it formulates the final solution. In complicated problems, where analytical or even semi-analytical
solutions are unreachable, this condition cannot be formed a priori and further investigation is needed,
in order to obtain its final form. One common way to overcome this obstacle, is the implementation
of an absorbing layer from a specific length of activation and with defined characteristics, based on
the Perfectly Matched Layer (PML) model [32,33]. In this specific approach, the wave absorbing is
induced by an imaginary part of frequency, expressed by Equations (15) and (16), which operates
as a damping filter for the waves without significant reflections. The formulation of the optimal
PML is a multiparametric problem, mainly based on five parameters. The objective functions of this
optimization procedure is the avoidance of any influence of the PML in the region before its appliance,
due to reflections, and the progressive nullification of the wave field in the region after its activation.
The effectiveness of the PML can be tested by comparing the numerical and the analytical solution
in case of a cylindrical WEC body in steady depth regions [34]. The requirement for the PML not to
disturb the solution in the computational domain before its activation is quantified with the usage of
the Chebyshev Norm. Thus, the PML tunning parameters, discussed above, are:
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• Dimensionless frequency
(
ω̃ = ω

√
h
g

)
• Coefficient

(
σ̃o = σo

λn

ω

)
σ̂ = σλn/ω

• The activation length R/λ

• The exponent n
• The number of panels per wave length (N/λ)

Aiming to the minimization of the Chebyshev Norm, 64 different PMLs, corresponding to different
sets of these parameters, are investigated. The final configuration of the optimum PML is described in
Table 1. The efficient operation of the PML, especially in medium frequency bandwidths, where WEC
devices operate most of the time and absorb the largest amount of energy, is illustrated in Figure 3,
for different values of the non-dimensional frequency ω

√
a/g ω̃ = ω

√
a
g .
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a/h = 1/3.5 and d/a = 1.5dr/a = 1.5/1, where α: radius, h: local depth and d: draft, for different values
of the non-dimensional frequency ω

√
a/g ω̃ = ω

√
a
g : (a) 0.5120; (b) 0.6826; (c) 0.8533; (d) 1.0240.

4.2. Power Output in the Case of Cylindrical WEC

A cylindrical heaving WEC is widely used in offshore installations of the devices for harnessing
wave energy [35]. The numerical treatment of the wave-body interaction problem by means of BEM,
described in this study, constitutes from three separate regions, namely the free surface, the body of the
WEC and the bottom. Appropriate mesh generation in all these surfaces is crucial for obtaining reliable
solution. For this purpose, the free surface is discretized in 4 × (N/λ) × 88 elements, expanding for
4 wavelengths, where the first number indicates discretization along the radial direction and the other
along azimuthal direction, respectively, while the bottom mesh is 26 × 88 elements, spatially and
azimuthally respectively. The WEC mesh is 10 × 88 elements, in depth and in azimuthal direction,
as illustrated in Figure 4. It should be noticed the demand for consistency between the lengths of
the elements, those of the WEC and these of the free surface, at the matching position of the body’s
boundary. Very fine meshes only on the body and not on the free surface, which binds most of
the computational capacity and therefore has its limitations, may cause worse approximation of the
analytic solution on account of inconsistency.
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mesh on the free surface and on the bottom surface under the floater are shown.

Focusing on the power output coming from a single device, the first step for its calculation is
the evaluation of the Froude-Krylov and total forces, which are the summation of Froude-Krylov and
Diffraction forces, and the related hydrodynamic coefficients of added mass and damping. In Figures 5
and 6 are illustrated the results for these aspects, as they calculated both from the analytical and the
numerical treatment of the problem ([34,36]).

Energies 2018, 11, x FOR PEER REVIEW  8 of 16 

 

 

Figure 4. Illustration of the computational mesh in the near field. For clarity only the radial lines of 

the mesh on the free surface and on the bottom surface under the floater are shown. 

Focusing on the power output coming from a single device, the first step for its calculation is the 

evaluation of the Froude-Krylov and total forces, which are the summation of Froude-Krylov and 

Diffraction forces, and the related hydrodynamic coefficients of added mass and damping. In Figures 

5 and 6 are illustrated the results for these aspects, as they calculated both from the analytical and the 

numerical treatment of the problem ([34,35]). 

 

Figure 5. Non-dimensionalized cylinder hydrodynamic Froude-Krylov and total forces for various 

values of non-dimensionalized wavenumber (kα). Cylindrical WEC with / 1/3.5a h   and / 1.5d a  . 

 

Figure 6. Non-dimensionalized cylinder hydrodynamic coefficients for various values of non-

dimensionalized frequency. Cylindrical WEC with / 1/3.5a h   and / 1.5d a  . 

Furthermore, the WEC responses and the power output are evaluated and plotted in Figure 7, 

assuming typical PTO damping values, equal to 5, 10 and 20 times a mean value of hydrodynamic 
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values of non-dimensionalized wavenumber (kα). Cylindrical WEC with a/h = 1/3.5 and d/a = 1.5.
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Figure 6. Non-dimensionalized cylinder hydrodynamic coefficients for various values of
non-dimensionalized frequency. Cylindrical WEC with a/h = 1/3.5 and d/a = 1.5.

Furthermore, the WEC responses and the power output are evaluated and plotted in Figure 7,
assuming typical PTO damping values, equal to 5, 10 and 20 times a mean value of hydrodynamic
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damping bm. This value is estimated as 2πbm/mωR = 0.12, where the resonance frequency is
ωR
√

a/g = 0.7, also described in [22].
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The output power of the WEC by this PTO is normalized with respect to the incident wave
powerflux and is defined as P/(0.5ρCgH2a), for ηe f f = 1. It can be observed the fact that maximization
of power output occurs at the resonance frequency. In addition, higher values of PTO damping are
reasons for the observed decrease of peak values of heave Response Amplitude Operator (defined as
RAO = ξk3/(H/2), where a is the amplitude of the incident wave). However, at the same time they
are causing wider frequency spreads of energy productive function of the device.

5. Examination of Other Shapes of Axisymmetric Floaters

Regarding the examination of other WEC shapes, eight different axisymmetric geometries,
including the cylinder, are tested. This is made with the conviction of efficiency improvement,
in comparison with the reference cylindrical shape. Upon mesh generation, the elements used on
the bodies, except cylinder, are 18 × 88, in order to achieve a better approximation of the shape,
avoiding gaps and discontinuities of the geometry. For these shapes, there are no analytic solutions,
and furthermore, not any prospect for validation by comparing this numerical model with analytical
results. The reference cylindrical WEC has a ratio of radius to local depth, equal to 1/3.5 and a ratio of
draft to radius equal to 1.5/1. In every other design test, the radius and the draft of each geometry are
calculated with the assumption of constant mass. In other words, the area of the submerged vertical
cross section of the tested geometry is equal to the area of the submerged vertical cross section of the
cylindrical WEC, keeping with this approach the value of the mass unchangeable.

As referred previously, eight different shapes are put under investigation. Heave response and
power output are evaluated by the BEM computational code. These geometries, illustrated in Figure 8,
are strongly related with the current design trends of the industry and present similarities with many
already installed WEC devices [35,37–39].
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(c) Disk-shaped, (d) Elliptical, (e) Egg-shaped, (f) Conical, (g) Floater-shaped, (h) Semi-spherical.

Using as an efficiency index, the area under the curve of the normalized power, which
expresses the maximum values so as the functional frequency bandwidth, three of the above
geometries are qualified and their heave response and power output are presented in Figures 9–11.
The qualified geometries are namely the nailhead-shaped, which also presents further interest due to
its unconventional design for studies of multi-dof WECs, the conical and the floater-shaped.
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Figure 11. Heave RAO, Phase RAO and Normalized Power Output-Floater-shaped WEC.

On the assessment of these geometries, according to the figures above, despite the fact that the
PTO with higher damping is responsible for lower values of heave RAO, the power output appears
to be higher and with a higher frequency spreading. This dissimilar behavior of the device, in terms
of heave RAO and power output, is very intense in case of the nailhead-shaped WEC, where RAOs
are closely oriented, while the power output is far higher in the case of the “harder” PTO. A point of
interest in the study of the conical WEC is that a switch of efficiency occurs in ω

√
a/g = 1.25 ω̃ = 1.25,

when the medium ranked PTO is more efficient than higher ranked. Furthermore, the floater-shaped
WEC is shown to be a little more efficient in lower frequencies, where the maximum of the power
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output curve is located, while the nailhead-shaped and the conical are more efficient in bandwidths of
11 < ω

√
a/g < 1.4. The conical WEC is far more efficient in frequencies of 0.9 < ω

√
a/g < 1.4, however,

the final choice of the device and the PTO is depended on the sea climate and the dominant frequencies
in the area of installation.

6. Extensions to Treat the WEC Arrays in Variable Bathymetry Regions

An important part of the present BEM implementation deals with the construction of the mesh
on the various parts of the boundary. The details of the mesh generator are illustrated in Figure 12.
More specifically, the mesh on the free surface around a single WEC is plotted. The latter consists
of two subparts, the one close to the waterline of the floating unit and the far (outer) part. The near
mesh is based on the cylindrical distribution of the panels around the waterline of the WEC that
gradually deforms in order to end in a rectangular boundary. This permits the continuous junction
of the near mesh around one floater with the adjacent one, as illustrated in Figure 12a. After the
rectangular boundary, the mesh again deforms to become a cylindrical arrangement on the outer part.
Taking into account that in 3D diffraction and radiation fields associated with floating bodies the far
field behaves like essentially cylindrical outgoing waves [26], the cylindrical mesh in the outer part
of the free surface boundary is considered to be optimum for the numerical solution of the studied
problems. The discretization is accomplished by the incorporation corresponding meshes on each
floating body and on the bottom variable bathymetry surface, as shown in Figure 12b–d. An important
feature is the continuous junction of the various parts of the mesh, which, in conjunction with the
quadrilateral elements, ensures global continuity of the geometry approximation of the boundary. It is
remarked here that the present BEM is free of any kind of interior meshes or artificial intesection(s) of
boundaries. Global continuity of geometry is important concerning the convergence of the numerical
results in BEM.
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surface, (b) zoom in the subregion of floaters, (c,d) 3D view of the mesh in the vicinity of the WECs.

As an example, we consider the array of 3 × 2 cylindrical heaving WECs of radius a = 10 m and
draft d/a = 1.5, arranged as illustrated in Figure 12, in the middle of the variable bathymetry region
(a smooth upslope with max bottom slope 7%), and operating in waves at the same frequency as
before ω

√
hm/g = 1.5, ω

√
a/g = 0.8. The horizontal spacing of the floaters along the x1 and x2 axes
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is s1/a = 5, s2/a = 4. In this case the ratio of the WEC spacing with respect to the characteristic
wavelength in the area of the array is small (less than 50%) and thus, the interaction between the
floaters is strong. In order to illustrate the applicability of the present BEM, a mesh is used, consisting
of 6× 40 elements on each WEC and 5× 40 elements on the nearest part of the free surface around each
WEC and 30 × 100 elements on the outer part. This includes the absorbing layer, and 14 × 20 elements
on the bottom surface (see Figure 12). The total number of elements is 5920.

The propagating field over the shoaling region, for normally and for 45deg obliquely incident
waves is shown in Figure 13. This field represents the available wave energy in the domain for possible
extraction. The responses of the above array of cylindrical heaving WECs are then calculated, using,
as before, the values of BS/bm= 5, 10, 20 (where 2πbm/mωR = 0.12) to model the Power Take Off
system for heving floaters. The results calculated by the present BEM approach, at the same frequency
as before ω

√
hm/g = 1.5, ω

√
a/g = 0.8, both for normal and 4deg incident waves over the variable

bathymetry region are represented in Figure 14. In the specific arrangement and operating conditions
the q-factor decreases with increasing PTO damping and ranges from 90–70%, for normal incident
waves, and drops down to 75–60%, for 45 degrees obliquely incident waves.
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Figure 13. (a) Propagating field over a shoaling region, for normally incident waves of nondimensional
frequency ω

√
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Figure 14. Total field of the WEC array for (a) normal and (b) 45 degrees incidence (right) and
ω
√

hm/g = 1.5, ω
√

a/g = 0.8, in the variable bathymetry region (dashed lines represent depth
contours). The colorbar indicates relative intensity of the wavefield.
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7. Conclusions

In this work a numerical method is presented for the hydrodynamic analysis of the floating
bodies over general seabed topography supporting the calculation of the wave power absorption by
single WECs and the performance of arrays of devices in nearshore and coastal regions. As a first step,
in order to subsequently formulate and solve 3D diffraction and radiation problems for floaters in the
inhomogeneous domain, the present approach is based on the coupled-mode model for the calculation
of the wave field propagating over the variable bathymetry region. The results are subsequently
used for the hydrodynamic analysis of floating bodies over general bottom topography by means of
a low-order BEM. Extensions of the present method supporting the estimation of single WEC and
WEC array performance in variable bathymetry regions have been discussed. Future work will be
focused on the validation of the present method by comparisons with other methods and experimental
laboratory data. Moreover, phase-averaged models like SWAN can treat macroscopically WEC-array
effects by including energy pumping in the energy balance equations by using sinks with specific
intensity; see, e.g., [40]. Future work will examine the possibility of coupling phase-averaged with
the present phase-resolving model, by using coupling schemes as the ones presented in [41,42] and
present comparisons at the scale of an array in a nearshore region.
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