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Abstract: Inverter-interfaced distributed generators (IIDGs) have been widely applied due to their
control flexibility. The stability problems of IIDGs under large signal disturbances, such as large
load variations and feeder faults, will cause serious impacts on the system. The virtual synchronous
generator (VSG) control is an effective scheme for IIDGs to increase transient stability. However,
the existing linearized stability models of IIDGs are limited to small disturbances. Hence, this paper
proposes a Lyapunov approach based on non-linearized models to assess the large signal stability of
VSG-IIDG. The electrostatic machine model is introduced to establish the equivalent nonlinear model.
On the basis of Popov’s theory, a Lyapunov function is derived to calculate the transient stability
domain. The stability mechanism is revealed by depicting the stability domain using the locus of the
angle and the angular frequency. Large signal stability of the VSG-IIDG is quantified according to the
boundary of the stability domain. Effects and sensitivity analysis of the key parameters including
the cable impedance, the load power, and the virtual inertia on the stability of the VSG-IIDG are
also presented. The simulations are performed in PSCAD/EMTDC and the results demonstrate the
proposed large signal stability assessment method.

Keywords: large signal stability; inverter interfaced distributed generator; virtual synchronous
generator; Lyapunov theory; stability domain

1. Introduction

Inverter-interfaced distributed generators (IIDGs) feature in flexible control and quick response
uses in different application scenarios. However, unlike conventional synchronous generators,
inverters lack inertia [1]. High penetration of IIDGs may result in poor voltage and frequency response,
and even instability with large-scale oscillation, asynchronism, and voltage collapse under large
disturbances [2]. The virtual synchronous generator (VSG) control scheme is an effective solution to the
assigned problem. By controlling the switching pattern of the inverter, the VSG emulates conventional
synchronous generators. The VSG means to provide virtual inertia and additional damping that
can reduce frequency deviations during disturbances [3,4]. The VSG controlled IIDG (VSG-IIDG) is
becoming one of the most prospective renewable sources due to the outstanding features [5].

The stability issues of VSG-IIDGs are categorized into two types: small signal stability and
large signal stability. Small signal stability of IIDG has been relatively perfected using the concept of
synchronous generators in references [6,7]. The study of small signal stability uses the linearized model.
Nyquist or Routh-Hurwitz stability criterion, eigenvalue analysis [8–11], and transfer function [12,
13] are the regular tools to assess the small signal stability. However, the analysis of the small
signal linearized model is only valid around the stable operating point yet not accurate under large
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disturbances. The behavior of VSG-IIDGs under large disturbances should be explored with nonlinear
models of large signal stability. Large signal nonlinear analysis has wider application range and higher
reliability. Besides, the stability domain can be obtained via the study of large signal stability. A large
signal stable system is small signal stable yet the opposite is not true [14].

There are few studies presently on the large signal stability of VSG-IIDG due to various
nonlinear factors [14]. Lyapunov-based methods are commonly used in the analysis of large signal
stability. The main advantage of the methods is that they have a distinct computational performance.
The stability assessment using Lyapunov theory is based on comparing the transient energy at fault
clearing time with the critical energy without developing numerical computer models of the system [15].
Control models based on Lyapunov theory were proposed in references [16,17] for the integration of
distributed generators into the distribution network. A Lyapunov function was established in [18]
to prove the convergence of the proposed VSG control strategy. However, the transient stability
mechanism and performance of VSG-IIDGs under large signal disturbances were not provided.
Reference [19] investigated how transient energy of VSG-IIDG would be stored and released during
disturbances using a Lyapunov function. Nevertheless, these studies address little on the assessment
of large signal stability. The stability domain has not been depicted clearly. A valid Lyapunov function
should be established to determine the stability domain. The mechanism of large signal stability, as well
as the effect of parameters on the stability domain, needs to be further explored. Besides, further
research is needed to establish the mathematical model of the VSG-IIDG for large signal nonlinear
study. Reference [20] adopted the electrostatic machine model to establish the equivalent circuit of the
droop-controlled IIDG. The Lyapunov function in [20] was not applicable to the stability assessment of
the VSG-IIDG, but it provided reference values for the large signal stability study of the VSG-IIDG.

This paper focuses on large signal stability assessment of the VSG-IIDG. The contributions of the
paper are threefold: (1) A nonlinear mathematical model of the VSG-IIDG is established by applying
the equivalent model of an electrostatic machine. This nonlinear model combining both the electrical
parts and control signals can be an analytical tool for the study of large signal stability (2). Based on
Popov’s theory, a Lyapunov function is derived and the stability domain of IIDG is determined.
This Lyapunov-based method has a distinct computational advantage. The stability assessment is based
on comparing the transient energy of the postfault system with the critical energy without developing
numerical computer models of the system (3). The large signal stability mechanism of VSG-IIDGs is
revealed by analyzing the boundary of the stability domain. The boundary of the stability domain
quantifies the magnitude of the deviation that the system can tolerate. The area of the stability domain
reflects large signal stability in an intuitive way. The effect and sensitivity analysis of parameters on the
stability domain are presented. The contributing factors of large signal stability are analyzed.

The sections of the paper are organized as follows: Section 2 analyzes the typical VSG control
scheme of IIDG and establishes the equivalent electrostatic machine model. The nonlinear state matrix
of the VSG-IIDG system is derived in Section 3. In Section 4, a Lyapunov function and the critical
stability energy are figured out. The stability domain is defined accordingly. Simulation is conducted
in Section 5 and the effect of parameters on the stability domain is analyzed.

2. Typical VSG Control Scheme and Its Equivalent Model for IIDG

2.1. The VSG Control Scheme of IIDG

The control scheme of the VSG-IIDG is shown in Figure 1. By controlling the switching pattern of
the inverter, the VSG-IIDG has the dynamic properties of the synchronous generator (Figure 2). Given
the fact that the capacity of the IIDG is much smaller than that of the host grid, the point of common
coupling of VSG-IIDG is equivalent to an infinite bus (similar to single-machine-infinite-bus power
system) and is regarded as a constant voltage source. In order to stress the key findings, the fluctuation
of the renewable energy is ignored and the voltage at the DC-link capacitance is supposed to be constant.
Besides, in order to simplify the analysis, the local load is represented by resistors and inductances.
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Figure 2. Synchronous generator model.

For conventional synchronous generators, the inertia and damping play a significant role in terms
of stability. However, the inner angle frequency of IIDGs is determined by the control scheme. The P-ω
controller implements frequency adjustment in the VSG control [21]. The control function of the P-ω
controller is expressed as Equation (1):{

2H dω
dt = Pre f − Po − k∆ω

∆ω = ω−ωre f
(1)

The P-ω controller imitates the behavior of a conventional synchronous generator and keeps the
VSG-IIDG track the frequency of the host network.

2.2. VSG-IIDG Equivalent Electrostatic Machine Model

The stability assessment for VSG-IIDG depends on the nonlinear models. Andrade proposed the
idea of modeling the inverter as an electrostatic machine [22]. The concept of electrostatic machine
establishes a direct relationship between the DC and AC side of the inverter. This model allows the
further introduction of traditional Lyapunov function and facilitates the analysis.

As shown in Figure 3, the IIDG is modeled as an electrostatic machine which is supplied by the
direct voltage Udc. The electrostatic machine produces an electric field that induces alternating charges
in the armature circuit. “Self” and “mutual” capacitances are included. The rotating reference frame
(DQ0) is applied to link dc-side and ac-side. The electric field magnitude and the speed of the rotation
parameters are related with Udc and the synthesized voltage reference vector

→
g . Briefly, the changes in
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VSG-IIDG are represented by the changes in charges. Further derivation in [22] takes IIDG as a current

source
→
i i with equivalent resistance Req and admittance Xeq relevant to parameters of the inverter:

→
i i =

ωCdc dq
2 Udc − j ωCdcdd

2 Udc

Req =
2dqdd

ωCdc(d2
q+d2

d)

Xeq =
d2

q−d2
d

ωCdc(d2
q+d2

d)

(2)
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We substitute this electrostatic machine model into the IIDG system. The equivalent circuit of the
IIDG system is shown in Figure 4. This equivalent circuit combines both the electrical part and control
signals. It is used as the model for further study on large signal stability.
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3. The Nonlinear Mathematical Model of VSG-IIDG

The equivalent circuit of IIDG system can be described as follows, by using Equation (1):{
2H

dθ2
ig

dt + k
dθig
dt − Pre f + Po = 0

Po = α sin(θig + θα) + β
(3)

where, α, θα and β are related to the parameters of the equivalent circuit in Figure 4. The specific
expression is presented in the Appendix A. Equation (3) can be seen as the expression of Figure 4
in mathematical form. Integrating the electrical parts with control signals, Equation (3) offers a
mathematical model for stability study.

Next, the equilibrium point θs
ig is calculated from (5) when the system runs in a zero-deviation state:

θs
ig = arcsin(

Pre f − β

α
)− θα (4)
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The state equation is normally based on equilibrium points so as to characterize the motion state
of the system and facilitate the analysis of deviation. Define state variable x:

x =

[
x1

x2

]
=

[
θig − θs

ig
∆ω

]
(5)

Then the mathematical model of the IIDG system is transferred from the equilibrium point to
origin point. Hence the state equation in matrix formulation is:

.
x = Ax + b f (σ)
σ = cTx
f (σ) = α

2H [sin(σ + θs
ig + θα)− sin(θs

ig + θα)]

(6)

where, A =

[
0
0

1
−k/2H

]
, b =

[
0
−1

]
, c =

[
1
0

]
.

Equation (6) is the expression describing the relationship between the input and the state of the
IIDG system. The order of state matrix A is one, hence, matrix A is a singular matrix. It has two
characteristic roots. One is zero and the other is −k/2H. The control parameter H and k are greater
than zero, so −k/2H is in the open left half-plane. In order to facilitate the analysis, Equation (6) can be
transformed into the following form through a non-singular transformation by reducing the order of x:

.
x̃ = − k

2H x̃− f (σ)
.
ε = − f (σ)
σ = − 2H

k x̃ + 2H
k ε

(7)

where, x̃ = [0 1]x = x2 = ∆ω.
The VSG-IIDG can be seen as a nonlinear system shown in Figure 5 where the control signals are

tuned through both the nonlinear governor and the linear governor. The nonlinear part corresponds to
the nonlinear function f (σ) in Equation (6).
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Figure 5. Nonlinear VSG-IIDG model.

G(s) = −cT(sI − A) −1b =
1

s(s + k
2H )

(8)

In terms of the linear part, the transfer function G(s) is obtained as in Equation (8). The nonlinear
function f (σ) and the transfer function G(s) are both important in the study of large signal stability.

4. Lyapunov Function Construction and the Stability Domain Determination

In the following sections, the direct method of Lyapunov is applied to study the large signal
stability of the VSG-IIDG. The approach uses a Lyapunov function V(x) to estimate the stability domain
of the postfault system. The precondition is that this Lyapunov function satisfies the Popov’s theory
on stability. The stability domain is defined by an inequality of V(x) < M, where M is a constant
representing the critical stability energy. This method quantifies the extent of the deviation that the
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system can tolerate and features a remarkable computational advantage by simply comparing V with
the critical energy rather than conventional step-by-step methods [15].

4.1. Popov stability Criterion

According to Popov’s Theory, in the system as (7), there exists a finite region of asymptotic stability
if a real number q ≥ 0 exists that:

Re(1 + qjω)G(jw) ≥ 0 (9)

for all ω > 0.
Figure 6 shows a graph drawing G(jw) on the complex plane. The crux of the Popov condition is

to find a straight line of slope 1/q passing through the origin such that the imaginary part of G(jw) lies
categorically under it with points of tangency permitted. In Figure 6, l1, l2, l3 and l4 satisfy the Popov
condition, whereas l5 and l6 do not. There can be many straight lines meeting the condition (the lines
between l1 and l4) and the figure only shows four of them. The different choices of the straight line, or
to be exact, the values of q are related to the conservativeness of the stability analysis.
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Apply the Popov condition to the system whose state equation is shown as (6):

qk
2H − 1(

k
2H

)2
+ ω2

≥ 0 (10)

The inequality holds when q ≥ 2H/k, and we choose q = 2H/k + k2/4H2 as indicated in [23].
Then we can use the q as a parameter to construct a Lyapunov function.

4.2. Lyapunov Function

This paper applies Kalman’s algorithm [24] to construct the Lyapunov function. The algorithm
uses the q as a parameter. Kalman has proved that the Lyapunov function is positive definite with the
semi-negative definite derivative. The Lyapunov function so derived satisfies the Popov condition.

(a) Define the function W(ω) as:

W(ω) = Re(1 + qjω)G(jω)ψ(jw)ψ(−jw) =
k3

8H3 (11)

where:
ψ(s) = det(sI +

k
2H

) = s +
k

2H
(12)
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(b) Factorize W(ω) as: W(ω) = θ(jω)θ(−jω). Hence θ(jω) is:

θ(jω) = −
√

k3

8H3 (13)

(c) Define the leading coefficient of the polynomial in ascending powers when jω = z in θ(jω) a
√

r.
Then define a vector u with its components being the coefficients of the polynomial

√
rψ(z)− θ(z)

in ascending powers. Here the vector u reduces to a scalar in the VSG-IIDG model:

u =

√
k3

8H3 (14)

(d) Figure out the symmetric positive definite matrix B̃ by solving the Lyapunov matrix equation:

− k
2H

B̃− B̃
k

2H
= −uuT (15)

Here the Lyapunov matrix equation reduces to the scalar equation so that:

B̃ =
k2

8H2 (16)

(e) Get the Lyapunov function:

V(x̃, ε, σ) = x̃T B̃x̃ +
1
2

qε2 + q
σ∫

0

f (σ) dσ (17)

To be more intuitive and convenient, the Lyapunov function needs to be transformed in terms of
x. Hence the Lyapunov function of the VSG-IIDG is as follows:

V(x1, x2) =
k

4H x1
2 + (H

k + k2

8H2 )x2
2 + x1x2 + ( α

k + αk2

8H3 )(cos(θs
ig + θα)− cos(x1 + θs

ig + θα)− x1 sin(θs
ig + θα)) (18)

4.3. Lyapunov-Based Large Signal Stability Domain

The stability domain is defined by an inequality of form V(x) < M, where M is a constant
representing the critical stability energy. With a Lyapunov function like (18), reference [25] uses
Lagrange multipliers to define the critical stability energy M. Hence, the critical stability energy M of
stability region is as Equation (19) in the system (6):

M =

[
π−2(θs

ig +θα)
]2

cTb−1c + q
π−2(θs

ig+θα)∫
0

f (σ)dσ

=

[
π−2(θs

ig+θα)
]2

2 ( k4

32H4+4Hk3 ) + ( α
k + αk2

8H3 )[2 cos(θs
ig + θα)− sin(θs

ig + θα)(π − 2(θs
ig + θα))]

(19)

The inequality to find stability domain can be expressed as:

V(x1, x2) < M (20)

Inequality (20) gives an effective way of determining the stability domain. If the operating
points of postfault system satisfy inequality (20), it indicates that the VSG-IIDG is large-signal stable.
The VSG-IIDG system can recuperate and return to the equilibrium stability where x1 = x2 = 0.
The complexity of the stability issue of VSG-IIDGs lies in two aspects. First, the VSG control is realized
by power electronic devices, hence the features of inverters should be considered. Besides, the VSG
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emulates the behavior of a synchronous generator. The stability problems similar to conventional
synchronous generators will definitely be involved [26]. Inequality (20) takes both of them into
consideration. The impact of control parameters has been reflected in the coefficients. The stability
domain can be depicted by solving the equation V(x1, x2) = M.

Table 1 presents the steps of determining whether a postfault IIDG system is large signal stable
based on stability domain. First, the electrical and control parameters is given to establish the IIDG
model. Then, the output power is obtained as Equation (27) and the equilibrium point is figured out
according to Equation (4). The equilibrium point is used to derive the state equation and obtain b and
c in Equation (6). Therefore, the Lyapunov function can be established as Equation (18), and the critical
stability energy M of the stability region is calculated according to Equation (19). Then compare the
value of the Lyapunov function with the critical M. Smaller function value indicates that the IIDG
system is large signal stable.

Table 1. Rules and steps of the stability domain determination.

Step 1 Input the parameters: voltage, current, control parameters as H, k, etc.
Step 2 Obtain the expression of output power as Equation (27)
Step 3 Calculate the equilibrium point as Equation (4)
Step 4 Establish Lyapunov function V(x1, x2) as Equation (18)
Step 5 Figure out the critical stability energy M as Equation (19)
Step 6 If V(x1, x2) < M, the system is large signal stable

5. Study Cases

5.1. Parameters of the Simulation Case

Simulations are performed in PSCAD/EMTDC to evaluate the large signal stability of the
VSG-IIDG system. The topology and control scheme of the VSG-IIDG system is shown in Figures 1
and 2. Parameters of the VSG-IIDG and the interconnected network are listed in Table 2. A solid
three-phase line-to-ground fault of happens in the middle of the transmission line at 3 s.

Table 2. Parameters of the VSG-IIDG and control system.

Parameters Value

DC voltage Udc 1 kV
DC capacitance Cdc 100 µF

Filtering capacitance Cac 400 µF
Filtering impedance L f 1 mH

AC voltage Ug 311 V
Resistance of cable RL 0.2 Ω
Reactance of cable LL 1 mH

Power of load PD + jQD 300 kW + j100 kVar
Virtual inertia H 0.15
Damping factor k 0.01

According to Equation (4), the equilibrium point of VSG-IIDG is:

θs
ig = 0.6756 (21)

Substitute the above data for Equation (6), and the state equation of the IIDG system yields as:
dx1
dt = x2

dx2
dt = −0.133 f (x1)

f (x1) = 1.2346[sin(x1 + 1.5442)− sin(1.5442)]
(22)
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5.2. Large Signal Stability Analysis of the VSG-IIDG

The metallic short-circuit fault happens in the middle of the cable at the time of 3 s and is cleared
after variable time delays. Once the fault is cleared, ∆ω and θig deviate from the equilibrium point at
various degrees (different values of x1 and x2). It means operating points with different values of the
Lyapunov function V(x1, x2).
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Figure 7 shows the contour plots of the Lyapunov function of operating points with different ∆ω

and θig. Deviating from the equilibrium point at various degrees, the values of the Lyapunov function
are diverse. For the points inside the stability domain, the value of the Lyapunov function is under the
critical value M, which indicates that the system is asymptotic stability when operated in these points.
Figure 8 shows that the stability domain is in a conical type. Whichever disturbance that has angular
frequency and angle limited in the taper can recuperate the system.
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Figure 8 shows the operational trajectories of five stable points (p1–p5) whose Lyapunov function
value is less than the critical value M. The abscissa axis of time starts after the fault is cleared. These
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curves display the deviation of angular frequency and angle from a disturbance condition. It can be
observed that after the fault is cleared, these operational trajectories tend to the equilibrium points
where ∆ω = θig = 0. Even though these operational trajectories deviate from the equilibrium point at
various degrees, as time pass by, the system finally runs in a zero-deviation state.

When it comes to the unstable operating points, it is quite different. Take an unstable point m
and a stable operating point n as example. The point m comes when the fault is cleared at 3.15 s and
the deviation ∆ω = 11.5, θig = 0.56. While the point n comes when the fault is cleared at 3.1 s and
the deviation ∆ω = 0.75, θig = −0.1. As shown in Figure 7, the Lyapunov function values of point m
and n are on the different sides of the contour plane of the critical stability energy M. The Lyapunov
function value of point n is smaller than the critical stability energy M, which indicated it is inside the
stability domain. However, the Lyapunov function value of point m is greater than the critical stability
energy M and it is an unstable point.

Figure 9 shows the comparison of simulations of the unstable point m and the stable operating
point n. Due to different fault clearing time of these two points, the extent of disturbance varies
(different values of ∆ω and θig). As Figure 9a shows, the operational trajectory of the stable point
n experiences damped oscillations before reaching the equilibrium stability where ∆ω = θig = 0.
The angular frequency gets slowly back to the reference value and the angle difference between
the VSG-IIDG and the network reduces to zero. However, the trajectory of the unstable point m is
divergent and of extreme volatility. Even when the fault is cleared, the angular frequency can’t keep in
synchronism. The system can’t recuperate and tends to instability. The simulations shown in Figure 9
verify the analysis results.Energies 2018, 11, x FOR PEER REVIEW  11 of 16 
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5.3. The Impact of Parameters on the Stability Domain

The cable impedance, load power, and virtual inertia have a significant influence on the stability
of VSG-IIDG [27,28]. The stability domain with different parameters will be explained in the next
sections. The stability domain is determined by the boundary of the equation V(x) = M. The boundary
quantifies the extent of disturbances that the VSG-IIDG system can endure. In the simulation, only one
parameter is changed and the others are kept the same in different scenarios.
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Figure 10a depicts the impact of the impedance of cable ZL (RL + jXL) on the stability domain.
As impedance decreases, the stability domain expands in the ratio of equality. The increase in
impedance means the connection between the IIDG and the network is less. When the supporting
function of the network is weakened, the IIDG system is apt to instability.
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Figure 10b shows the change of the stability domain when load power PD decreases. When load
power decreases, the stability domain tends to increase. This is due to the fact that a larger load
power adds more burden to the system. This is similar to the power angle stability of conventional
synchronous generators, where lower power causes relative increase of the acceleration area and
out-of-step situations will be rare.

The effect of different virtual inertia H on the stability domain is shown in Figure 10c. As the
virtual inertia increases, the stability domain is prone to be smaller. What’s more, the shrink doesn’t
happen in the ratio of equality. The shape of boundary changes and a peak appears.

Figure 10c shows that the rising virtual inertia has a negative effect on the large signal stability
of the VSG-IIDG. In large signal stability of conventional synchronous generators, the change of
inertia does not contribute to the change of the stability boundary [29]. However, it’s not the case in
the VSG algorithm and Figure 10c witnesses a marked distortion of the stability domain as virtual
inertia increases.

It should be noted that the rising virtual inertia will also slow down the response speed of the
IIDG system since it can be seen as an integration constant. Hence the rising virtual inertia leads
to a decrease not only in the distance between an operating point and the stability boundary but
also the speed running from this point to the boundary. When the distance and speed are reduced
simultaneously, it’s not sure whether the time duration will be shortened or not. That means, the critical
cleaning time of the fault may not decrease even with a large virtual inertia (a smaller stability domain),
since the response speed of the IIDG system is slow and there is still enough time to diagnose and
handle the fault.

Table 3 presents the stability of the VSG-IIDG with different values of load power, cable impedance,
and virtual inertia when the clearing time is 0.1 s. As shown in the table, when active power of local
load increases, the IIDG system tends to instability. When load power and control parameter H remain
unchanged, the IIDG system is unstable with larger cable impedance. Also, when the inertia is too
large, the stability of the system goes from stable to unstable. The results show in Table 3 indicate
that the IIDG system is apt to be unstable with larger load power and cable impedance or smaller
virtual inertia.
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Table 3. Stability of the VSG-IIDG with different PD , ZL, and H.

Load Power PD(MW) Cable Impedance ZL (Ω) Virtual Inertia H Stability

0.3 0.2 + j0.314 0.15 stable
0.6 0.2 + j0.314 0.15 stable
1 0.2 + j0.314 0.15 unstable

0.3 0.5 + j0.785 0.15 stable
0.3 1 + j1.57 0.15 unstable
0.3 0.2 + j0.314 0.5 stable
0.3 0.2 + j0.314 2 unstable

5.4. Sensitivity Analysis of Parameters

Investigation of the large signal stability by ad hoc variations of the parameters is challenging,
especially when several parameters act at the same time. Sensitivity analysis is helpful in identify
which parameter should be modified in an easier way. Such studies are of high importance, considering
the assessment of large signal stability in different scenarios with large expected variations in grid
configurations, operating conditions, and system parameters.

This paper draws on the experience of transient stability analysis in conventional power
system [30]. The sensitivity analysis of the load power, cable impedance, and virtual inertia on
the stability domain area is performed. The definition of the sensitivity ksen is in partial differential
equation as:

ksen =
∂Sd
∂y

(23)

where, Sd is the area of stability domain, y is the parameter to be analyzed (load power PD, cable
impedance ZL, and virtual inertia H). The results are shown in Table 4, respectively.

Table 4. Sensitivity of the stability domain area to PD , ZL, and H.

PD (MW) 0.1 0.3 0.5 0.7 0.9
Sensitivity −4.991 −4.981 −4.701 −4.687 −4.295

ZL (Ω) 0.2 + j0.314 0.4 + j0.628 0.6 + j0.942 0.8 + j1.256 1 + j1.57
Sensitivity −5.661 −5.508 −5.138 −4.037 −4.011

H 0.1 0.5 1 1.5 2
Sensitivity −1.980 −2.256 −3.007 −4.751 −5.124

It can be seen that the stability domain is mainly sensitive to load power, cable impedance,
and virtual inertia. The sensitivity does not change a lot when different values of load power and cable
impedance are adopted. When virtual inertia is kept at a small value, the area of stability domain
changes slowly as inertia varies. It should be pointed out that only the virtual inertia can be modified to
improve the stability of a control strategy. The load power and cable impedance cannot be influenced
by the control. However, the load power and cable impedance can be selected within the proper range
during the design of the system.

6. Conclusions

This paper assesses the large signal stability of the VSG-IIDG and derives the boundary of the
stability domain:

(1) The nonlinear mathematical model of the VSG-IIDG is established. The equivalent model of
electrostatic machine is applied. Both the electrical parts and control signals are taken into
account. This nonlinear model can be an analytical tool for the study of large signal stability.
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(2) A Lyapunov function is derived based on Popov’s theory to determine the stability of IIDG. By
comparing the transient energy of the post-fault system with the critical energy, this Lyapunov-based
method has a distinct computational advantage.

(3) The stability domain is depicted and the large signal stability mechanism of VSG-IIDGs is
revealed. The stability domain quantifies the magnitude of the deviation that the system can
tolerate. The impacts and sensitivity analysis of parameters on the stability domain are presented.
The results indicate that large disturbances may lead to instability of the VSG-IIDG with deviation
and oscillation of angular frequency. The VSG-IIDG tends to instability with larger load power
and cable impedance or smaller virtual inertia.

The study contributes to the further studies of large signal stability. The results have great
significance for the design, operation, and planning of the VSG control scheme. What’s more,
the analysis of transient process and mechanism of the VSG is helpful in further research on protection
and fault analysis.
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Nomenclature

θi the power angle of the IIDG
θig the power angle difference between θi and θg

θs
ig the equilibrium point

θg the power angle of the common coupling point of VSG-IIDG
ω virtual angular frequency
ωre f angular frequency reference
∆ω the angular frequency difference between ω and ωre f
Cac,XC, YC filtering capacitance of VSG-IIDG and the relative reactance and admittance
Cdc capacitance of the DC link of VSG-IIDG
H virtual inertia of the VSG-IIDG
LL,RL,XL,YL,ZL inductor, resistance, reactance, admittance, and impedance of the cable
L f ,X f ,Yf filtering inductor of VSG-IIDG and the relative reactance and admittance
M critical stability energy
PD,QD,RD,XD,YD active power, reactive power, equivalent resistance, reactance, and admittance of the local load
Po output active power measurement of the IIDG
Pre f active power reference of the IIDG
Req,Xeq,Yeq the equivalent resistance, reactance, and admittance of the equivalent IIDG current source
Sd the area of stability domain
Udc voltage at the DC link of VSG-IIDG
Ug voltage at the point of common coupling
dd,dq average values of voltage modulation for the duty cycle in d and q axis
→
g the synthesized voltage reference vector in VSG control
k the damping factor of VSG-IIDG
ksen the sensitivity
q Popov coefficient
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Appendix

In Figure 4,
→
i i and

→
i g are the equivalent current source of the IIDG and the DN. θig is the difference of

the angle: 
→
i i = ii∠θi→
i g =

→
UgYL = ig∠θg

θig = θi − θg

(A1)

Yf and YC are the admittances of LC filter. YL is the admittance of transmission line. YD and Yeq are the
equivalent admittance of load and IIDG. The expressions are:

Yf = (jX f )
−1

YC = (−jXC)
−1

YL = (RL + jXL)
−1

YD = (RD + jXD)
−1

Yeq = (Req + jXeq)
−1

(A2)

The output voltage of IIDG V can be expressed as:

V = Ym
→
i g + Yn

→
i i (A3)

where:

 Ym =
Yf +Yeq

Yf YL+YLYeq+Yf YC+YCYeq+Yf YD+YDYeq+Yf Yeq

Yn =
Yf

Yf YL+YLYeq+Yf YC+YCYeq+Yf YD+YDYeq+Yf Yeq

.

Hence, the output power of the VSG-IIDG Po in Figure 5 can be expressed as:

Po = α sin(θig + θα) + β (A4)

where:


α = ‖Ym

∗YnYL
∗ −YmYn

∗YL
∗ + Yn‖iiig

θα = π
2 −∠(Ym

∗YnYL
∗ −YmYn

∗YL
∗ + Yn)

∗

β = Re[(‖Ym‖2Y∗L + ‖Ym‖2Y∗D −Ym)i2g + ‖Yn‖2(Y∗L + Y∗D)i
2
i ]

.
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