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Abstract: In this paper, we apply an indicator-based approach to measure the resilience of energy
regions in transition to a case study region in Austria. The indicator-based approach allows to
determine the resilience of the transition of regional energy systems towards higher shares of
renewables and potentially overall higher sustainability. The indicators are based on two core aspects
of resilience, diversity and connectivity. Diversity is thereby operationalized by variety, disparity
and balance, whereas connectivity is operationalized by average path length, degree centrality and
modularity. In order to get a full picture of the resilience of the energy system at stake throughout
time, we apply the measures to four distinct moments, situated in the pre-development, take-off,
acceleration and stabilization phase of the transition. By contextually and theoretically embedding
the insights in the broader transitions context and empirically applying the indicators to a specific
case, we derive insights on (1) how to interpret the results in a regional context and (2) how to further
develop the indicator-based approach for future applications.
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1. Introduction

Local and regional energy systems are important entities in the current energy transition towards
a low-carbon, renewable energy system [1,2]. At a regional level, in Austria for example, 106 “climate
and energy model regions” including 1113 municipalities with 2.5 million inhabitants have been
created and initiatives such as climate communities (Klimabiindisgemeinden) or e-5 communities
(e-5 Gemeinden) have developed since the 1990s [3,4]. In Germany, similar initiatives such as the 100%
renewable energy regions (100ee-Regionen) have emerged on a regional scale, with similar initiatives
at city and community level [5-7]. Some of these regions have been quite successful in the energy
transition, building new institutional structures and increasing the share of renewable energy sources
in the regional energy supply, while being able to export energy to other regions [8-13]. In many cases,
however, a few years after the initial enthusiasm, a hiatus emerged as the expected outcomes in energy
self-sufficiency were not reached within the time they were envisioned [14-16].

Empirically, several authors have analysed the relevant factors for an energy transition at a
regional level to be successful. As such, they have investigated the role of guiding visions and
foresight, the number and characteristics of actors and arenas involved in the transition process,
the course of the institutionalization process, or the development of the energy and material flows over
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time [8,9,17-19]. A number of studies have developed models for analysing and simulating transition
processes towards sustainability [20-22]. However, even though there is empirical evidence that the
success of a transition depends, amongst others, on the transition pathway itself [23], none of the
studies has explicitly analysed the resilience of a regional energy system in a transition process.

Resilience as a core concept of social-ecological and socio-technical systems research has gained
substantial attention in the last two decades, both from a scientific and from a policy-oriented
point of view (see [24] for a comprehensive review). In the socio-ecological systems literature,
resilience is traditionally understood as “the capacity of a system to absorb disturbance and reorganize
while undergoing change so as to still retain essentially the same function, structure, identity and
feedbacks” [25]. Out of the analysis of critical infrastructures, a specific literature strand on energy
resilience has emerged, dealing, that is, with the resilience of the power grid to external shock [26-28].
Further applications are in urban infrastructure planning and in risk and disaster management [29].
Out of these studies, a number of frameworks to conceptualise critical infrastructure resilience and
energy system resilience have emerged and various measures and indicator sets have been proposed to
understand and measure the resilience of the technical energy infrastructure [30-33]. Though helpful
for the reflection on the technical aspects of the socio-technical properties of an energy system in
transition, energy resilience remains a predominantly static concept, which a focus on restoring
functionality of a given energy system after a critical shock. It also lacks a true integration of social
aspects, such as social structures and relations. Where social aspects are taken into consideration,
the social subsystem is mostly treated subordinate to the technical subsystem and mostly analysed
with respect to the resilience of the technical system.

Most of the resilience literature remains conservative in the sense that it presupposes stable system
states and advocates for a management approach of complex social-ecological and socio-technical
systems (see e.g., [34]). We build upon an alternative understanding of resilience following in “[that
resilience is] less characterized by systemic properties and rather operates on the context [level] of
the system” (p. 4). In other words, it is important for the system to maintain its basic functionality,
even as key actors, processes and functions change over time [35]. Inspired by the four stages of the
adaptive cycle (exploitation, conservation, collapse and reorganization), a procedural understanding of
resilience can be seen as the capacity of a system to navigate all phases of the adaptive cycle, while still
providing the basic services of what [36] call “the net social utility.”

Reference [1] have theoretically derived an analytical approach to assess the resilience of
regional energy systems in transitions. They base their approach on two core-attributes of resilience,
namely diversity and connectivity. Building on the indicator set developed in Reference [1], we aim in
this follow-up paper to apply indicators to a specific case-study region in Austria and reflect on the
possibilities, added values and potential pitfalls of empirically measuring the resilience of a regional
energy transition. We do this along the following four guiding research questions, relating to the
application of the indicators and their interpretation:

e  How can we apply the approach proposed by [1] to allow to empirically measure the resilience of
a regional energy system in transition, with regard to both the social and technical aspects?

e  Where can the studied regional system be situated with respect to the four ideal-cases
presented in Reference [1] and what can we learn with respect to the (potential) success of
the transition process?

e  Does the approach allow for a resilience assessment that is transferable to other regions and other
contextual settings?

e What are the policy implications of using this indicator set to analyse an energy region
in transition?

In order to tackle these questions, we build on empirical material from a case-study area in
Austria. We apply the indicators developed in Reference [1] and measure the core aspects defining
the resilience of the system throughout the transition process. We then compare the results with
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qualitative insights from another case study area in Germany. We conclude with some general insights
and specific recommendations regarding the application of a resilience framework in the context of
(energy) transitions.

2. The Resilience of Regional Energy Transitions

The current shift of the energy supply structure from a mainly fossil fuel based system to one built
on renewable energy sources takes place on different geographical scales, that is, on a global, national,
regional and local level. The regional scale has been emphasised by policy-makers and experts alike
to be especially suited for bottom-up initiatives and policy-interventions due to (1) the spatial and
social proximity of actors, (2) the regionally accessible resources and (3) the positive regional economic
effects of renewable energy development [37,38].

Transitions are usually driven by specific actors within a systemic context, who for ideological,
economic or technical reasons are convinced that change processes are required and push for systemic
change [39]. Novel ideas, disruptive technology developments and innovative ways of doing
business normally develop in “niches,” which offer engaged actors the possibility of trial-and-error
experimentation without being fully integrated into the mainstream system. By means of up-scaling
and proliferation, the practices and actors can potentially link up to the mainstream systems and the
actors of the so-called system regime (see e.g., [40]). Whereas this view originated in the context of
technological innovations, the idea has been taken up in the area of sustainability science linking
it to processes of transition towards more durable and responsible ways of organizing society,
doing business and using resources (see [31,32]).

The transitions of socio-technical systems, systems in which technologies, their social use and
governance structure are conceptualised as deeply interlinked and developing in a co-evolutionary
way, can be subdivided into four distinct archetypal phases: the pre-development, the take-off,
the acceleration and the stabilization phase (see [41]). In the pre-development phase, the transition
process starts to get under way and values, ideas and ways of doing business begin to change, at least
for certain actors and actor groups that actively push for change (the actors of the niche, see [39]).
On a system’s level, the pre-development phase is characterized by a dynamic equilibrium and the
status quo does not change (yet). The take-off phase is when visible changes in the system’s structure
and functioning appear on wider scales not only in the niche but also on the regime level. During
the acceleration phase, collective learning processes fundamentally change the system’s functioning,
new technologies are broadly adopted and social practices are adapted accordingly. During the
stabilization phase, the speed of social change decreases and a new dynamic equilibrium is reached.

2.1. Measuring Resilience along the Transition Pathway

Reference [1] propose six metrics for measuring diversity and connectivity, accounting for both
the social and the technical components of the energy system (Table 1). Diversity and connectivity are
assessed separately for both the technical and the social subsystems.

Table 1. Indicators for the social subsystem (based on [1]).

Diversity

Connectivity

Variety—Number of social arenas present in the
regional energy governance structure.

Average Path Length—Number of steps it takes to
reach other actors from other arenas along the
shortest path in order to coordinate activities.

Balance—Number of actors per social arena in
comparison to overall number of actors involved in
the regional energy governance structure.

Degree Centrality—Number of connections of actors
within one arena to actors in other arenas in
comparison to overall possible number of
connections.

Disparity—Qualitative differentiation between arenas
(e.g., organisational structure, key actors, time
horizon or spatial reference).

Modularity—Measure of the tendency of actors from
different arenas to form functionally distinct
subgroups, which show stronger connectivity with
the subgroup than with the rest of the network or are
(partially) detached from the rest of the network.
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2.1.1. Social Sub-System

With respect to the analysis of the social subsystem we rely on the concept of “social arenas” [17,37].
Social arenas are defined as “societal subsystems or spheres, characterized by their rationality and
codes depending on their function” (translated by the authors from [17]). Commonly these arenas
can be identified by their specific structure, that is, network or market-based and the functional
characteristics of their central agent groups, such as politicians, entrepreneurs or private households.
In the context analysed, we selected the following social arenas based on the specific characteristics
of the sector and the case-study areas: industry, associations, research, politics and media. In order
for the system to be resilient at all points along the transition pathway, the actors from the different
arenas have to collaborate with each other to ensure the functionality of the system and drive the
system'’s development towards sustainability (see [42]). Thereby, social connectivity is characterized
by the exchange patterns between actors from different social arenas. We can distinguish here
between formal and informal exchange patterns [43,44]. Formal connectivity can encompass shared
business ownership, contractual collaboration arrangements, outsourcing and joint venture activities,
membership in industry organizations, or similar. Informal connectivity includes information exchange
on a personal and voluntary basis, between business partners or not, which helps build social capital
but is not directly linked to formal collaboration agreements (e.g., [45,46]). For a formalization of the
respective concepts in mathematical form we refer to [1].

2.1.2. Technical Sub-System

With respect to the analysis of the technical subsystem, we distinguish between different groups
of (renewable) energy production technologies (technology groups). The differentiation in production
technology groups with respect to their locality has been applied by [47], as it is more precise than
only studying the energy sources and it is less detailed than analysing each specific technology. In the
analysed regional context, the most important technology groups in renewable energy production are
hydropower (small and big plants), biogas, combined heat power production (CHP), photovoltaic
(rooftop and open field) and solar heat. In order for the transition to be resilient, the technical
subsystem needs to be changed carefully so that the energy provisioning functions are not endangered.
The changing structure of the regional electricity grid and gas network as well as the evolution of local
district heating networks, which are highly relevant to allow for a faultless integration of higher shares
of renewables, have to be taken into account. The metrics for measuring diversity and connectivity in
the technical subsystem based on [1] are given in Table 2. For a formalization of the respective concepts
in mathematical form we refer to [1].

Table 2. Indicators for the technical subsystem (based on [1]).

Diversity Connectivity

Variety—Number of groups of technologies present  Average Path Length—Length of the transmission
in the regional energy production system lines between production and consumption sites

Degree Centrality—Number of connections to other
producers or/and consumers in the regional
distribution network

Balance—Share of the individual technology group in
regional energy production

Disparity—Qualitative differentiation between
technologies (e.g., energy conversion efficiency,
resource used, production costs or weather
dependency)

Modularity—Measure of autonomy of certain parts of
the distribution network that function independently
from the main network

3. Data and Methods

We exemplify our operationalization with results from an analysis of the socio-technical transition
in the Energy Region Weiz-Gleisdorf (EWG) in Austria (Figure 1). The EWG is a “climate and energy
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model region” located in Styria, Austria and encompasses 18 communes with a growing population of
around 42,000 inhabitants [48]. EWG has a long tradition in technology development for renewables,
especially solar heat and photovoltaics [49]. In 1996, the regional communes founded an energy region
association in order to coordinate and foster the regional energy transition endeavours towards higher
shares of renewables and energy efficiency innovations. Since 2007 EWG is also an EU LEADER region
and since 2011 a “smart region” [50].

®

Figure 1. Map of Energy Region Weiz-Gleisdorf's (EWG's) location in Austria (red circle). Source: [51].

We draw on qualitative and quantitative data from [8,9,20] and on our own investigations in the
area in November 2016. We present results for the years from 1990 up to 2016. This period of time was
according to important events in the social subsystem, which emerged in the interviews conducted for
this study.

For the determination of the constitution of the system and the establishment of the system
models, we chose the years 1996, 2011 and 2016. 2011 and 2016 were the years when the interviews
were conducted. We chose to include only one additional period in retrospective, due to the difficulty
to assess different point in time in the past and potential biases regarding the evaluation of past
events (e.g., the rosy effect, seeing the past more positive than the present [52]). 1996 was chosen
since it was considered as an important milestone in the energy transition due, amongst others, to
the formal foundation of the energy region structure and the institutions that went hand in hand
(secretariat, association) [8,9]). For consistency of the analysis, we selected the same years for the
technical subsystem (1996, 2011, 2016) but also integrated figures reaching back to 1990 in order to
fully assess the predevelopment phase. This allowed us to investigate in the development before and
between the dates in the social subsystem.

3.1. Data Collection

For the social subsystem, we built on secondary data from interview transcripts in 2011 [8,9,20].
Additionally, we collected primary data in the region in 2016. Interviews were conducted with
the most important actors in the regional energy governance system, who are able to oversee the
whole transition process (13 interviews in 2011, 9 interviews in 2016). The 1990 to 2011 evolution
of the system configuration was discussed in both cases. While the interviews were held following
a semi-structured design in both years, a mental model approach complemented the interviews in
2016 [53-56]. The mental models were elaborated by using concept maps as graphical representations
of individual perceptions of reality [57]. Hereby, the interviewees were asked to draw their mental
models of the social subsystem of the energy sector in the region, focussing on (1) who were the most
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important actors in the region with respect to the energy transition, (2) how central were these actors
with respect to the other actors in the system and (3) how closely did they collaborate with other
actors in order to drive the transition process? The mental models were replicated for the years 1996,
2011 and 2016.

To gather data for the technical subsystem, we used the publicly available energy balance sheet
for the federal state of Styria [58]. A comprehensive data set was only available on the level of
the federal state of Styria and not on the regional level of EWG. From the structure of the regional
and the state-wide energy system, we assumed that the characteristics of the energy system on
the two levels was sufficiently close in order to allow for deductions from the state to the regional
level. This assumption has been supported by two interviews with energy experts in the region,
a representative of the biggest urban utilities company in the region and a representative of the
regional energy grid operator. Additionally, we considered data on the regional level from [8,9,20]
and evaluations of further regional experts. However, data for photovoltaics, biomass and solar heat
where only available from 2010 onwards. No quantitative data was available for the evolution of the
electricity grid and heat network over time. Thus, we rely on qualitative evaluations from regional
grid operators, which we collected in semi-structured expert interviews. This approach allowed to
complement the former dataset not only by information on the current situation but also by a graphical
representation of the perceived configuration of the social subsystem in the past and its changes
over time.

3.2. Analytical Methods

Following the approach lined out in Reference [1] we conducted an indicator-based analysis of
the two central resilience aspects diversity and connectivity separately for the social and technical
subsystems. We concentrated on the actors and technical installations which are linked to the renewable
energy sector, who either taking over an active or passive role in driving the transition of the energy
system towards higher levels of sustainability (actors) or are indispensable in bridging production and
consumption of renewable energy (technical subsector).

In the social subsystem, we analysed the diversity based on the interview transcripts from [8,9]
according to the structured qualitative content analysis [59,60] by coding the transcripts in MAXQDA
(http:/ /www.maxda.de). We investigated the variety of the social subsystem by revealing the social
arenas, which the interviewees perceived as important for the regional energy transition in 1996,
2011 and 2016. Regarding the balance, we analysed the most important actors mentioned by the
interviewees and assigned them to their corresponding social arenas—thereby, multiple assignments
where possible, for example, politicians who were association members and were in addition working
in industry. Regarding disparity, we described the qualitative differences amongst the social arenas
based on the criteria proposed by [1,61].

We operationalized the connectivity indicators in the social subsystem based our analysis of
the interview transcripts. This touches the revealed qualitative descriptions of the connectivity
measures put forward in Reference [1]. Additionally, we aggregated the individual concept maps
of the interviewees to work the shared perception(s) of the social subsystem'’s configuration in 1996,
2011 and 2016. Thereby, we followed the Cognitive Mapping Approach for Analysing Actors’ Systems
of Practices (CMASOP) by [54] to analyse the mental models of the regional actors from a systems
perspective. The CMASOP proposes 4 steps: conducting qualitative interviews, coding the interview
transcripts, deriving individual cognitive maps and merging of the individual maps to a common
“social cognitive map” [54]. For the average path length, we derived mentioned relations between
actors of different social arenas—whether they were direct or indirect (which causes a higher path
length). In addition to the revealed proximity between the actors, we also interpreted the perceived
proximity from the conceptual maps. In order to analytically grasp centralities, we derived notions of
central actors from the interviews—as representatives of their social arena—and analysed the concept
maps regarding the central position of one arena and as well as a relatively higher share of relations
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to other arenas. Finally, to measure modularity in the social sphere, we looked for stronger relations
between actors from particular social arenas in contrast to the average intensity of relations in the
regional context.

In the technical subsystem, we analysed the diversity by studying the renewable energy
production technologies from 1991 to 2015 in the state of Styria. Following [1], we started off by defining
how many technology groups existed at each point (variety) in time and how much they differed from
each other (disparity). For the latter, we described the qualitative differences amongst the involved
technology groups, based on the criteria, proposed by [1]. We calculated the balance as the share of
each renewable technology group in the overall energy production over time. We calculated both,
the Shannon Weaver S = — }; pi x In(pi) and the Shannon Eveness S = — }; pi x In(pi)-InN indices.

We applied the connectivity indicators in the technical subsystem qualitatively for both electricity
and heat. Regarding the average path-length in the electricity grid, we analysed the evolution of the
electricity grid’s length on the lower tension levels which are relevant to the region (level four and
below). For the heat supply, we analysed the evolution of the gas net as well as the district heating
systems and the number of households connected to the gas net or district heating systems. Regarding
degree-centrality, we analysed the electricity grid structure regarding its adjustment to the increasing
number of decentralised production sites using renewable energies—for heat, we interpreted the
changes in the gas net and district heating networks. Finally, we also analysed the grid structures
with respect to module formation within the electricity grid and the heat networks and interpreted
the results for the modularity indicator. Table 3 summarizes the measures that have been applied for
every indicator.

Table 3. Measures for the indicators in the social and technical subsystems.

Measure Diversity Connectivity
. . . Average Path Degree .
Subsystem Variety Balance Disparity Length Centrality Modularity
Perceived Relative
Number of Qualitative Perceived distance R strength of
. Count of R centrality of R
Social Subsystem - key-members difference between actors from relation between
social arenas X actors from X
per arena between arenas different arenas X actors from diff.
different arenas
arenas
77777777777777 . . . Interview data & Interview data Interview data
Data Source Interview data  Interview data Interview data CMASOP & CMASOP & CMASOP
Share of - Grid structure Ir?del':)em‘lent
- Length of electricity distribution
Count of technology Qualitative . (gas and o
. R grid (<level 4) and .. . networks within
Technical Subsystem technology group for difference between e electricity) with .
- length of district the electricity or
groups electricity and technology groups X respect to L k
. heating networks . district heating
heat production production sites
77777777777777 systems
Data Source Energy Own . Expert estimations Interview data Interview data Interview data
balance sheet calculations

4. Results

In the following section, we present our results for the six indicators [1] for both, the technical and
the social subsystem—structured according to the four predefined transition phases. As mentioned
earlier, we have restricted ourselves to actors in the social subsystem that are in one way or the
other engaged in the transition towards higher shares of renewables in the energy system and the
infrastructure(s) that are linked to the proliferation of renewable energy. This in order to guarantee
for a highest possible consistency, allowing for reproducibility with other actors and a broader set of
(incumbent) technologies in the future once data availability issues are resolved.

4.1. Predevelopment Phase (1990-1996)

4.1.1. Social Subsystem

Diversity: In the early phase of the regional transition, we identified medium variety levels,
since actors from four arenas were involved in the social subsystem: politics, associations, industry
and research. The balance was high, since every arena was represented by only 1-2 actors and no
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arena was perceived to be dominant. The politics arena was represented by two mayors of the two
big municipalities in the region, the industry by a municipal utility and a regional construction firm,
research by two regional research centres and the association arena by an association for the promotion
of renewables. Finally, the disparity among the arena was also high (see Table 4), since the arenas
clearly differed in their coordination form (hierarchy in politics, networks in associations and research
and market for industry), main function (energy and energy-related products from industry, rules and
funding from politics, knowledge and technology from research and networks and funding from
association) as well as in their time-horizon (short-term for politics, mid-term for industry and mid-
to long-term for research and associations). The overall diversity of the social subsystem in the
predevelopment phase can be considered as medium to high.

Table 4. Disparity attributes of arenas involved in the social subsystem in EWG (adapted from [61]).

Social Arena
o Indust jati iti i
Characteristics ndustry Associations Research Politics Media
Energy Regional energy ~ Regional innovation
producers, associations, centre, Universities, Municipalities, Regional
Core Actors cooperatives, LEADER research institutions, the provinces, ne?vs aver
constructionand  groups, Industry ~ Research departments  the EU Pap
production firms  associations in firms
Coordination of Actors Market Network Network Hierarchy Market
Investing in Coordinate and ~ Developing and Regulating, Infor'mmg' the
R . public, opinion
renewables, represent testing of new subsidizing, building on
Main Goals within providing regional actors, technologies, investing in L. 8 ..
. . . : political decisions
the Arenas energy and provide funding, introducing new energy and observed
energy-related integrate knowledge in plants/research behaviour in
products external actors the region projects industry
Time Horizon for Activities Medium-term Long-term Medium-term Short-term Short-term
Spatial Reference of Actors Local-international Local-regional Regional -national Local—internationalocal-regional
P g g 8

Connectivity: The path length among the actors engaged in renewable energy production in
the early phase of the regional energy transition was perceived as very short. All actors knew each
other personally. The two mayors (politics arena) were perceived as the centre of the social subsystem,
connecting all other actors. At the same time, the classical energy providers and urban utility companies
were not yet taking part in the transition. As a consequence, the politics arena had the highest centrality,
which resulted in a high overall centrality in the governance system of the transition. At that time,
no modules were detectable within the social subsystem. Over all, the connectivity in the social
subsystem was high.

4.1.2. Technical Subsystem

Diversity: In the predevelopment phase in Styria only one renewable energy source existed for
electricity production, that is, hydropower. The amount of electricity produced with hydropower
however slightly increased from 2680 TWh/year to 3250 TWh/year from 1990 to 1996. Variety was
1, balance 0 and no disparity can be calculated, due to the presence of only one technology group.
Overall, the diversity regarding energy production from renewable sources was low.

Connectivity: The regional electricity system in the predevelopment phase was characterized by
decentralized production in combination with a centralized electricity grid and lower tension levels (up
to level 3) were predominant. This system configuration leads to high average path-lengths, based on
the fact that there are no large centralised production sites in the region. Additionally, the centrality
of the grid was high, since the production and consumption entities were only connected through
central transformer units and the regional grid is embedded in the highly centralised national grid.
Finally, there was low, respectively no modularity in the grid, since there was no possibility to decouple
autarkic parts of the grid which directly connected production and consumptions units on the lowest
voltage level. The overall connectivity of the electricity grid can be considered to be situated at medium
levels. For heat, the application of the indicators is more difficult since grid- and off-grid technologies
existed (wood and oil burning), while there was no overarching grid in place in order to connect
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them. In the early phase of the transition, the path length was high in the gas net and low for the
off-grid technologies. The centrality was high for gas and low for the off-grid technologies, whereas the
modularity was low for gas and high for the off-grid technologies. Overall, the connectivity in the
technical subsystem can be seen as medium to low.

4.2. Take-off Phase (1996-2001)

4.2.1. Social Subsystem

Diversity: In the take-off phase, the variety rose slightly, since the media arena was also perceived
as important part of the social subsystem. Regarding the balance, the number of actors in the
politics arena increased significantly due to the foundation of the energy region association which
unified all 18 municipalities in the region. Moreover, more and more actors in industry and research
became active in renewable energies. Investments were made and research collaborations were built,
also beyond the regional level. Thus, the politics and associations arenas were perceived as less
dominant and the overall balance declined to medium levels. With the appearance of the media
arena, the disparity further rose. Media activities are coordinated through the market (like industry)
and delivers information and facilitates opinion building, however, it has a very short-term focus.
The overall diversity in the social subsystem can be considered as medium to high.

Connectivity: The path length in the social subsystem was perceived to remain at low levels,
however, with the foundation of the regional energy agency and the larger engagement of industry
and research, more (less central) actors were involved so that the path-length increased. Accordingly,
the centrality declined to a medium level. As in the previous phase, the politics arena was perceived
to be the most central. Actors from the political arena (including communal administration) were
key in connecting actors from other arenas, together with the energy association. Additionally,
direct connections among industry and research emerged. Finally, the modularity also slightly
increased towards a medium level—due to bilateral projects among research and industry and the
institutionalisation of the politics arena in the energy association. Overall, the connectivity in the social
subsystem slightly decreased and can be considered to be at a medium to high level. At the same
time, the existing collaborations became more formalised and stable with the foundation of the energy
region association.

Figure 2 gives an overview of the aggregated mental models that were derived from the interviews
in the region. The inner square delimits the regional energy system as perceived by the actors. The ovals
depict actor groups belonging to specific arenas. The distance between the ovals equals the perceived
proximity of the actor groups in terms of their collaboration in the field of renewable energy, as seen
by the interviewees.

1996

energy region Legend
association
media
- Research
( local politicians
> (majors) Media

a
: 0
regional ﬁmmunal\ e
energy industry ‘\idministration/‘ . Politics
T . Industry
large regional
production firms external experts . Associasions
research centre

Figure 2. Aggregation of individual conceptual maps of the social subsystem in 1996 (authors’
own elaboration).
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4.2.2. Technical Subsystem

Diversity: In the take-off phase, we start seeing a slight increase in the production of renewable
energies. As wind power started to be produced, variety increased to 2. As the share of wind to overall
electricity production out of new renewables was low (0.9%), both balance indicators are at around
0.01. At the same time disparity was high, with two technologies very different from each other present
in the region. The overall diversity was low to medium.

Connectivity: The connectivity of the electricity sector remained without any large changes during
the take-off phase. In the expert interviews, central actors in the sector clarified that the rising share
of decentral production sites based on renewables was greatly absorbed by the buffering capacity of
the grid. In the heat sector, the installation of biomass heat and CHP plants—which are embedded
in district heating networks—began to rise. Correspondingly, grid-based heat technology became
more and more relevant in the region. As a consequence, rising path-lengths, decreasing centrality
and increasing modularity can be observed, as insular heating solutions (mainly based on firing oil)
are being replaced by biomass-fired district heating solutions. Overall, the level of connectivity of the
technical subsystem can be situated at low to medium levels.

4.3. Acceleration Phase (2001-2011)

4.3.1. Social Subsystem

Diversity: In the social subsystem, variety and disparity decreased slightly, since media was
no longer mentioned as important arena for the social subsystem. The balance decreased as well:
The number of actors in the politics and association arena increased slightly but in the industry arena
many new actors were mentioned—especially distribution grid operators and regional utilities and
larger production firms which were located in the region. Thus, the industry sector was perceived
as dominating the social subsystem. Nevertheless, there were some qualitative changes in the other
arenas: in politics, the other municipalities were perceived as becoming more active, in the association
arena the foundation of the LEADER region association was an important factor to generate money
and networks beyond the region. Additionally, there was the foundation of a new research centre
which also attracted partners from outside the region. The overall diversity remained at medium to
high levels as the social subsystem was perceived as fast moving and very dedicated to the progress of
the transition.

Connectivity: The trend of the increasing path length continued, since more actors were involved,
which only had bilateral contact to particular actors from the core network (e.g., industry actors
to politicians, research actors or the LEADER group). Nevertheless, the core network from the
predevelopment phase remained closely linked (Figure 3). And although the industry arena was
still perceived to be dominating and central, with the LEADER group, the association arena became
again more central in linking actors from politics to research and industry. Thus, the centrality can
be considered as medium. The modularity increased to a medium level, since several collaborations
among the arenas where established around projects like the planning and implementation of new
district heating areas, new housing areas or the representation of the region at the national exhibition.
The overall connectivity in the social subsystem can thus be situated at a medium level.

4.3.2. Technical Subsystem

Diversity: During the years 2001-2011, we can observe a rapid increase in the electricity produced
by renewables. A high range of technologies was deployed in the region, ranging from photovoltaic,
electricity out of geothermal power production all the way to waste related technologies. The total
amount of electricity produced in Styria from renewable energy sources increased from 2978 TWh/year
in 2001 to 4264 TWh in 2011. The variety increased to 9 distinct technologies. The Shannon Weaver
index, which describes the balance by including the variety measures in the calculation, surged from
0.01 up to 0.8 during that period. However, the Shannon Eveness index, increased only up to 0.35 (see
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Figure 4). Furthermore, also the disparity increased as very different energy technology groups were
included in the production of electricity and heat. Overall diversity attained high levels.

201
energy industry
Legend
grid operators research centres Research
Experts
. Media
construction industry Politics "
(Majors & communes) . Politics
. Industry

international partners

associations Energy region

- Associasions

(e.g. LEADER) association

Figure 3. Aggregation of individual conceptual maps on the social subsystem in 2011 (authors’
own elaboration).

Balance Measures

12 6000

_-|I|I|||||||I‘| |‘|I‘|

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

5000

o
®

4000

3000

Balance Measures
(=]
(=)}

Total Renewables

'S

2000

1000

0

I Balance (Shannon Weaver) B Balance (Shannon Evenness) ——Total renewables (TWh)

Figure 4. Development of the balance indicators for electricity production out of renewables over time
(until 2005 only real values and not normed values were available). Data source: [58]).

Connectivity: There were no substantial changes in the electricity grid, however, the experts
mentioned in the interviews that the regional grid operators began to mesh the grid on the medium
voltage levels from around 2006 onwards, which means that they added additional non-linear
connections which allow to supply a consumption unit through several distribution entities. With this
development, the overall path length rose, the centrality decreased and the modularity remained
low, since there was no specific opportunity to form modules in the grid. In the heat sector,
the installation of biomass heat plants and CHP plants in district heating networks continued, so that
the connectivity in the heat sector increased slightly. Overall, the connectivity of the technical system
rose to medium levels.
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4.4. Stabilisation (2011-2016)

4.4.1. Social Subsystem

Diversity: The variety remained unchanged in comparison to the previous phase, so does the
balance. The industry and the politics arena also remain the two arenas which together comprise the
most actors. The disparity of the arenas is constantly high. In the industry arena, new entrants were
mentioned in the area of mobility. In the association arena, the merger of the energy region and the
tourism region association were perceived as major changes to the composition of the governance
system. Additionally, it is interesting to see that the disparity within the industry sector is higher than in
any other arena. The arena is not only built up of utilities, operators of the energy distribution systems
(DSOs) or electrical engineering firms but also includes regional construction firms, large production
firms as well as actors in the tourism sector, which are present in the region and engaged with energy
transition issues. The overall diversity remained medium to high.

Connectivity: The average path length remained medium. The densely connected core network of
actors remained in place. So were some more loose connections to more peripheral actors, especially
those located in industry. The centrality of actors from the politics and industry arena remained high,
whereas the perceived centrality of the energy region association declined. Regarding modularity,
most of the modules were built around projects and therewith characterized by a clearly defined
timeline. New modules were only mentioned around mobility projects. However, some interviewees
criticised that the members of the initial actor network remained closely linked with one another
while connections to other actors—especially from industry—were rare and remained loose. Moreover,
the interviewed actors noted critically that the links to the broader society and especially to non-energy
related interest groups in the region, were underdeveloped, so that the main core of actors in the social
subsystem were perceived to represent almost a module for themselves. Overall, connectivity in the
social subsystem remained at medium levels.

4.4.2. Technical Subsystem

Diversity: The total share of renewables in electricity production reached 52.1% in 2016 (Statistics
Austria): As shown in Figure 4, after 2011 the total amount of electricity produced from renewables
stayed almost constant. The variety in technology groups increased by 1 to 10. While the Shannon
Eveness index remained almost constant, the Shannon weaver index increased slightly as one more
technology contributed to the overall renewable share. Table 5 provides an overview over the disparity
of the five most important technology groups employed in the region in 2016 (all data refers to the
year 2016). Overall diversity of the technical subsystem is high.

Table 5. Disparity attributes of energy production technologies employed in EWG (adapted from [1]).

Disparity Attribute Technology Hydropower Biogas CHP Photovoltaic  Solar Heat
Energy Conversion Efficiency () [9] 0.85 - 0.85 0.08-0.16 0.5-0.7
Resource Base Water Biomass Biomass Sunlight Sunlight
Direct CO, Emissions No Yes Yes No No
Land Consumption [62] Low High High Medium Medium
Dependency on Weather Events Medium Medium Medium High High
Costs (cent/kWh) [47,63-66] 15.6-17.8 13.5-21.5 12.2 7.8-14.2 22

Connectivity: There was no major change in the electricity grid from the acceleration to the
stabilization phase, with overall connectivity stabilizing at medium levels. The experts mentioned
that meshing was considered as an ongoing maintenance task, which further decreased the centrality
and increased the path-length. However, the experts stressed that if the legal framework would
allow to build regional modules which could partly be uncoupled from the grid while connecting
the regional production and consumption units directly, there might be a major change in electricity
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grid. This would cause rising path lengths and rising modularity while the centrality would decrease
and result in a medium connectivity. In addition, the experts evaluated the technical development of
power-to-gas/heat/cold/fuel as an important factor to rise the connectivity. Thus, there would be
the possibility to use the gas net, extend it and connect other production technologies to it. Moreover,
it would allow for regional storage—especially in combination with battery storage—which leads to a
higher potential for modularity. For the time being, connectivity measures remained at medium levels.

4.5. Overview of the Results

When summing up the development in both the social and technical subsystems, the following
levels of diversity and connectivity can be reported at the current stage of the transition:

Diversity in the social subsystem: the diversity in the social subsystem of EWG evolved from
being very high, to medium levels. While variety and disparity remained at medium and high levels
throughout the transition processes, respectively, measures for balance went from high at the beginning
of the transition to low towards the stabilization phase.

Connectivity in the social subsystem: with regard to connectivity, the social subsystem of EWG
went from being highly centralized and loosely linked to being of medium centralization, long(er)
path-ways between the actors and higher modularity within the network as actors from new arenas
engaged in the transition and new actors joined the different arenas.

Figure 5 gives an overview of the development of the diversity and connectivity measures in the
social subsystem along the transition pathway.

SOCIAL SUBSYSTEM

—&— Diversity Connectivity
HIGH
¢
MEDIUM
LOW
PRE- TAKE-OFF ACCELERATION STABILISATION
DEVELOPMENT

Figure 5. Development of diversity and connectivity measures in the social subsystem.

Diversity in the technical subsystem: the diversity in the technical subsystem in EWG went from
being dominated by one technology (hydropower) to showing a big diversity when it comes to the
renewable energy technology employed in the region. While balance was low and disparity high at
the beginning of the transition (take-off phase), as the transition process advanced, both stabilized at
medium to high levels.

Connectivity in the technical subsystem: the connectivity in the technical subsystem of EWG was
characterized by high centralization and high average path-lengths (in the sense of transmission
distances between production and consumption) at the beginning of the transition, with no modularity
built in the system. As the transition proceeded, average path-lengths remained at a high level, whereas
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the centralization of the system was undermined by meshing activities and the emergence of prosumer
structures. Modularity stabilized at low levels.

Figure 6 gives an overview of the development of the diversity and connectivity measures in the
technical subsystem along the transition pathway.

TECHNICAL SUBSYSTEM

—&—Diversity Connectivity
HIGH °
MEDIUM
LOW
PRE- TAKE-OFF ACCELERATION STABILISATION

DEVELOPMENT

Figure 6. Development of diversity and connectivity measures in the technical subsystem.

5. Discussion

In this paper, we have taken up the indicator-set proposed by [1] and applied these indicators to
the EWG region in Austria for the 1990-2016 period, which represents the timespan from the very first
initiatives towards renewable energy production in the region, to a situation of stabilisation and can be
seen as potentially being a temporally intermediate state before the next push towards higher shares
in renewables in the future (2016 being the last year with reliable data).

In Reference [1] four ideal-typical situations were derived from a theoretical point of view,
combining extreme values in terms of diversity and connectivity in the both the social and technical
subsystems. A situation with both high diversity and high connectivity was seen to be beneficial for the
progress of an (energy) transition with regard to both the support for the transition in the social sphere
and the embedding of new technologies into the current technical energy system. Mixed constellations
with high diversity /low connectivity and low diversity /high connectivity, respectively, were associated
with incomplete transition processes, where two scenarios are likely:

e High diversity, low connectivity: intermediate state of a transition.
e Low diversity, high connectivity: situation of lock-in, where the lack of integration of central
arenas leads to a blocking of the transition.

Finally, a situation with low diversity and low connectivity is likely to lead to technical, economic
and social governance inefficiencies and is associated with a failing transition.

If we look at the development of the diversity and connectivity indicators over time in the EWG
region, we find that the development in the social and technical subsystems have been running in
the opposite direction. While connectivity and diversity have been high in the social subsystem at
the beginning of the transition process, equivalent to high resilience following [1], connectivity and
diversity were low in the technical subsystem, undermining the resilience of the technical subsystem.
In other words, while actors from very divers social arenas collaborated intensely at the beginning
of the transition process, the technical system was not yet in a state that would have allowed the
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system to withstand major external shocks, for example in terms of declining prices for renewable
energy. Over the course of time, with more people engaged in the energy transitions and the core of
idealistic pioneers cutting back on their engagement, diversity and connectivity of the social subsystem
decreased. Concomitantly, diversity and connectivity in the technical system increased substantially
over the years, with a high potential for a further substantial increase of system connectivity with
changing regulations under way, that would allow for regional prosumer networks in the electricity
system to form.

The current system state can be seen to be at an intermediate state, close to situation sketched
out as case C in Reference [1], with a system-state characterised by medium to high diversity and
medium connectivity levels in both the social and the technical subsystem. Such a system configuration
provides an optimal starting-point for a further development towards a fully renewable energy system
due to the high diversity of production technologies and actors from various social arenas involved in
the transition. At the same time, the sub-optimal connectivity, both with regard to the integration of
big industrial players on the social side as well as the (partially) underdeveloped connectivity on the
technical side, raises questions whether or not a full transition of the system can be achieved. On the
social side, big industry players should be actively approached by local actors to contribute to the
energy transition and collaborate more intensely by for example by actively engaging in the further
development of local district heating systems which could be fed with excess heat from industrial
processes and water treatment. On the technical side, the medium level of connectivity is mainly
due to lagging development of district heating infrastructure, on the one side and a ban on captive
prosumer communities from a regulatory perspective, on the other side. This could be overcome with
appropriate policy adjustments.

References [67,68] present results for a similar region in Germany, based on a comparable
theoretical framework and applying the same set of indicators proposed by [1]. The Allgdu region
investigated in these two studies is characterized by high diversity and medium connectivity levels,
both in the social and the technical subsystems. While connectivity and diversity were measured only
for one specific moment in time, the analysis of supplementary interview data was—just as in EWG—a
major source of information and indispensable in order to understand the drivers and rationales
behind the transition process. In the Allgdu we observed that the progress of the transition came more
or less to a halt after a very dynamic period from 1990-2010, due to both political decisions on the state
level and an unattractive market environment with falling prices for (renewable) energy. Interview
partners pointed to the fact that an increase in connectivity within the social subsystem, involving
additional actors, for example, from the tourism sector and adding complementary management
organisations (e.g., in other cities), would help broaden the support for energy transition issues in the
region. Additionally, the analysis showed that to achieve higher levels of resilience, the connectivity of
the technological subsystem should be enhanced for example by network and technology convergence
(power-to-heat) or the development of regional storage capacities.

In line with the situation in EWG, the resilience of the energy transition in the Allgédu region
can be seen as being rather high but being fundamentally challenged by the broader political system
it is embedded in. While the support for energy transition processes remains high in Austria on
all government levels, the decision taken by the state government in Bavaria has had substantial
repercussions for the implementation of specific measures and especially for the further development
of wind power, in the region.

Overall, the application of the indicator set developed in Reference [1] can help provide
policy-makers with indications how the system in transition is set up, what main factors in both
the social and technical subsystem affect the resilience of the system in a positive or negative way and
which potential problems (e.g., due to lock-in and path-dependencies) have to be tackled in order to
strengthen the resilience of the system. However, one has to consider that indicators can only depict a
part of the system and that for interpreting them the whole system should be taken into account. Thus,
the context and boundary conditions might significantly affect the development of the transition of an
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energy system even though the diversity and connectivity indicators are similar. In addition to these
refinements, we propose to integrate redundancy measures in the specification of overall resilience,
following, that is, [28]. Redundancy measures allow to complement the diversity measures by adding
a functional perspective, that is, the possibility of an actor, or a technology group, to take over the
function of another entity.

Table 6 provides an overview and summarizes the core insights from the analysis and reflection
of the results with regard to the social and the technical subsystem in EWG.

Table 6. Key insights from the analysis of the technical and social subsystem in EWG.

Issue Subsystem Social Subsystem Technical Subsystem
State of Resilience in Medium-to-high diversity, medium High diversity, rped}um connec’glvrfy
. . . (based on quantitative and qualitative
EWG (Source connectivity (based on interview data
. data from energy balance sheet and
of Information) and mental models) . .
interviews)
Place-specific understanc@mg of soc.lal Integration of both electricity and heat
system, based on perception of regional o .
Strength of Approach . - oL system, combination of quantitative
actors, illustration of proximities by -
and qualitative data
means of mental models
Strongly varying balance measures Problems to get data on technical
Weakness of Approach whether we use the Shannon-Eveness system configuration on a regional level,
or the Shannon-Weaver indicator coverage of district heating networks
1(\:4;:;2;‘102%1::1 Get quantified and longitudinal data for ~Integrate prosumer networks, collect
the Fu tugre time-series analysis quantitative data on a regional level

Limitations and Further Research

In the present study, we could show the development of the regional energy system over time
and reflect on its resilience. Nevertheless, data availability and diverging quality of data remains one
major limitation in the context of this study. For the technical subsystem, we could only get reliable
data for the electricity system on the state level but not on the regional level, since the states are still
the administrative units in the technical subsystem, which collect all the relevant data. Regarding the
data for connectivity in the technical subsystem, grid data was only available on the national scale and
only for the most recent years. Hence, a longitudinal investigation based on primary data was not
possible and we had to resort to expert knowledge from the interviews.

Unlike for the technical subsystem, the region was a straight-forward unit of analysis for data
collection regarding the social subsystem. Accordingly, we could grasp a good understanding of the
transition in the social subsystem using different qualitative research methods. Nevertheless, a more
quantified and comprehensive analysis (e.g., conducting a full sample network analysis in combination
with a structured media analysis) would allow for an even deeper understanding of the evolution of
interaction patterns between social agents. In addition, decision-making processes at supra-regional
level could be taken into account in order to get supplementary information on the further (financial)
support of the transition process towards a fully renewable regional energy system.

While previous work suggests that both the diversity and connectivity of a system can change and
has to change over time, allowing for the system to adapt to external changes, there is up to now no
established literature on what levels of both diversity and connectivity are ideal in order to maximize
the resilience of the system throughout the transition.

In other words, while the ideal-typical levels of diversity and connectivity described in the four
cases in Reference [1] apply in general, they might not apply to every moment along the transition
pathway, with strong levels of diversity and connectivity potentially leading to a strong degree of
stabilization of the system that is not desirable, for example, in the take-off and acceleration phase.
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Further empirical research will have to inform the resilience community when high and low levels
of diversity and connectivity, respectively, are desirable in the social and the technical subsystems
along the transition to a fully renewable regional energy system.

Regarding the individual indicators and the calculations we could carry out, a notable difference
could be detected between the Shannon weaver and Shannon evenness indicator. A sensitivity analysis
showed that the Shannon weaver index is highly sensitive to how the technologies are defined. If we
instead of explicitly using the technology groups suggested in the results section use other secondary
electricity sources (e.g., waste, leaching liquid, incineration) as one additional technology group in
our calculations, the Shannon Weaver index decreases from 0.96 to 0.79 in the year 2016. The Shannon
Eveness index, however is much more robust regarding the technology definition, the effect being
however reverse. Here the index increased from 0.39 in to 0.46. Thus, in future studies the balance
indicator needs to be selected carefully, depending on the interest of the study and the results need to
be reflected accordingly.

6. Conclusions

In this paper, we have applied the indicator set developed in Reference [1] to the EWG region
in south-eastern Austria. The empirical application of the theoretically derived indicators allows to
measure the resilience of a socio-technological transition, in this case the transition of the regional
energy sector towards a system based on renewable energy sources. The six indicators allow to
operationalize the key resilience aspects which are diversity and connectivity in both the social and
the technical subsystems.

The region shows medium to high levels of diversity and medium levels of connectivity in the
social and technical subsystems. This corresponds to a situation where the transition towards renewable
energy sources is well underway but the structure of both the social and technical subsystems might
not be fully appropriate (yet) to drive the system towards a fully renewable system state.

In practice, the approach proposed by Binder and colleagues in Reference [1] provides a solid
basis for the analysis of the energy transition in EWG. The measures for diversity and connectivity
could be successfully applied to both the technical and the social subsystems and allowed to retrace
the system’s composition along the transition path-way. Some difficulties occurred in getting all the
required data on a regional level, which was especially the case for some of the indicators in the
technical subsystem. Based on our empirical work in the EWG region, an indicator-based approach to
measure the resilience of a sustainability transition is a promising and important tool for future policy
planning when the goal is to work on a shift of an existing (unsustainable) system status to a more
sustainable one in the energy context.

For a further refinement of the indicators, especially with respect to the technical subsystem,
we propose integrating redundancy measures. Further research would need to specifically take this
factor into account, since the characteristic of diverse actor-groups or technologies being able to
functionally supplement each other may become relevant for the resilience of the overall system in
times of crises of shocks. Redundancy measures would ideally complement diversity measures by
taking into account not only the characteristics but also the functionality of the system components in
both the technical and the social subsystems.

Finally, for further investigation of the resilience of socio-technical systems in transition, it would
be important to have a closer look at the key-actors’ characteristics and abilities which allow for the
transition to proceed while supporting the system’s resilience at the same time. This would apply for
the individual actor level but also for the organisation level and could lead to a reflection on which
roles to attribute to which actors in the different arenas but also at the different phases of the transition
to ensure the resilience of the system undergoing the transition.
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