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Abstract: In this paper, a combined cooling, heating, and power (CCHP) system with thermal storage
tanks is introduced. Considering the plants’ off-design performance, an efficient methodology is
introduced to determine the most economical operation schedule. The complex CCHP system’s state
transition equation is extracted by selecting the stored cooling and heating energy as the discretized
state variables. Referring to the concept of variable cost and constant cost, repeated computations
are saved in phase operating cost calculations. Therefore, the most economical operation schedule is
obtained by employing a dynamic solving framework in an extremely short time. The simulation
results indicated that the optimized operating cost is reduced by 40.8% compared to the traditional
energy supply system.
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1. Introduction

Combined cooling, heating, and power (CCHP) systems follow the principle of cascade utilization
of energy with high energy efficiency and have become a major research focus [1–6]. It is verified that
operation optimization can improve their performance to some extent [7–10]. However, fluctuating
energy demands might not always fall within the high efficiency region of CCHP systems [11,12].
Satisfactory operation cannot be achieved easily without energy storage units, which can facilitate
high-efficiency CCHP system operation and increase the energy conservation rate by approximately
21% [13]. Meanwhile, the introduction of energy storage units makes CCHP system optimization very
difficult [14,15].

The most common operating strategy is based on following the electric loads or following the
thermal loads [16,17]. Current studies solve the optimal operating strategy of CCHP systems with
storage units in the following way: the outputs of different pieces of equipment in each stage are taken
as equivalent optimization variables, which are limited by the plant capacity and energy balance. After
setting an objective function, various kinds of algorithms are applied with the objective of seeking
the optimal operating schedule. The current studies can be separated into the following two general
categories based on their algorithms.

Nearly half of the published research papers employ intelligent optimization algorithms, which
are mainly genetic algorithms (GAs) and particle swarm optimization (PSO) algorithms, to solve the
CCHP system operation optimization problem. Wang et al. employed GA to optimize an electric
load-following operating strategy of a CCHP system [18]. Zeng et al. employed GA to determine
the optimal operating solution of a CCHP system combined with ground source heat pumps [19].
Wang et al. built a two-time scale optimized model of a CCHP system, and an improved PSO
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algorithm is proposed [20]. Considering the co-optimization issue of CCHP system with ice-storage
air-conditioners, Bao et al. introduced the Improved PSO algorithm to the solution of the day-ahead
operating schedule [21].

Numerous examples of linear programming (LP) applications to CCHP system operation
optimization can also be found. Shaneb et al. purposed an optimal online operation of residential
CCHP systems using LP [22]. Bischia et al. built a detailed nonlinear CCHP system model, which was
piecewise approximated as several linear models, and introduced mixed-integer linear programming
(MILP) to optimize the operating schedule [23]. Gu et al. built a prediction control model of a CCHP
system; its prediction errors and system deviations were corrected online by rolling optimization, and
the dispatch schedule in each step of the rolling optimization was determined by using MILP [24].
Luo et al. proposed two-stage optimization and control structure of the CCHP system, and employed
MILP to search the operating schedule [25].

GA, PSO, and MILP can easily optimize the CCHP system operation as long as storage units
are not introduced. However, the operation optimization of CCHP systems with storage units is
more complex than that of systems without storage units [26], and the methods mentioned above
cannot handle the optimization of such systems adequately. Difficulties arise not only from the
numerous optimization variables corresponding to each stage, but also because of the correlation
between adjacent stages due to the existence of storage units [27]. To be more specific, the energy
storage state of each stage depends on the energy supply of the previous stage, whereas the energy
supply of each stage is influenced by its current energy storage. To describe the correlation between
the adjacent stages, complex constraints must be applied.

Hence, it is not certain that GA or PSO can provide optimal solutions. This conclusion is derived
from the fact that different results are obtained for the same problem when they are applied repeatedly.
MILP is improved to be efficient when the optimization model is considered to be linear. However, to
the best of our knowledge, there is no linear CCHP system that has already been developed, so the
piecewise linearity model is constantly used when considering off-design performance. As a result,
the computation load is large.

Very few studies have employed dynamic programming in CCHP system operating optimization.
Facci et al. applied dynamic programming to a no-storage CCHP system. Considering that generator
restart would require extra cost, the generator status in terms of starting and stopping was set as a
0–1 state variable and dynamic programming was employed [28]. Based on previous work, Facci
et al. built a CCHP system with storage units. Considering the off-design performance, a dynamic
model was established. To reduce the difficulties of the non-linear optimizing problem, dynamic
programming combined with meta-heuristic optimization is applied [29].

Their study represented a rare example of the application of dynamic programming to CCHP
system operation optimization. However, existing studies maintain a relatively simple system structure.
The computation will increase significantly as more plants are introduced, particularly storage units.
Further research on dynamic programming applications should be conducted for CCHP systems with
complex structure.

In summary, the operation optimization of CCHP systems with storage units should be solved
dynamically. Traditional methods such as PSO, GA, and MILP cannot be utilized to tackle it successfully.
By resolving the dynamic problem in stages, a dynamic solving framework is created. The computation
reduction in complex systems needs significant research, though the prospect of dynamic programming
has been confirmed preliminarily.

In this paper, a common CCHP system is proposed. The electric demand is supplied by a power
generation unit (PGU) and the power grid. The excess electricity can be sold back to grid. The
recovered thermal energy is used to satisfy heating and cooling demands. In addition, two separate
heat pumps can also be used to satisfy the thermal demands. The difference between thermal the
energy demand and supply can be offset using the thermal storage tanks. The state transition equation
is extracted according to the dynamic relationship of the energy storage. A dynamic optimization
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is proposed to determine the most economical operating schedule. The CCHP system operating
optimization is divided into small static problems based on the framework of dynamic programming.
The economical concept of variable cost and constant cost are introduced to solve static problems,
which can be expressed by the same mathematical model and then solved by the same method with
very few computations. As the day-ahead optimization simulation shows, significant improvements
over the traditional energy system have been achieved.

2. CCHP System Modeling

The structure and energy flux of the CCHP system are depicted in Figure 1. The power generation
unit (PGU), which is connected to the grid, consumes natural gas to generate electricity and thermal
energy simultaneously. The exhaust heat exchanger transfers heat from the exhaust gas to jacket water.
The absorption chiller recovers energy from the jacket water to produce cooling water. Similarly, the
domestic hot water heat exchanger recovers energy from the jacket water to produce domestic hot
water. The chiller and exchanger are assisted by separate heat pumps. The thermal storage tanks
store extra energy and supply it when necessary. In winter, the cooling demand changes to a space
heating demand and the original cold storage tank is employed to store heating water. Meanwhile, the
absorption chiller functions as a normal heat exchanger to satisfy the heating demand associated with
the corresponding heat pump. It must be noted that each of the operations of the equipment obeys the
solution for operating optimization.

Figure 1. CCHP system.

2.1. State Transition Equation of CCHP System

The components enclosed within a rectangle with dashed borders in Figure 1 constitute the critical
section of this system. The state transition equation of the dynamic relationships of the production,
load, and stored energy between the kth hour and (k + 1)th hour can be expressed as follows:

 Hs(k + 1)

Cs(k + 1)

 =

 ηh 0

0 ηc

·
 Hs(k)

Cs(k)

+

 1

0

1

0

0 0

1 1

·


Hexc(k)

Hpumph(k)

Cbr(k)

Cpumpc(k)

−
 1 0

0 1

·
 Hload(k)

Cload(k)

 (1)

f (k + 1 ) = f (k) + v(k) (2)

where ηh is the heat storage efficiency, which represents the proportion of thermal energy remaining
after one dissipation stage, and ηc has a similar physical significance; Hs and Cs represent the quantities
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of stored heating and cooling energy, respectively. The heating and cooling contribution of heat pump
are signified as Hpumph and Cpumpc, respectively. Cbr and Hexc are the chiller and exchanger outputs,
respectively. Hload and Cload are heating and cooling energy demands, respectively. f is the total
operating cost and v is the phase cost.

Equation (1) is the core of this paper, based on which the dynamic solving framework is established.
Therefore, the huge dynamic problem of CCHP system operating optimization is dynamically broken
up into smaller static problems. The operating cost function v is the key of static problem, which will
be discussed in chapter three.

2.2. Plant Modeling

The PGU is a gas-fired small internal combustion generating set, whose data is listed in Table 1.

Table 1. Performance of a small naturally aspirated internal combustion engine generator [9].

PLR ηi ηg pj pe pl

0.000 0.0000 0.0000 0.5628 0.2764 0.1608
0.100 0.1020 0.7700 0.5227 0.2955 0.1818
0.200 0.1809 0.7800 0.5031 0.3006 0.1963
0.300 0.2250 0.8200 0.4903 0.3097 0.2000
0.400 0.2637 0.8400 0.4865 0.3108 0.2027
0.500 0.2871 0.8600 0.4861 0.3125 0.2014
0.600 0.3085 0.8750 0.4892 0.3237 0.1870
0.700 0.3184 0.8850 0.4818 0.3285 0.1898
0.800 0.3184 0.9000 0.4745 0.3285 0.1971
0.900 0.3039 0.9100 0.4507 0.3169 0.2324
1.000 0.2886 0.9200 0.4336 0.3147 0.2517

Note: PLR is the load rate, and ηg and ηi are the efficiencies of the generator and internal combustion engine,
respectively. pj and pe are the energy ratios corresponding to the jacket water and exhaust, respectively. pl represents
the heat loss rate.

Taking ηre and lrj as the exhaust heat exchanger efficiency and the dissipated thermal energy ratio
of jacket water in heat exchanging process, respectively, the waste heat recovery ratio ηrw is given by:

ηrw =
(
1− ηpgu

)
·
[(

1− lrj
)
·pj + ηre·pe

]
(3)

The recovered waste heat Hr is used to drive the absorption chiller and domestic hot water heat
exchanger, whose efficiency are ηbr and ηexc, respectively. The contribution of the absorption chiller
and heat exchanger are Cbr and Hexc, respectively. The chilling and heating coefficient of performance
(COP) of the electric heat pump are COPc and COPh, respectively. The heating and cooling contribution
of heat pump are Hpumph and Cpumpc, respectively. The consumed electricity of heat pump is Epump.

3. Methodology

3.1. Optimal Operation Model

The optimization of a CCHP system with storage units is dynamic in nature. Thus, the solution
framework is based on dynamic programing. The state variable selection is the most important step in
dynamic programing. Energy storage should be chosen because it serves as a link between adjacent
stages (see Equations (1)). Thereupon, the optimization model can be established. The state variable
discretization is as follows.

sk (Hs, Cs) denotes the heating and cooling energy storage of stage k, where 0 ≤ Hs ≤ Nh and
0 ≤ Cs ≤ Nc. Nh and Nc are the capacities of the heating and cooling storage tanks, respectively. After
setting m and n, sk can be discretized into (m + 1)·(n + 1) state points. The state point sk

(
p Nh

m , q Nc
n

)
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can be expressed simply as sp,q
k , where 0 ≤ p ≤ m, and 0 ≤ q ≤ n. The set of sp,q

k is expressed as
sk . Larger m and n lead to more accurate discretization and more state points.

According to the discretization described above, sk is arrayed as depicted in Figure 2.

Figure 2. Arrangement of sk.

uk

(
sp,q

k , si,j
k+1

)
represents the optimal operation solution of the CCHP system for transferring

sp,q
k to si,j

k+1. The corresponding cost is expressed as vk

(
sp,q

k , si,j
k+1

)
. The method to solve uk and vk is

proposed in Section 3.3.
The shortest path model of the CCHP system operation optimization problem is as shown in

Figure 3. The energy storage in each stage corresponds to a point set sk+1 . Based on the state point sp,q
k

selected in the previous stage, the path from sp,q
k to si,j

k+1 has a unique length expressed as vk

(
sp,q

k , si,j
k+1

)
.

The minimum cost of the CCHP system operating schedule is represented by the length of the shortest
path from s1 to sN+1.

Figure 3. Shortest path model.

The shortest path problem of CCHP system operation can be described as follows. The oriented
graph in Figure 3 is represented as D = (S, A), sp,q

k and si,j
k+1 (the state points of adjacent stages)

are joined by an oriented arc a
(

sp,q
k , si,j

k+1

)
, and the weight of the arc is represented as v(a), where

v(a) = vk

(
sp,q

k , si,j
k+1

)
. If there is no arc joining sp,q

k and si,j
k+1, then vk

(
sp,q

k , si,j
k+1

)
is set to +∞. Suppose

P is a path of D from the initial point s1 to the end point sN+1, and define the weight of P as the
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sum of each arc in P, represented as v(P). The objective of this shortest path problem is to find the
minimum-weight path P0 among all of the paths P from s1 to sN+1, where:

v(P0 ) = min
P

v(P) (4)

P0 is the shortest path from s1 to sN+1. The weight of P0 is the distance from s1 to sN+1, represented
as f (s1, sN+1). For CCHP system operation, f (s1, sN+1) is the minimum operating cost. Thus, the
optimization problem can be solved by finding P0.

3.2. Shortest Path Determination Based on Dynamic Programming

The shortest path search is a multi-stage decision problem. The optimality principle was
developed particularly to solve this kind of issue. Moreover, dynamic programming is proposed by
transforming the multi-stage process into single stages. The result obtained by dynamic programming
is certain to be optimal due to optimality principle. The best methods recognized for solving the
shortest path problem involve dynamic programming without exception. The diagram of the dynamic
programming flow used in this paper is provided in Figure 4.

Figure 4. Dynamic programming flow diagram.

The shortest path P0 from s1 to sN+1 always starts from s1, passing through one state point si,j
N , and

finally arriving at sN+1. According to the optimality principle, the path from s1 to si,j
N is the shortest.

Hence, the dynamic programming equation of this model is obtained as:

fN+1 (P0) = fN+1(s1, sN+1) = min
i,j

{
fN

(
s1, si,j

N

)
+ vN

(
si,j

N , sN+1

)}
(5)
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Using s∗k−1 to signify the optimal state point selected from sk−1, a more general expressions can
be derived as:

fk

(
s1, si,j

k

)
= min

i,j

{
fk−1

(
s1, sp,q

k−1

)
+ vk−1

(
sp,q

k−1, si,j
k

)}
= fk−1

(
s1, s∗k−1

)
+ vk−1

(
s∗k−1, si,j

k

)
(6)

and:
f1(s1, s1 ) = 0 (7)

As shown in Equations (6) and (7), forward dynamic programming is applied. This problem is
solved step by step. Meanwhile, the shortest distance and path selection are recorded. The optimization
problem is solved when fN+1(s1, sN+1) is obtained.

In addition, as can be seen in Figure 2, larger m and n lead to larger sk. To reduce the amount
of unnecessary calculations, the discretization is separated into two steps. Firstly, the energy storage
is discretized with rough accuracy and dynamic programming is applied to search the shortest path.
Secondly, the energy storage is discretized with precise accuracy near the path obtained in the first
optimization. The second optimizing result is precise to 1 kW·h.

3.3. Static Problem: Analysis of Stage Cost

The static problem is searching for the minimum cost resulting from the state transition. In other
words, its objective is to determine vk

(
si

k, sj
k+1

)
according to state points sk (Hs, Cs) and sk+1 (Hs, Cs).

According to Equation (1), the heating and cooling production of stage k can be represented
by the energy storage of stages k and k + 1. Based on the required energy production, the most
economical dispatch strategy and its corresponding cost can be determined by referring to the operation
optimization of a no-storage CCHP system, which is a static problem. Although LP, GA, and PSO can
be employed, it is time consuming to calculate the static problems repeatedly in dynamic programming.
In this section, the operating cost is solved without any optimizations by introducing the concept of
variable cost.

The operating cost of a CCHP system consists of electricity and gas costs. The stage cost v can be
calculated as follows:

v = Eprice ·Egrid + Gprice·G (8)

where G is the consumed natural gas and Gprice is the gas price. The amount of electricity received
from the power grid is given by:

Egrid = Eload − Epgu +
Hpumph

COPh
+

Cpumpc

COPc
(9)

For the given state points sk (Hs, Cs) and sk+1 (Hs, Cs), the total heating and cooling demand, H
and C, respectively, are fixed.

Based on the modeling of the PGU and exhaust heat exchanger given in Section 2.2, Epgu and G
can be fitted as polynomial functions of Hr. The required data are listed in Tables 1 and 2. Because Hr

is the function of Cbr and Hexc, the conclusion can be drawn that both Epgu and G are functions of Cbr
and Hexc. Hence, v can be represented as a function of Cbr and Hexc. Referring to the economics, the
operating cost consists of constant cost v′ and variable cost ∆v:

v = v′ + ∆v (10)

Assume that all of the heating and cooling energy is provided by the heat pump and that the
electrical load is supplied by the power grid. The constant cost v′ is determined by Eprice, Eload, H and
C. In other words, v′ cannot be optimized:
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v′ = Eprice ·
(

Eload +
H

COPh
+

C
COPc

)
(11)

Starting the generator results in an extra gas cost, while the produced power offsets the power
bought from the grid. The variable cost ∆v represents the change in cost resulting from generator
operation at different power levels:

∆v = Gprice ·G(Cbr, Hexc)− Eprice·
(

Epgu(Cbr, Hexc) +
Hexc

COPh
+

Cbr
COPc

)
(12)

The domain of this function is:
0 ≤ Hexc ≤ H
0 ≤ Cbr ≤ C.

(13)

v′ has no relationship with Cbr and Hexc. To determine the minimum stage operating cost v,
attention should be paid to ∆v, which is a function of Cbr and Hexc. Hence, the essence of static
problems is searching for the minimum value of ∆v. According to the expression for ∆v, Eprice is the
most influential parameter. Its influence is shown in Figure 5. For clarity, Cbr and Hexc are combined
into Hr.

Table 2. CCHP system plants parameters [30,31].

Parameters Values

Generator capacity Npgu 90 kW
Efficiency of domestic hot water heat exchanger ηexc 0.95

Rated efficiency of absorption chiller ηbr 0.8
Efficiency of exhaust heat exchanger ηre 0.8

Energy loss ratio of jacket water in exhaust heat exchanger lrj 0.2
Heating value of natural gas Q 35,500 kJ/m3

Price of natural gas Gprice 2 ¥/m3

According to the expression for ∆v, Eprice is the most influential parameter. Its influence is shown
in Figure 5. For clarity, Cbr and Hexc are combined into Hr.

Figure 5. Relationship between Hre and ∆v for different Eprice.
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When Eprice is 1.1 ¥/(kW·h), all of the heating and cooling is supplied by the absorption chiller
and domestic hot water exchanger. When Eprice is 0.7 ¥/(kW·h), the heat recovery of 144.7 kW·h
corresponds the most economic operating strategy. When Eprice is 0.4 ¥/(kW·h), the heat recovery of
123 kW·h corresponds to the peak efficiency of the generator. The generator should work to ensure
that the ∆v as small as possible, so long as ∆v is negative. Otherwise, it is more economical to stop the
generator when the efficiency is low.

Epgu, Hpumph, and Cpumpc can be determined based on Hexc and Cbr. Hence, the optimal dispatch
strategy can be described as u (Cbr, Hexc, Epgu, Hpumph, Cpumpc). The operating cost v is also obtained.
By referring to the concept of constant cost and variable cost, thousands of repeated computations can
be eliminated.

4. Case Study

4.1. Load Description and Basic Data

The energy demands can be obtained from [29,32]. The building was simulated using EnergyPlus
(5.0.0.035). The description of the simulated building is given in Table 3. For our test case, we selected
two typical days in summer and winter, as reported in Figure 6.

Figure 6. Energy demand time traces.
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Table 3. Description of the simulated building [32].

Parameter Data

Location Baltimore
Area 4014 m2

Volume 11,622 m3

Gross wall area 1695 m2

Window glass area 184 m2

Lights (on average) 16.10 W/m2

Elec plug and process (on average) 12.16 W/m2

People 254 people

In addition, there is no cooling load in winter. Instead, extra hot water is required by the central
air-conditioning system to keep the dormitory warm. This part of the hot water is separated from
that consumed by bathing and so on. The cooling storage tank is employed to store this part of the
hot water.

The electricity price (in Yuan ¥) per hour refers to [33]:

Eprice (k) =


0.4(k = 1, 2, 3, 4, 5, 6, 24)
0.7(k = 7, 11, 12, 13, 14, 15, 16, 17, 23)
1.1(k = 18, 19, 20, 21, 22)

. (14)

The CCHP system parameters are listed in Table 4.

Table 4. Constant parameters of the CCHP system [30,31].

Parameters Values

Rated COP for electrically driven
heat pump COPh, COPc

3

Cold storage coefficient Cd 0.97
Heat storage coefficient Hd 0.95

Capacity of heat storage unit Nh 150 kW·h
Capacity of cold storage unit Nc 120 kW·h
Rated power of generator Prated 90 kW

Capacity of absorption chiller Nbr 100 kW

The parameters of a traditional energy system are listed in Table 5. The heating load is supplied
by a gas boiler, the electrical load is supplied by the power grid, and the cooling load is supplied by an
electrically driven air conditioning system.

Table 5. Constant parameters of a traditional energy system [9].

Parameters Values

Efficiency of Power Plant 0.35
Efficiency of power transmission 0.92

COP of electrically driven air conditioning system 3
Efficiency of gas boiler 0.88

The fuel parameters employed for the traditional energy system and CCHP systems to calculate
the operation targets are listed in Table 6.
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Table 6. Parameters of natural gas and coal [9].

Type of Fuel Heating Value CO2 Emission When Thoroughly Burned

Coal 29,300 kJ/kg 2.69 kg/kg
Natural gas 35,500 kJ/m3 1.96 kg/m3

4.2. Results and Analysis

The state variable discretization process was divided into two steps with accuracy at 10 kW·h and
1 kW·h. According to the discretization method described in Section 3.1, the amount of computations
required was reduced by 98%.

The optimal results obtained using the loads in summer are presented in Figures 7 and 8.
The negative power grid output values indicate generator feedback power to the grid.

As shown in Figure 7, the energy storage units store energy when the demand is low and then
supply a substantial portion of the energy demand during the peak power consumption periods.
As depicted in Figure 8, the generator operates at the load rate of about 80%, although the electrical
load fluctuates sharply. The storage units serve to reduce the peaks and fill the valleys, which
dramatically improves the energy utilization. Nevertheless, the energy demand tendencies remain
observable in the generator operation tracking results. Moreover, the power track of the generator
follows the power price of the grid. The generator operates at a high load rate when electrical power is
expensive. An appropriate load rate is applied when power is modestly priced. The generator would
stop at a low power price.

From 8:00 to 10:00, the generator operated at nearly full capacity, and some extra power was sold
to the grid. It can be seen from Table 1 that the operating efficiency at full capacity is lower than the
maximum efficiency. However, electrical power is so expensive that it is profitable to sacrifice some
efficiency. Moreover, the storage units store considerable energy to prepare for the upcoming phase of
peak energy consumption.

From 19:00 to 20:00, the thermal energy demand is low. Due to the high electricity price and
large amount of electricity demand, the generator operated at nearly full capacity. Meanwhile, large
quantity of thermal energy is stored to handle the next peak of thermal energy consumption.

The generator stopped at 23:00. The subsequent thermal demand can be supplied by the energy
stored beforehand. If the generator continues operating, the stored energy would remain unutilized.
The generator should stop operating although there was little power demand at 23:00.

Figure 7. Changes in energy storage under summer conditions.
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Figure 8. Power variations of system components under summer conditions.

In summary, the operation optimization is influenced by three main factors. The most important
factor is the power demand, which determines the general trend of the optimization results. The next
factor is the price of electricity, which strongly affects the operating state of the generator. The last
factor is the dissipation of stored energy, which restricts the energy storage time. These three factors
jointly determine the optimization results.

Under the energy demands of a typical day in summer, the operating targets of the CCHP system
obtained using dynamic programming and the traditional energy system targets are provided in
Table 7. The operating cost is converted into dollars.

Table 7. Targets comparison of a whole day of operation in summer.

Operating Target Operating Cost ($) CO2 Emission (kg) Fuel Consumption (MJ)

Traditional energy system 254.1 2038.7 kg 20,464.92
CCHP system 150.4 924.2 kg 15,953.76

Variation 103.7 1114.5 kg 4511.16
Rate of change 40.8% 54.7% 22.0%

The energy efficiency is the proportion of energy consumed by users and the fossil energy
consumed by the power station, gas boiler, and CCHP system. The operating cost of the CCHP system
is reduced by 40.8% compared to that in the traditional energy system. Furthermore, the fuel energy
saving ratio is 22.0% and the carbon emission is decreased by 54.7% in the CCHP system.

The optimal results obtained considering the loads in winter are presented in Figures 9 and 10.
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Figure 9. Changes in energy storage under winter conditions.

Figure 10. Power variations of system components under winter conditions.

As mentioned previously, the hot water required by the central air conditioning system to keep
the dormitory warm was separated from that consumed by bathing and so on, and the cool storage
tank was employed to store this part of the hot water.

Generally, the optimization result under winter conditions is influenced by the three factors
discussed for summer conditions. However, a significant characteristic occurs at late night. Unlike
in the results obtained for summer, the generator starts at night because the heating load is heavy
in winter. Because the electricity is cheap late at night, the generator has to operate at the highest
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efficiency. Otherwise, it has to stop. Hot water is stored to supply heating. Under the energy demands
of a typical day in winter. The operating targets are compared in Table 8.

Table 8. Targets comparison of a whole day of operation in winter.

Operating Target Operating Cost ($) CO2 Emission (kg) Fuel Consumption (MJ)

Traditional energy system 247.4 1895.8 21,289.68
CCHP system 158.9 1147.1 17,753.76

Variation 88.5 748.7 3535.92
Rate of change 35.8% 39.5% 16.7%

When compared with the traditional energy system, the operating cost is reduced by 35.8%, the
fuel energy saving ratio is 16.7%, and the carbon emission is decreased by 39.5%.

The conclusion can be drawn that this optimization method not only ensures that the optimal
operating cost is achieved, but also obviously improves the fuel energy saving and environment
protection. Moreover, all the optimizing results were obtained in less than three seconds.

5. Conclusions

In this paper, a CCHP system with storage units was designed. Due to its complex structure and
internal coupling relation, especially considering that its operation progress is essentially dynamic,
traditional optimizing algorithms have some insufficiencies in optimizing its operating schedule.
Recent research has improved the advantages of dynamic programming applied to CCHP system
optimization. However, its application to a CCHP system with complex structure needs efficient
planning to reduce computation.

In the proposed method, the optimization problem was split into a dynamic problem and an
embedded static problem. The dynamic problem reflects the essence of the optimization problem, while
the static problem provides the basis of the dynamic problem. Thousands of repeated computations
were eliminated in economical optimization by introducing the concept of constant cost and variable
cost. Compared to a traditional energy system, the operating cost was reduced by 40.8%, the fuel energy
saving ratio was 22.0%, and the carbon emission was decreased by 54.7%. Moreover, the optimization
of the whole day of a CCHP system requires about 3 s on an average desktop computer. This is a very
short optimization time for a CCHP system with energy storage units. Thus, dynamic programming
can be successfully employed to solve the optimization of CCHP system with complex structure.

In addition, the optimizing methodology applied in this paper implies a stochastic dynamic
solving framework, which will probably contribute to CCHP system optimization. We have achieved
some breakthrough and are trying to employ it in stochastic optimization of CCHP systems considering
off-design performance.
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