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Abstract: In this study, in order to improve regional energy system adjustment, a multistage stochastic
inexact robust programming (MSIRP) is proposed for electric-power generation planning and
structure adjustment management under uncertainty. Scenario-based inexact multistage stochastic
programming and stochastic robust optimization were integrated into general programming
to reflect uncertainties that were expressed as interval values and probability distributions in
the objective function and constraints. An MSIRP-based energy system optimization model is
proposed for electric-power structure management of Zibo City in Shandong Province, China.
Three power demand scenarios associated with electric-power structure adjustment, imported
electricity, and emission reduction were designed to obtain multiple decision schemes for supporting
regional sustainable energy system development. The power generation schemes, imported electricity,
and emissions of CO2 and air pollutants were analyzed. The results indicated that the model can
effectively not only provide a more stable energy supply strategies and electric-power structure
adjustment schemes, but also improve the balanced development between conventional and new
clear power generation technologies under uncertainty.

Keywords: scenario-based multistage stochastic programming; energy system management model;
stochastic robust optimization; electric-power structure adjustment; energy conservation and
emissions reduction

1. Introduction

Rapid power consumption increment, increasing deterioration of environmental quality,
and imperfect energy system management have led to unsustainable energy resources exploitation and
utilization, unreasonable electric-power structure, and serious environmental issues [1–3]. In order
to search effective and suitable energy development strategies for regional condition, energy system
management and planning has become a priority for many countries and regions. However,
multiple forms of uncertain information are involved in energy system management and the related
social-economic factors and/or technical-economic parameters, causing a variety of complexities in
decision support and policy analysis for regional energy planning [4]. In addition, such complexities
would pose great challenges in formulating more scientific and reasonable development strategies for
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decision-makers, and have serious impact on the effectiveness of energy supply schemes. Therefore,
it is desirable to develop effective uncertain optimization models/techniques for energy system
management and the related decision analysis.

Previously, a great number of inexact programming approaches were proposed for helping energy
system planning and management in different regional scales [5–14]. For example, Cai et al. (2009)
advanced an interval parameter interactive decision support system for energy system management
under reflecting uncertainties as interval values [15]. Li et al. (2010) proposed an inexact fuzzy
multistage stochastic energy system management model for supporting regional electric-power
generation and capacity planning, where interval parameter programming, mixed integer linear
programming, multistage stochastic programming, and fuzzy linear programming were incorporated
into a general optimization framework [16]. Li et al. (2011) proposed a fuzzy stochastic energy
system optimization model associated with renewable energy development and greenhouse gas
mitigation, where the uncertainties in the objective and constraints were expressed as fuzzy interval
functions, interval values, and discrete probability distributions [17]. Huang et al. (2017) developed
an inexact fuzzy stochastic chance-constrained programming for evacuation management of nuclear
power plant, where interval parameter programming and fuzzy stochastic chance-constrained
programming were integrated into a general framework for dealing with uncertainties [18].
Sheikhahmadi et al. (2018) proposed a risk-based two-stage stochastic programming for microgrid
system operation management, where two-stage stochastic programming was to reflect uncertainties
of renewable energy, and conditional value at risk index was used to avoid the system risk [19].

Among these methods, scenario-based interval multistage stochastic programming, as a hybrid
method of interval parameter programming and scenario-based multistage stochastic programming,
could deal with uncertainties presented as interval numbers and random distributions, and have been
widely applied in energy system management [20–22]. For example, Xie et al. (2010) advanced an
inexact fixed-mix multistage stochastic programming for long-term greenhouse gas emission reduction
management in a regional scale energy system, where the fixed probability multistage stochastic
programming and interval-parameter programming were integrated for expressing uncertainties
in energy system management problems [23]. Wu et al. (2015) proposed an integrated method
with interval-parameter programming, chance-constraint programming, and multistage stochastic
programming for the coupled biomass–municipal solid waste power system operation management,
which could reflect uncertainties as interval information and random distributions over a multistage
context [24]. Golari et al. (2016) presented a production-inventory planning model in a multi-plant
manufacturing system powered with onsite and grid renewable energy, where multistage stochastic
programming was used to reflect system dynamic and uncertainties [25]. Fu et al. (2017) advanced an
interval multistage fuzzy-stochastic programming for regional electric-power system management
under considering environmental quality constraints, where interval-parameter programming,
multistage stochastic programming, and fuzzy probability distribution was integrated to reflect
the uncertain information and dynamic variation in the energy system [26]. Wang et al. (2018)
developed multistage joint-probabilistic left-hand-side chance-constrained fractional programming for
electric-power system planning considering climate change mitigation [27].

Although scenario-based inexact multistage stochastic programming had been successfully
applied in many fields, it could not directly and effectively avoid the risk of random events, and the
limitations would pose threats to system stability. Based on this point, stochastic robust optimization
(SRO) is proposed for solving the problems through introducing the risk-aversion attitude into
optimization models and obtaining robust solutions for stochastic system management [28–30].
The methods that coupled with the scenario-based inexact multistage stochastic programming
and SRO have been used in solving many energy and environmental problems, such as water
resources allocation, electric-power generation, and water/air quality management. For example,
Chen et al. (2013) developed an interval robust-optimization model for CO2 emission reduction
management in energy systems, where the robustness measures were introduced to examine whether
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the second-stage cost variability could meet the expected levels or not [31]. Xie et al. (2014) proposed an
inexact stochastic risk-aversion model for electric-power structure adjustment and pollutant emission
management, where interval-parameter programming, stochastic robust optimization, and multistage
stochastic programming were integrated to address system uncertainties [32].

Therefore, the aim of this study is to formulate a multistage stochastic inexact robust programming
(MSIRP) model to support regional electric-power system management coupled with pollutant
mitigation constraints and power structure adjustment requirements in Zibo City, China. The method
could not only reflect multiple uncertainties expressed as interval values and probability distribution,
but also make a tradeoff between system risk and cost according to the decision-makers’ attitudes.
The modeling results will be helpful for local decision-makers to choose cost–risk electric-power
generation schemes, and obtain reasonable electric-power structure adjustment strategies. The rest
structure organization of this paper is provided as follows. The development process and solution
algorithm of multistage stochastic inexact robust programming (MSIRP) is introduced in Section 2.
The overview of the energy system of Zibo City are described, and a MSIRP-based energy structure
adjustment model is proposed in Section 3. The obtained results and deep discovery of the case study
are analyzed and discussed in Section 4. The main conclusions are presented in Section 5.

2. Methodology

In regional energy systems, dynamic characters, discrete probability distributions, intervals
information, and policy implications were addressed through scenario-based inexact multistage
stochastic programming, and SRO could effectively handle the system risk. The modeling framework
of the MSIRP could obtain applicable and reasonable solutions under different random scenarios
corresponding to power generation targets for decision-makers in order to support the energy system
development in the future.

2.1. Inexact Scenario-Based Multistage Stochastic Programming

In the scenario-based multistage stochastic programming, the probabilities ptk(t = 1, 2, . . . , T;
k = 1, 2, . . . , Kt,) of the stochastic event have predefined values, and the parameters without probability
can be reflected as interval values. Thus, the scenario-based inexact multistage stochastic programming
can be expressed as follows [33,34]:

Min f± =
T

∑
t=1

n1

∑
j=1

c±jt x±jt +
T

∑
t=1

n1

∑
j=1

Kt

∑
k=1

ptkd±jt y±jtk, (1)

subject to
n1

∑
j=1

a±rjtx
±
jt ≤ b±rt , ∀r, t (2)

n1

∑
j=1

a±ijtx
±
jt +

n1

∑
j=1

e±ijty
±
jkt ≤ w̃±itk , ∀i, t, k (3)

x±jt ≥ 0, ∀t, j = 1, 2, . . . , n1 (4)

y±jkt ≥ 0, ∀t, k, j = 1, 2, . . . , n1 (5)

where ptk is the probability for scenario k in period t; for each period t, the total number of scenarios

is denoted as Kt, and
Kt
∑

k=1
ptk = 1; and w̃±ikt represents the random parameter in the model associated

with the occurrence probability ptk in period t. x±jt denotes the first-stage variables that have to be

determined before the random event occurrence; and y±jkt are the second-stage variables that have to
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be decided for making a recourse actions to fulfil validity of the decision-making after the random
event occurrence.

2.2. Inexact Multistage Stochastic Robust Programming

The proposed inexact scenario-based multistage stochastic programming can effectively reflect
stochastic information, interval values, and dynamic feature by means of discrete random variables
in long-term planning problems. However, Model (1) could not effectively reflect the system risk
introduced by random information, that directly affect the feasibility and reliability of the proposed
model. SRO is an effective choice for solving such problems, and it can be introduced into Model (1),
that leads to a multistage stochastic inexact robust programming (MSIRP) as follows [32]:

Min f± =
T
∑

t=1

n1
∑

j=1
c±jt x±jt +

T
∑

t=1

n2
∑

j=1

Kt
∑

k=1
ptkd±jt y±jtk

+ω
T
∑

t=1

n2
∑

j=1

Kt
∑

k=1
ptk

∣∣∣∣∣d±jt y±jtk −
n2
∑

j=1

Kt
∑

k=1
ptkd±jt y±jtk

∣∣∣∣∣
, (6)

subject to
n1

∑
j=1

a±rjtx
±
jt ≤ b±rt , ∀r, t (7)

n1

∑
j=1

a±ijtx
±
jt +

n1

∑
j=1

e±ijty
±
jkt ≤ w̃±itk , ∀i, t, k (8)

x±jt ≥ 0, ∀t, j = 1, 2, . . . , n1 (9)

y±jkt ≥ 0, ∀t, k, j = 1, 2, . . . , n1 (10)

where the non-negative factor ω denotes a trade-off weight coefficient; and

∣∣∣∣∣d±jt y±jtk −
n2
∑

j=1

Kt
∑

k=1
ptkd±jt y±jtk

∣∣∣∣∣
is a variability measure for reflecting the multistage recourse costs. The objective of Model (6) is a
nonlinear function, and according to [35,36], the model can be converted into a linear programming
model as follows:

Min f± =
T
∑

t=1

n1
∑

j=1
c±jt x±jt +

T
∑

t=1

n1
∑

j=1

Kt
∑

k=1
ptkd±jt y±jtk

+ω
T
∑

t=1

n1
∑

j=1

Kt
∑

k=1
ptk(d±jt y±jtk −

n1
∑

j=1

Kt
∑

k=1
ptkd±jt y±jtk + 2θ±jkt)

, (11)

subject to

d±jt y±jtk −
n1

∑
j=1

Kt

∑
k=1

ptkd±jt y±jtk + θ±jkt ≥ 0, ∀k, j = 1, 2, . . . , n1 (12)

n1

∑
j=1

a±rjtx
±
jt ≤ b±rt , ∀r, t (13)

n1

∑
j=1

a±ijtx
±
jt +

n1

∑
j=1

e±ijty
±
jkt ≤ w̃±itk , ∀i, t, k (14)

x±jt ≥ 0, ∀t, j = 1, 2, . . . , n1 (15)

y±jkt ≥ 0, ∀t, k, j = 1, 2, . . . , n1 (16)
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where, through introducing the slack variable θ±jkt, the objective can be transferred into a linear function

as well as generate a specific control constraint (12). For Model (11), the first-stage variables x±jt
are considered/inputted as interval values with the lower and upper bound, and this cannot be
directly solved using the existing methods. In this study, let µjt be a decision variable, µjt ∈ [0, 1];
∆xjt = x+jt − x−jt , the first-stage variable xjt = x−jt + µjt∆xjt, and µjt are intermediate decision variables
for obtaining an optimized target values of the first-stage to support the related policy analyses [32].
According to [37], the MSIRP model can be transformed into two linear submodels, and the submodel
corresponding to f− can be firstly transformed as follows (assume that c±jt ≥ 0, ŵ+

itk > 0, b±rt > 0,
and f± > 0 ):

Min f− =
T
∑

t=1

n1
∑

j=1
c−jt (x−jt + µjt∆xjt) +

T
∑

t=1

Kt
∑

k=1
ptk(

j1
∑

j=1
d−jt y−jtk +

n1
∑

j=j1+1
d−jt y+jtk)

+ω
T
∑

t=1

Kt
∑

k=1
ptk[

j1
∑

j=1
(d−jt y−jtk −

j1
∑

j=1

Kt
∑

k=1
ptkd−jt y−jtk + 2θ−jkt)]

+ω
T
∑

t=1

Kt
∑

k=1
ptk[

j1
∑

j=j1+1
(d−jt y+jtk −

n1
∑

j=j1+1

Kt
∑

k=1
ptkd−jt y+jtk + 2θ−jkt)]

, (17)

subject to

j1
∑

j=1

∣∣∣djtk

∣∣∣−Sign(d−jtk)y
−
jkt +

n1
∑

j=j1+1

∣∣∣djtk

∣∣∣−Sign(d−jtk)y
+
jkt

−
j1
∑

j=1

Kt
∑

k=1
ptk

∣∣∣djtk

∣∣∣−Sign(d−jtk)y
−
jkt −

n1
∑

j=1

Kt
∑

k=1
ptk

∣∣∣djtk

∣∣∣−Sign(d−jtk)y
+
jkt + θ−jtk ≥ 0, ∀i, j

(18)

n1

∑
j=1

∣∣arjt
∣∣+Sign(a+rjt)(x−jt + µjt∆xjt) ≤ b−rt , ∀r, t (19)

n1
∑

j=1

∣∣aijt
∣∣+Sign(a+rjt)(x−jt + µjt∆xjt) +

j1
∑

j=1

∣∣eijt
∣∣+Sign(e+ijt)y

−
jkt

+
n1
∑

j=j1+1

∣∣eijt
∣∣−Sign(e−ijt)y

+
jkt ≤ w̃−itk, ∀i, t, k

(20)

x−jt + µjt∆xjt ≥ 0, ∀j, t (21)

0 ≤ µjt ≤ 1, ∀j, t (22)

y−jkt ≥ 0, ∀t, k, j = 1, 2, . . . , j1 (23)

y+jkt ≥ 0, ∀t, k, j = j1 + 1, j1 + 2, . . . , n1 (24)

where µjt, y−jkt(j = 1, 2, . . . , j1) and y+jkt(j = j1 + 1, j1 + 2, . . . , n1) are the decision variables of model (17);

y−jkt(j = 1, 2, . . . , j1) and y+jkt(j = j1 + 1, j1 + 2, . . . , n1) are the second-stage decision variables with
positive and negative coefficients in the objective function; and the optimized solution of the first-stage
variables are xjtopt = x−jt + µjtopt∆xjt. Then, the submodel corresponding to f+ can be expressed
as follows:

Min f+ =
T
∑

t=1

n1
∑

j=1
c+jt xjtopt +

T
∑

t=1

Kt
∑

k=1
ptk(

j1
∑

j=1
d+jt y+jtk +

n1
∑

j=j1+1
d+jt y−jtk)

+ω
T
∑

t=1

Kt
∑

k=1
ptk[

j1
∑

j=1
(d+jt y+jtk −

n2
∑

j=1

Kt
∑

k=1
ptkd+jt y+jtk + 2θ+jkt)]

+ω
T
∑

t=1

Kt
∑

k=1
ptk[

n1
∑

j=j1+1
(d+jt y−jtk −

n1
∑

j=j1+1

Kt
∑

k=1
ptkd+jt y−jtk + 2θ+jkt)]

, (25)
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subject to

j1
∑

j=1

∣∣∣djtk

∣∣∣+Sign(d+jtk)y
+
jkt +

n1
∑

j=j1+1

∣∣∣djtk

∣∣∣+Sign(d+jtk)y
−
jkt

−
j1
∑

j=1

Kt
∑

k=1
ptk

∣∣∣djtk

∣∣∣+Sign(d+jtk)y
+
jkt −

n1
∑

j=j1+1

Kt
∑

k=1
ptk

∣∣∣djtk

∣∣∣+Sign(d+jtk)y
−
jkt + θ+jtk ≥ 0, ∀i, j

(26)

n1

∑
j=1

∣∣arjt
∣∣−Sign(a−rjt)xjtopt ≤ b+rt , ∀r, t (27)

n1

∑
j=1

∣∣aijt
∣∣−Sign(a−rjt)∆xjtopt +

j1

∑
j=1

∣∣eijt
∣∣−Sign(e−ijt)y

+
jkt +

n1

∑
j=j1+1

∣∣eijt
∣∣+Sign(e+ijt)y

−
jkt ≤ w̃+

itk, ∀i, t, k (28)

y+jkt ≥ y−jktopt, ∀t, k, j = 1, 2, . . . , j1 (29)

y+jktopt ≥ y−jkt ≥ 0, ∀t, k, j = j1 + 1, j1 + 2, . . . , n1 (30)

where y+jkt(j = 1, 2, . . . , j1) and y−jkt(j = j1 + 1, j1 + 2, . . . , n1) are decision variables that can be obtained
through solving Submodel (25). Thus, the optimal solutions of Model (11) can be expressed as follows:

xjtopt = x−jt + µjtopt∆xjt (31)

y±jktopt = [y−jktopt, y+jktopt] (32)

f±opt = [ f−opt, f+opt]. (33)

3. Case Study

3.1. Overview of Energy System in Zibo City

Zibo City (35◦55′20′′~37◦17′14′′ N, 117◦32′15′′~118◦31′00′′ E), as shown in Figure 1, is located
in the middle of Shandong province, China. Zibo City governs Zhangdian district, Zichuan district,
Boshan district, Zhoucun district, Linzi district, Huantai country, Gaoqing country, and Yiyuan
country, with a total area of 5938 km2 and a total population of 4.61 million in 2014 [38]. In Zibo City,
the manufacturing industry plays a significant role in supporting regional economic development;
especially the ceramics manufacturing industry is famous around the world. For example, in 2014,
the income of ceramic industry reached 112.8 billion yuan. In addition, high-new-technology industries
(e.g., new materials, fine chemicals, and biological medicines) and other traditional industries
(e.g., petrochemical industry, pharmaceuticals, metallurgy, and machinery and textiles) are developing
rapidly in recent years. Moreover, in 2014, gross agricultural product reached to RMB 25.22 billion
yuan, and the tertiary industry increased by RMB 163.45 billion yuan compared with 2013. In general,
the rapid social-economic development is closely related with a higher power consumption. According
to regional energy system statistic data in recent years, local electric-power generation is far from
satisfying increasing regional demands.

Generally, the main electricity generation in Zibo City mainly relies on coal-fired power.
The cogeneration power plays a large proportion in all electricity generation in Zibo, which could
not only meet the demand of the district heating, but also greatly improve efficiency of coal
resource utilization. In order to meet environmental requirements, there would have to be total
consumption control on coal resources, according to the regional development plan from Zibo
Municipal Development and Reform Committee. In addition, Zibo is abundant in renewable energy
resources, such as solar, biomass, and wind, that have been considered as the primary options for
addressing the crisis of electric-power shortage, and air pollutant and greenhouse gas mitigation.
For instance, the average annual sunshine time reaches up to 2542.6 h with a greater potential and space
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for solar power and heat utilization. Moreover, throughout the windy corridor, in the surrounding
of Boshan District and the southern mountain areas of Zichuan District, Zibo possesses the excellent
conditions to build wind farms. According to regional energy development strategy of Zibo City
(2010–2020), a greater number of renewable energy development plans have been promoted for
adjusting the existing electric-power system structure, including 114 MW, 50 MW, and 244.5 MW
of biomass and garbage power, solar, and wind power generation capacity by 2015, respectively.
As a result, it will be helpful for alleviating the contradiction between energy supply capacity and
consumption demands, and reducing atmospheric pollutants and carbon emission.

Figure 1. Location of the study area and regional energy resources distribution.

Although renewable energy has achieved development, and the government has also made great
efforts to change regional electric-power structure, it still faces many challenges in electric-power
system management. As a result of regional economic development, urbanization advance,
and population growth, electric-power consumption and environmental quality requirement would
be increasingly prominent, leading to an urgent need for regional electric-power structure adjustment.
In this study, an inexact regional electric-power system optimization model is developed through
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multistage stochastic inexact robust programming for solving the following questions: (1) how to
develop electric-power generation schemes for different power conversion technologies under air
pollution and carbon mitigation requirements; (2) how to plan the overall development of renewable
power conversion technologies and the proportion of imported electricity; (3) how to formulate more
reasonable decision alternatives for decision-makers under different trade-offs between system cost
and risk.

3.2. Electric-Power System Optimization Model Formulation

The developed multistage stochastic inexact robust programming is considered for regional
electric-power system management in Zibo City. The objective is to achieve the optimal plans of
electric-power supply with minimized system costs. The renewable power generation development,
capacity expansion, and air pollutant and carbon emission reduction were also considered. Thus,
the optimized model can be developed as follows:

Min f± = f±1 + f±2 + f±3 + f±4 + f±5 + f±6 − f±7 + f±8 (34)

[Costs for energy resources consumption]

f±1 =
P

∑
p=1

T

∑
t=1

PEC±pt · (AE±pt + pth · DE±pth) · EF±pt (35)

[Costs for power generation]

f±2 =
P

∑
p=1

T

∑
t=1

PV±pt · AE±pt +
P

∑
p=1

T

∑
t=1

H

∑
h=1

pth ·
(

PV±pt + PP±pt

)
· DE±pth (36)

[Cost for the district heating]

f±3 =
P

∑
p=1

T

∑
t=1

CV±pt · (AH±pt + DH±pt) (37)

[Costs for the expansion of installed capacity]

f±4 =
P

∑
p=1

T

∑
t=1

H

∑
h=1

pth ·
(

YEH±pth · A
±
pt + XEH±pth · B

±
pt

)
(38)

[Costs for atmospheric pollutants treatment]

f±5 =
I

∑
i=1

P
∑

p=1

T
∑

t=1
AE±pt · ξ

±
ipt ·

(
1− η±ipt

)
· CPC±it +

I
∑

i=1

P
∑

p=1

T
∑

t=1

H
∑

h=1
pth · DE±pth · ξ

±
ipt ·

(
1− η±ipt

)
· DPC±it (39)

[Costs for imported electric power]

f±6 =
T

∑
t=1

pth · IE±th · IPE±t (40)

[Subsidies for renewable energy generation]

f±7 =
P

∑
p=3

T

∑
t=1

(
AE±pt + pth · DE±pth

)
· SU±pt (41)
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[Robust function]

f±8 = λ
P

∑
p=1

T

∑
t=1

H

∑
h=1

pth[ε
±
pth −

P

∑
p=1

H

∑
h=1

pth · ε±pth + 2θ±pth] (42)

where,
ε±pth = PEC±pt · DE±pt · EF±pt + (PV±pt + PP±pt) · DE±pth

+IE±t · IPE±t + (YEH±pth · A
±
pt + XEH±pth · B

±
pt)

+
I

∑
i=1

DE±pth · ξ
±
ipt ·

(
1− η±ipt

)
· DPC±it − DE±pth · SU±pt

(43)

where f± is the objective of the proposed model (million yuan ¥); p is the power conversion
technologies, p = 1, 2, 3, 4, and 5 for combined heat and power (CHP), hydroelectric power, solar
photovoltaic power, wind power, and garbage power and biomass power, respectively; i denotes
different atmospheric pollutants, i = 1, 2, 3, 4 for CO2, SO2, NOx, and particulate matter, respectively;
t is the planning period; h denotes the electric-power demand level, h = 1 for low level, h = 2 for medium
level, and h = 3 for high level, respectively. Z±pt is the amount of energy resource consumption for
power conversion technology p (PJ); PEC±pt represents the energy price for technology p (million
¥/PJ); PV±pt and PP±pt are the variable cost for power generation and the penalty cost of excess
power generation of technology p (million ¥/GWh); AE±pt denotes the pre-regular electric-power
generation by technology p (GWh); DE±pth is the excess power generation by technology p under

different electric-power deficiency levels h (GWh); CV±pt represents the variable cost for heat generation
by technology p (million ¥/PJ); AH±pt is the amount of district heat supply by technology p (PJ); DH±pt
denotes the amount of district heat supply by expanded capacity XEH±pth (PJ); A±pt and B±pt are the

fixed-charge cost and variable cost for capacity expansion of technology p (million ¥); SU±pt is the
subsidy for new renewable energy generation p (million ¥/GW); YEH±pth represents the binary variable
for determining the capacity choice of technology p expansion (0 denotes no expansion; 1 represents
expansion); XEH±pth is the capacity expansion amount for technology p under different electric-power

deficiency levels h (GW); IE±th denotes imported power amount (GWh); IPE±t is the cost of imported
power (million ¥/GWh); CPC±it and DPC±it are the removal cost of pollutant i treatment and the
penalty cost of excess pollutant i treatment for technology p (million¥/ton); ξ±ipt is the generation rate
of pollutant from technology (ton/GWh).

Constraint:
[Constraints for electric-power supply and demand balance]

P

∑
p=1

(
AE±pt + DE±pth

)
+ IE±th ≥ ADE±th, ∀t, h (44)

(AE±pt + DE±pth) ≤ ST±pt · IC±pt, ∀p, t, h (45)

AE±pt ≥ DE±pth ≥ 0, ∀p, t, h (46)

IE±th ≤ 40%ADE±th, ∀t, h (47)

[Constraints for the district heating supply and demand balance]

P

∑
p=1

(AH±pt + DH±pt) ≥ TH±th, ∀t, h (48)

AH±pt ≥ DH±pth ≥ 0, ∀p, t, h (49)
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[Constraint for combined heat and power generation balance]

Q±m±1t = BQ(
AE±1t

1− ES±
CE± +

AH±1t
1− HS±

CH±) ∀t; (50)

[Constraints for the heat-to-electric ratio of cogeneration plant]

AH±1t + DH±1t = (AE±1t + DE±1th) · κ
±, ∀t (51)

XEH±1th · ST±1t = DH±1t · κ
±, ∀t (52)

[Constraint for the total thermal efficiency of thermal power plant from national policy]

(AE±1t + AH±1t) ≥ 45% ·Q±m±t , ∀t (53)

[Constraints for environment capacity (CO2, PM, SO2, and NOx emission)]

P

∑
p=1

(
AE±pt + DE±pth

)
· ξ±ipt ·

(
1− η±ipt

)
≤ MAGEit, ∀i, t, h (54)

[Constraints for installed capacity]

IC±pt = ICPp + YEH±pth · XEH±pth − CIC±pt, t = 1, ∀p, h (55)

IC±pt = IC±p(t−1) + YEH±pth · XEH±pth − CIC±pt, t > 1, ∀p, h (56)

[Constraints for capacity expansion]

YEH±pth

{
= 1, if capacity expansion is undertaken
= 0, otherwise

, ∀ p, t, h (57)

0 ≤ XEH±pth ≤ Mpt ·YEH±pth, ∀p, t, h (58)

[Constraints for generation proportion of different technologies]

AE±1t + DE±1th ≤ γ±t · ADE±dth, ∀ t, h (59)

5

∑
p=3

(
AE±pt + DE±pth

)
≥ δ · ADE±dth, ∀t, h (60)

[Constraints for availabilities of energy resources](
AE±pt + DE±pth

)
·EE±pt ≤ Z±pt, ∀p, t, h (61)

[Robust constraints]

ε±pth −
P

∑
p=1

H

∑
h=1

pth · ε±pth + θ±pth ≥ 0, ∀p, t, h (62)

where ADE±th denotes the electricity demand under different electric-power deficiency levels h during
period t (GWh); TH±th is the district heat demand under different deficiency levels h during period
t (PJ); Q± is the heating value of coal (PJ/ton); m±1t represents the coal quantity fed to combined
heat and power (CHP) (ton); BQ denotes the calorific value of coal (PJ/ton); ES± is the electricity
consumption rate of thermal power plant; CE± is the standard coal consumption of power generation
of thermal power plant (ton/PJ); HS± represents the heat loss of the facilities; CH± is the standard
coal consumption of heat supply of thermal power plant (ton/PJ); κ± denotes heat-to-electric ratio;
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γ±t denotes the proportion of thermal power; η±ipt is the removal efficiency of pollutant i from

technology p; ξ±ipt denotes the emission intensity of pollutant i from technology p (103 ton/GWh);

MAGEit is the total allowable amount of pollutant i emission (103 ton); M±pt and N±pt are the constraints
for the upper and lower capacity expansion bound of technology p (GW); ST±pt is the operation hours of
technology P in period t (h); δ denotes the percentage of power generation amount by renewable energy
resources; ICPp is the initial installed capacity of power conversion technology p (GW); IC±pt represents
the total installed capacity of technology p (GW); CIC±pt denotes the closed installed capacity of
“developing large units and suppressing small ones” in period t (GW); EF±pt is the resources conversion
efficiency of technology p (PJ/GWh).

The planning horizon is considered as being from 2016 to 2021, and divided into two periods with
a 3-year interval for each period. The related technical-economic information was obtained through
analyzing many representative energy-related governmental reports and plans. Table 1 presents power
demands and the occurrence probabilities of each demand level (25%, 55%, and 20%). According to
Zibo Statistics Bureau (from 1990 to 2014), and the forecasting information of electric-power demand by
the government, three electricity generation targets are selected. Table 1 also shows the district heating
demands during the planning horizon. To achieve the targets of renewable power generation and emission
reduction, in the electric-power system, some scenarios are designed, which corresponds to environmental
constraints and renewable power development constraints (i.e., renewable energy generation in period 1
and 2 accounts for 5% and 10% of the total regional power consumption, respectively).

Table 1. Regional electricity and heat demand during the planning period.

Energy Demand Demand Level Probability (%) T = 1 T = 2

Electricity demand (103 GWh)
Low 20 [97.11, 98.53] [97.73, 99.11]

Medium 60 [98.53, 100.14] [99.21, 100.60]

High 20 [99.90, 100.60] [101.00, 102.60]

District heat quantity (PJ)
Low 20 [253.59, 259.59] [255.00, 263.00]

Medium 60 [278.68, 288.68] [285.00, 293.00]

High 20 [288.87, 297.87] [295.00, 302.00]

4. Result Analysis and Discussion

4.1. Electricity-Generation Plan

Tables 2–5 present the optimal solutions of electric-power generation schemes of different
technologies with different λ values, under different demand levels, during the whole planning
horizon. The optimal combined electricity and heat generation targets in period 2 would be greater
than that in period 1. In period 1, the generation amount of combined electricity and heat would be
56.99 × 103 GWh in period 1, and 59.98 × 103 GWh in period 2 under different λ values. Furthermore,
power generation amount of CHP would increase. For example, in period 1, under medium
demand level, power generation amount by CHP would be 58.23 × 103 GWh, 56.99 × 103 GWh,
57.22× 103 GWh, and 56.99× 103 GWh, as λ is fixed with the values of 0, 1, 5 and 50, respectively; under
medium–medium level (with the probability of 30.25%) in period 2, power generation amount would
be (68.28, 68.72) × 103 GWh, 61.51 × 103 GWh, 59.98 × 103 GWh, and 61.22 × 103 GWh, respectively.
It indicated that the CHP is a more economical and stable way for power supply with the demand of
electricity increasing, and along with regional electric-power structure optimization, the combined
heat and power would still be the main choice for supporting regional electric-power supply.
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Table 2. The optimized power generation schemes under λ = 0.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

CHP

L 25 56,989.23 1240.12 58,229.35

M 55 56,989.23 1240.12 58,229.35

H 20 56,989.23 1240.12 58,229.35

L-L 6.25 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

L-M 13.75 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

L-H 5 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

M-L 13.75 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

M-M 30.25 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

M-H 11 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

H-L 5 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

H-M 11 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

H-H 4 59,978.03 [8302.54, 8737.05] [68,280.57, 68,715.08]

Hydropower

L 25 29.01 29.01 58.02

M 55 29.01 29.01 58.02

H 20 29.01 29.01 58.02

L-L 6.25 30.85 30.85 61.70

L-M 13.75 30.85 30.85 61.70

L-H 5 30.85 30.85 61.70

M-L 13.75 30.85 30.85 61.70

M-M 30.25 30.85 30.85 61.70

M-H 11 30.85 30.85 61.70

H-L 5 30.85 30.85 61.70

H-M 11 30.85 30.85 61.70

H-H 4 30.85 30.85 61.70

Solar power

L 25 303.74 303.74 607.48

M 55 303.74 303.74 607.48

H 20 303.74 303.74 607.48

L-L 6.25 406.53 [279.34, 315.44] [685.87, 721.97]

L-M 13.75 406.53 [279.34, 315.44] [685.87, 721.97]

L-H 5 406.53 [279.34, 315.44] [685.87, 721.97]

M-L 13.75 406.53 [279.34, 315.44] [685.87, 721.97]

M-M 30.25 406.53 [279.34, 315.44] [685.87, 721.97]

M-H 11 406.53 [279.34, 315.44] [685.87, 721.97]

H-L 5 406.53 [279.34, 315.44] [685.87, 721.97]

H-M 11 406.53 [279.34, 315.44] [685.87, 721.97]

H-H 4 406.53 [279.34, 315.44] [685.87, 721.97]

Wind power

L 25 1691.76 1691.76 3383.52

M 55 1691.76 1691.76 3383.52

H 20 1691.76 1691.76 3383.52

L-L 6.25 2077.83 2077.83 4155.66

L-M 13.75 2077.83 2077.83 4155.66

L-H 5 2077.83 2077.83 4155.66

M-L 13.75 2077.83 2077.83 4155.66

M-M 30.25 2077.83 2077.83 4155.66

M-H 11 2077.83 2077.83 4155.66

H-L 5 2077.83 2077.83 4155.66

H-M 11 2077.83 2077.83 4155.66

H-H 4 2077.83 2077.83 4155.66
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Table 2. Cont.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

Biomass and
garbage power

L 25 877.53 877.53 1755.06

M 55 877.53 877.53 1755.06

H 20 877.53 877.53 1755.06

L-L 6.25 2522.63 2522.63 5045.26

L-M 13.75 2522.63 2522.63 5045.26

L-H 5 2522.63 2522.63 5045.26

M-L 13.75 2522.63 2522.63 5045.26

M-M 30.25 2522.63 2522.63 5045.26

M-H 11 2522.63 2522.63 5045.26

H-L 5 2522.63 2522.63 5045.26

H-M 11 2522.63 2522.63 5045.26

H-H 4 2522.63 2522.63 5045.26

Table 3. The optimized power generation schemes under λ = 1.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

CHP

L 25 56,989.23 0 56,989.23

M 55 56,989.23 0 56,989.23

H 20 56,989.23 0 56,989.23

L-L 6.25 59,978.03 1536.75 61,514.78

L-M 13.75 59,978.03 1536.75 61,514.78

L-H 5 59,978.03 1536.75 61,514.78

M-L 13.75 59,978.03 1536.75 61,514.78

M-M 30.25 59,978.03 1536.75 61,514.78

M-H 11 59,978.03 1536.75 61,514.78

H-L 5 59,978.03 1536.75 61,514.78

H-M 11 59,978.03 1536.75 61,514.78

H-H 4 59,978.03 1536.75 61,514.78

Hydropower

L 25 29.01 29.01 58.02

M 55 29.01 29.01 58.02

H 20 29.01 29.01 58.02

L-L 6.25 30.85 30.85 61.70

L-M 13.75 30.85 30.85 61.70

L-H 5 30.85 30.85 61.70

M-L 13.75 30.85 30.85 61.70

M-M 30.25 30.85 30.85 61.70

M-H 11 30.85 30.85 61.70

H-L 5 30.85 30.85 61.70

H-M 11 30.85 30.85 61.70

H-H 4 30.85 30.85 61.70

Solar power

L 25 303.74 303.74 607.48

M 55 303.74 303.74 607.48

H 20 303.74 303.74 607.48

L-L 6.25 406.53 [255.63, 290.48] [662.16, 697.01]

L-M 13.75 406.53 [255.63, 290.48] [662.16, 697.01]

L-H 5 406.53 [255.63, 290.48] [662.16, 697.01]

M-L 13.75 406.53 [255.63, 290.48] [662.16, 697.01]

M-M 30.25 406.53 [255.63, 290.48] [662.16, 697.01]
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Table 3. Cont.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

M-H 11 406.53 [255.63, 290.48] [662.16, 697.01]

H-L 5 406.53 [255.63, 290.48] [662.16, 697.01]

H-M 11 406.53 [255.63, 290.48] [662.16, 697.01]

H-H 4 406.53 [255.63, 290.48] [662.16, 697.01]

Wind power

L 25 1691.76 1691.76 3383.52

M 55 1691.76 1691.76 3383.52

H 20 1691.76 1691.76 3383.52

L-L 6.25 2077.83 2077.83 4155.66

L-M 13.75 2077.83 2077.83 4155.66

L-H 5 2077.83 2077.83 4155.66

M-L 13.75 2077.83 2077.83 4155.66

M-M 30.25 2077.83 2077.83 4155.66

M-H 11 2077.83 2077.83 4155.66

H-L 5 2077.83 2077.83 4155.66

H-M 11 2077.83 2077.83 4155.66

H-H 4 2077.83 2077.83 4155.66

Biomass and
garbage power

L 25 877.53 0 877.53

M 55 877.53 [0, 80.6] [877.53, 958.13]

H 20 877.53 [68.45, 103.45] [945.98, 980.98]

L-L 6.25 2534.49 2212.79 4747.28

L-M 13.75 2534.49 2212.79 4747.28

L-H 5 2534.49 2212.79 4747.28

M-L 13.75 2534.49 2357.88 4892.37

M-M 30.25 2534.49 2357.88 4892.37

M-H 11 2534.49 2357.88 4892.37

H-L 5 2534.49 2534.49 5068.98

H-M 11 2534.49 2534.49 5068.98

H-H 4 2534.49 2534.49 5068.98

Table 4. The optimized power generation schemes under λ = 5.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

CHP

L 25 56,989.23 226.47 57,215.70

M 55 56,989.23 226.47 57,215.70

H 20 56,989.23 226.47 57,215.70

L-L 6.25 59,978.03 0 59,978.03

L-M 13.75 59,978.03 0 59,978.03

L-H 5 59,978.03 0 59,978.03

M-L 13.75 59,978.03 0 59,978.03

M-M 30.25 59,978.03 0 59,978.03

M-H 11 59,978.03 0 59,978.03

H-L 5 59,978.03 0 59,978.03

H-M 11 59,978.03 0 59,978.03

H-H 4 59,978.03 0 59,978.03
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Table 4. Cont.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

Hydropower

L 25 29.01 29.01 58.02

M 55 29.01 29.01 58.02

H 20 29.01 29.01 58.02

L-L 6.25 30.85 30.85 61.70

L-M 13.75 30.85 30.85 61.70

L-H 5 30.85 30.85 61.70

M-L 13.75 30.85 30.85 61.70

M-M 30.25 30.85 30.85 61.70

M-H 11 30.85 30.85 61.70

H-L 5 30.85 30.85 61.70

H-M 11 30.85 30.85 61.70

H-H 4 30.85 30.85 61.70

Solar power

L 25 303.74 303.74 607.48

M 55 303.74 303.74 607.48

H 20 303.74 303.74 607.48

L-L 6.25 406.53 [255.63, 290.48] [662.16, 697.01]

L-M 13.75 406.53 [255.63, 290.48] [662.16, 697.01]

L-H 5 406.53 [255.63, 290.48] [662.16, 697.01]

M-L 13.75 406.53 [255.63, 290.48] [662.16, 697.01]

M-M 30.25 406.53 [255.63, 290.48] [662.16, 697.01]

M-H 11 406.53 [255.63, 290.48] [662.16, 697.01]

H-L 5 406.53 [255.63, 290.48] [662.16, 697.01]

H-M 11 406.53 [255.63, 290.48] [662.16, 697.01]

H-H 4 406.53 [255.63, 290.48] [662.16, 697.01]

Wind power

L 25 1691.76 1691.76 3383.52

M 55 1691.76 1691.76 3383.52

H 20 1691.76 1691.76 3383.52

L-L 6.25 2077.83 2077.83 4155.66

L-M 13.75 2077.83 2077.83 4155.66

L-H 5 2077.83 2077.83 4155.66

M-L 13.75 2077.83 2077.83 4155.66

M-M 30.25 2077.83 2077.83 4155.66

M-H 11 2077.83 2077.83 4155.66

H-L 5 2077.83 2077.83 4155.66

H-M 11 2077.83 2077.83 4155.66

H-H 4 2077.83 2077.83 4155.66

Biomass and
garbage power

L 25 945.98 0 945.98

M 55 945.98 [0, 12.15] [945.98, 958.13]

H 20 945.98 [0, 35] [945.98, 980.98]

L-L 6.25 2787.65 1959.62 4747.27

L-M 13.75 2787.65 1959.62 4747.27

L-H 5 2787.65 1959.62 4747.27

M-L 13.75 2787.65 2104.72 4892.37

M-M 30.25 2787.65 2104.72 4892.37

M-H 11 2787.65 2104.72 4892.37

H-L 5 2787.65 2281.33 5068.98

H-M 11 2787.65 2281.33 5068.98

H-H 4 2787.65 2281.33 5068.98
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Table 5. The optimized power generation schemes under λ = 50.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

CHP

L 25 56,989.23 0 56,989.23

M 55 56,989.23 0 56,989.23

H 20 56,989.23 0 56,989.23

L-L 6.25 59,978.03 1244.54 61,222.57

L-M 13.75 59,978.03 1244.54 61,222.57

L-H 5 59,978.03 1244.54 61,222.57

M-L 13.75 59,978.03 1244.54 61,222.57

M-M 30.25 59,978.03 1244.54 61,222.57

M-H 11 59,978.03 1244.54 61,222.57

H-L 5 59,978.03 1244.54 61,222.57

H-M 11 59,978.03 1244.54 61,222.57

H-H 4 59,978.03 1244.54 61,222.57

Hydropower

L 25 29.01 29.01 58.02

M 55 29.01 29.01 58.02

H 20 29.01 29.01 58.02

L-L 6.25 30.85 30.85 61.70

L-M 13.75 30.85 30.85 61.70

L-H 5 30.85 30.85 61.70

M-L 13.75 30.85 30.85 61.70

M-M 30.25 30.85 30.85 61.70

M-H 11 30.85 30.85 61.70

H-L 5 30.85 30.85 61.70

H-M 11 30.85 30.85 61.70

H-H 4 30.85 30.85 61.70

Solar power

L 25 303.74 303.74 607.48

M 55 303.74 303.74 607.48

H 20 303.74 303.74 607.48

L-L 6.25 406.53 [255.63, 272.34] [662.16, 678.87]

L-M 13.75 406.53 [255.63, 272.34] [662.16, 678.87]

L-H 5 406.53 [255.63, 272.34] [662.16, 678.87]

M-L 13.75 406.53 [255.63, 272.12] [662.16, 678.65]

M-M 30.25 406.53 [255.63, 272.12] [662.16, 678.65]

M-H 11 406.53 [255.63, 272.12] [662.16, 678.65]

H-L 5 406.53 [255.63, 290.11] [662.16, 696.64]

H-M 11 406.53 [255.63, 290.11] [662.16, 696.64]

H-H 4 406.53 [255.63, 290.11] [662.16, 696.64]

Wind power

L 25 1691.76 1691.76 3383.52

M 55 1691.76 1691.76 3383.52

H 20 1691.76 1691.76 3383.52

L-L 6.25 2077.83 2077.83 4155.66

L-M 13.75 2077.83 2077.83 4155.66

L-H 5 2077.83 2077.83 4155.66

M-L 13.75 2077.83 2077.83 4155.66

M-M 30.25 2077.83 2077.83 4155.66

M-H 11 2077.83 2077.83 4155.66

H-L 5 2077.83 2077.83 4155.66

H-M 11 2077.83 2077.83 4155.66

H-H 4 2077.83 2077.83 4155.66
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Table 5. Cont.

Technology Level Probability (%) Optimized Generation
Target (GWh)

Optimized Shortage
Quantity (GWh)

Optimized Generation
Quantity (GWh)

Biomass and
garbage power

L 25 945.98 0 945.98

M 55 945.98 [0, 12.15] [945.978, 958.13]

H 20 945.98 [0, 35] [945.978, 980.98]

L-L 6.25 2787.65 1959.62 4747.27

L-M 13.75 2787.65 1959.62 4747.27

L-H 5 2787.65 1959.62 4747.27

M-L 13.75 2787.65 2104.72 4892.37

M-M 30.25 2787.65 2104.72 4892.37

M-H 11 2787.65 2104.72 4892.37

H-L 5 2787.65 2281.33 5068.98

H-M 11 2787.65 2281.33 5068.98

H-H 4 2787.65 2281.33 5068.98

Among these renewable power generation technologies, clean electricity would mainly come from
solar power, wind power, and biomass and garbage power (BGP). The optimized electricity generation
for wind power would be 3.38 × 103 GWh and 4.16 × 103 GWh in periods 1 and 2, respectively.
The wind power would play a significant role in renewable power development during the planning
horizon. For example, in period 1, wind power generation would occupy about 3% of total electricity
consumption, and 60% of total renewable power generation under different demand level; in period 2,
the proportion would increase from about 3% to 4% of total electricity consumption, and be 40% of
total renewable power generation. Since wind power possesses the characteristic of cleanliness and
the condition of convenience in this region, wind power would be developed as a priority. In addition,
BGP power generation would increase significantly during the whole planning horizon. For example,
in period 1 under medium level (with the probability of 55%), power generation amount of BGP would
be 1.76× 103 GWh, (877.53, 958.13) GWh, (945.98, 958.13) GWh, and (945.98, 958.13) GWh under λ with
the values of 0, 1, 5, and 50, respectively; in period 2 under medium–medium level, power generation
amount of BGP would be 5.05 × 103 GWh, 5.07 × 103 GWh, 5.07 × 103 GWh, and 5.07 × 103 GWh
with λ fixed as 0, 1, 5 and 50, respectively. The proportion of biomass and garbage power generation
would rise from about 1% in period 1, to 5% in period 2 of total electricity consumption, and 20% in
period 1 to 50% in period 2 of total renewable power generation. In Zibo city, the hydropower would
have a smaller scale under water resource and geography limitation. In general, renewable power
generation amount would change as λ values vary, and the stability of the regional electric-power
supply would be enhanced as the total renewable power generation amount increases.

Figures 2–5 show the optimized solutions for electric-power generation schemes under different
λ values. Electric-power generation amount of CHP would be decreased as λ increases. For example,
in period 2 under medium–medium level, electric-power amount generated by CHP would be
(68.28, 68.72) × 103 GWh, 61.51 × 103 GWh, 59.98 × 103 GWh, and 61.22 × 103 GWh under λ

fixed as 0, 1, 5, and 50, respectively. It indicated that the risk of system failure, which means higher CO2

and pollutants discharged from cogeneration exceeding the regulated limitation, would decrease as λ
increases. In general, relatively lower power generation of CHP would promote emissions reduction
and evade the risk of regional energy system.

As shown in Figure 3, solar power generation amount would be decreased as λ value increases.
For example, in period 2 under medium–medium level, the electricity generated by solar power would
be (685.87, 721.97) GWh, (662.16, 697.01) GWh, (662.16, 697.01) GWh, and (662.16, 678.65) GWh as
λ is fixed with the values of 0, 1, 5, and 50, respectively. Since the regional power supply of solar
power has the characteristic of instability and higher cost, the stability and security of system power
supply would increase as λ increases. Electric power generated by BGP would decrease as λ increases
(Figure 5). For instance, under λ fixed with the values of 0, 1, 5, and 50, power generation amount
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of BGP would be 1.76 × 103 GWh, (877.53, 958.13) GWh, (945.98, 958.13) GWh, and (945.98, 958.13)
GWh in period 1 under medium level, respectively; the generation amount would be 5.05 × 103 GWh,
5.07 × 103 GWh, 5.07 × 103 GWh, and 5.07 × 103 GWh under medium–medium level in period 2,
respectively. A higher power generation of BGP would lead to a higher pollutants and CO2 emission,
which would violate environmental constraints of the system. As λ increases, the power generation of
BGP would be reduced. In summary, the total renewable power generation amount would increase as
λ values increase. Thus, as λ values increases, the system failure risk would be lessened; meanwhile,
the security and stability would be enhanced.

Figure 2. The optimized cogeneration operation schemes during the planning horizon.

Figure 3. The optimized solar power generation amount in planning periods.
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Figure 4. The optimized wind power generation during the whole planning horizon.

Figure 5. Optimized biomass power generation amount in the planning periods.

4.2. Imported Electricity Scheme

Figure 6 presents the imported electric power amount during the planning horizon.
It would decrease from period 1 to 2 under different power demand levels. For example,
with λ fixed as 0,1,5, and 50, the imported power amount would be (34.5, 35.41) × 103 GWh,
(36.62, 38.15) × 103 GWh, (36.32, 37.92) × 103 GWh, and (36.55, 38.15) × 103 GW h under medium
level in period 1, respectively; (20.98, 21.9) × 103 GWh, (28.1, 29.46) × 103 GWh,
(29.46, 30.82) × 103 GWh, and (28.21, 29.59) × 103 GWh under medium–medium demand level in
period 2, respectively. It indicated that the imported power amount would be decreased with regional
power generation and power structure adjustment increasing, and the amount of imported electricity
would rise as λ increases. For instance, under medium level in period 1, the amount would be
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(34.5, 35.41) × 103 GWh under λ = 0 and (36.55, 38.15) × 103 GWh under λ = 50. As a result, it would
lead to a smaller system risk and enhanced system feasibility, which could also promote the energy
conservation and emissions reduction to some degree.

Figure 6. The imported electricity amount under different λ values.

4.3. CO2 and Air Pollution Control

Table 6 shows the solutions of optimized air pollutants and CO2 emission. The air pollutants and
CO2 emission amount would decrease. For example, under λ = 5, the amount of CO2 emissions would
decrease from (60.54, 61.01) × 106 ton in period 1 to (55.6, 56.17) × 106 ton in period 2; the amount of
SO2 emissions would decrease from (69.03, 80.23)× 103 ton in period 1 to (45.35, 66.78) × 103 ton in
period 2; the amount of NOx emissions would be (59.27, 83.71) × 103 ton and (35.61, 70.75) × 103 ton
in period 1 and 2; the amount of PM10 emissions would decrease from (9.56, 12.43) × 103 ton in period
1 to (4.89, 7.02) × 103 ton in period 2, respectively. The reasons for decreasing emission are that firstly,
the technology and facilities would be updated to reduce the average emissions level; secondly, due to
the power structure optimization in the first period, renewable energy has been developed to some
degree, which could make contributions to energy conservation and emissions reduction. In addition,
the effect of emission mitigation could be better under considering system risk aversion. It indicates
that the results would lead to a lower system risk and more robust regional energy system, which is
important for achieving sustainable development and better environment quality.

Table 6. The amount of CO2 and air pollution emissions under different λ values.

Gaseous Emission λ Level T = 1 T = 2

CO2 (106 ton)

λ= 0 [61.88, 63.11] [63.07, 64.10]

λ = 1 [60.3, 60.77] [56.82, 57.40]

Λ = 5 [60.54, 61.01] [55.60, 56.17]

λ = 50 [60.31, 60.77] [56.72, 57.30]

SO2 (103 ton)

λ = 0 [70.35, 82.75] [51.58, 76.43]

λ = 1 [68.76, 79.91] [46.37, 68.28]

λ = 5 [69.03, 80.23] [45.35, 66.78]

λ = 50 [68.76, 79.91] [46.28, 68.16]
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Table 6. Cont.

Gaseous Emission λ Level T = 1 T = 2

NOx (103 ton)

λ = 0 [60.36, 86.29] [40.51, 81.00]

λ = 1 [59.04, 83.38] [36.41, 72.34]

λ = 5 [59.27, 83.71] [35.61, 70.75]

λ = 50 [59.03, 83.38] [36.35, 72.21]

PM (103 ton)

λ = 0 [9.74, 12.82] [5.57, 8.04]

λ = 1 [9.53, 12.38] [5.00, 7.18]

λ = 5 [9.56, 12.43] [4.89, 7.02]

λ = 50 [9.52, 12.38] [5.00, 7.17]

4.4. System Cost

Figure 7 shows the total system costs under different scenarios during the planning periods.
The energy system cost in Zibo city would have a slight increase trend as λ levels increase.
For instance, under the scenarios of λ with the values of 0, 1, 5, and 50, the system cost
would be RMB¥ (490.63, 651.16) × 109, RMB¥ (499.65, 659.71) × 109, RMB¥ (502.62, 662.94) × 109,
and RMB¥ (502.82, 663.56) × 109, respectively. As λ levels increasing, the system failure risk would be
reduced, and the system cost would be increased. Conversely, a lower λ level would bring about a
higher system risk and a lower system cost. It indicated that if the decision-makers aim to lower costs,
a higher system risk may occur.

Figure 7. Net system cost under different scenarios.

Based on the above analyses, these indicated that the optimized solutions are able to support
regional energy system management for making integrated schemes of power generation, capacity
expansion, air pollutant and CO2 emission reduction under different renewable energy development
targets and environmental quality requirements. The solutions with lower and upper bounds are
helpful for generating decision alternatives representing various options. Cost–risk analysis can be
obtained through integrated the stochastic robust optimization method into the multistage stochastic
programming in regional energy system management.
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5. Conclusions

In this study, a multistage stochastic inexact robust programming was proposed for supporting
regional electric-power system structure optimization and management. The model covered the
district heating supply, power generation, and air pollutant mitigation coupled with relevant technique
constraints and governmental policies. Comparing the solutions optimized by the model with the
strategies carried out in the real world, the former emerged with obvious advantages, which can
lead to a more prosperous future. In addition, the developed method could be valuable for obtaining
trade-off schemes between system economy and risks that are introduced by system’s uncertainties
according to decision-makers’ willingness. An energy system structure management of Zibo City,
China, is used as a case study for verifying the efficiency of the developed model. Optimized schemes
of power generation, capacity expansion, air pollutant and CO2 emission reduction, and system
cost were analyzed. The results indicated that under different requirements of renewable energy
development, and pollutant and CO2 mitigation, traditional power generation technology would still
be increased, attributing to its lower costs and traditional energy resources structure based on the
thermal power generation. In addition, renewable energy would also play an important role in solving
energy, resource, and environmental pressures; renewable power generation amount would be rising
continuously, though it might develop slowly for a certain period of time.

However, a number of limitations also exist in the proposed model of this study. Firstly, in the
optimization model, many energy industrial processes are not considered, and only generation
processes and energy-related environmental problems are involved in this study. In order to obtain
more comprehensive management schemes, more energy development and utilization patterns could
be considered. Second, compared with other optimization methods, the model would be infeasible
in addressing the high uncertainties in the model parameters; and through introducing different λ
values in the model, regional energy-managers cannot directly obtain suitable management schemes.
Therefore, further research can strengthen knowledge and mitigate these limitations in the future.
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